
Lab #1
Installing a System

Due In Your Lab, September 1, 2004

Name:

Lab Time:

Grade: /10

The Steps of Installing a System

Today you will install a software package. Implementing a software
system is only part of a software engineer’s job. Once implemented, a system
needs to be installed. A software engineer needs to design the installation
process, also called deployment, to make it as easy as possible for the
system’s users to obtain and install the system.

As you install this lab’s example program, think about what you like and
dislike about the process. What aspects can be improved and how? The
steps to install a Unix program typically involve:

a. Finding & Getting

b. Unpacking

c. Localizing

d. Building

e. Installing

f. Sanity Testing

g. Cleaning Up

Finding and Getting

For this lab we will be installing a program called gnuchess. It is a chess
program created by the GNU software project. A copy of the distribution for
gnuchess can be found at this location: <~csci3308/src/chess-5.02.tar.gz>.
Copy this file into your tmp directory.

1

Unpacking

The gnuchess distribution was “packed” with a program called “tar”,
and then compressed with a program called “gzip.” In order to “unpack”
the distribution, you will have to undo these steps in the reverse order. You
will first decompress the distribution with gzip and then unpack it with tar.
However, first we will review the tar command.

The tar command takes the form

tar c|r|u|x|t[option ...] [file ...]

This line is in the standard format for man pages. The vertical bar
denotes exclusive or. That is, the word tar must be followed by one and
only one of c, r, u, x, or t. Square brackets indicate optional parts of
the command, and the ellipsis means repetition. So the first letter can be
optionally followed by zero or more options and zero or more files. Also
notice that there is no space between the first letter and the options, but
there is a space between the options and the files. The following are examples
of tar commands.

tar x
tar cv file1 file2

So now you know the syntax of tar commands, but what do they do?
What tar does depends on the first letter.

c Create. Tar creates a tar file containing the files listed on the command
line. If a directory is listed, all of its files and subdirectories are in-
cluded as well.

r Replace. Similar to create, it adds files to an existing tar file

u Update. Similar to replace, except a file is only stored in the archive if it
has a timestamp that is more recent than the existing copy stored in
the archive.

x Extract. Extracts from the tar file the files listed on the command line.
If no files are listed it extracts the entire tar file.

t Table of contents. Similar to extract except that tar only lists the names
of the files that would be extracted if x were used, but performs no
extraction.

2

Another important question is which tar file does tar use? The tar file
is specified by the option f followed by the name of the tar file. Notice that
this is an optional argument. tar stands for tape archive. It was originally
intended to be used with a tape drive. If no f option is given tar assumes
you want to read or write a tape drive. This usually results in tar reporting
that it can’t find the device file for the tape drive, or on some versions tar
will sit quietly and wait for the drive to become available, and you will wait
thinking tar is doing something when it is not. Because the f option is so
important I will rewrite the tar description this way.

tar c|r|u|x|t[option ...][f tarfile] [file ...]

The only other option that I will tell you about is the v option that
stands for verbose. With verbose, tar prints more information that it would
otherwise. Most other options deal with the characteristics of tape drives.

1. Change to your tmp directory where you copied the distribution.

2. To uncompress the gzipped file type

gunzip chess-5.02.tar.gz

The command gzip -d chess-5.02.tar.gz will also work. The -d
flag stands for decompress. There is more than one way to skin a
cat. . . especially in Unix! The distribution file is now just a tar file:
chess-5.02.tar.

3. Before you unpack the tar file you want to know what is in it. Type:

tar tvf chess-5.02.tar

4. Describe the parts of this tar command.

5. This tar file is a source distribution. That is, it contains only source
code. As such, it needs to be unpacked into your source directory
(src.) When you unpack this distribution you want it to go in its own
directory under your source directory. Fortunately, the tar file was
packaged so that it would create a new directory and place all of the
files in that directory. Go into your source directory and unpack the
distribution with the command:

3

tar xvf ~/csci3308/tmp/chess-5.02.tar

6. How else could you have written this command?

7. Now you have all of the source code in your source directory so you
can delete the tar file in your tmp directory. The tar file is only used
for a short time which is why you put the file in the tmp directory in
the first place. Every single person in this class will be downloading
the same tar file, and it is a rather large file so delete it now.

rm ~/csci3308/tmp/chess-5.02.tar

Localizing

8. You now have a new directory under your src directory containing the
source code for the gnuchess program. Enter this directory and take
a look around. There are several subdirectories, including one named
src. Enter the gnuchess source directory and look at its contents. Also
take a look in the doc directory. A distribution generally includes a few
files with names in all capital letters (such as README or CHANGES)
that you should read before proceeding with the installation. Look
over these files now.

9. Which file gives instructions on how to install the program?

10. You will be leaving the source code in this directory, and building from
a different directory as described in the instructions. Change to the
directory ~/csci3308/arch/$ARCH/build. Notice that you are build-
ing in your architecture specific build directory. $ARCH automatically
selects the architecture of the machine you are on. You will be able to
repeat this process for other architectures in the lab and have versions
of gnuchess that will work no matter what computer you are on.

4

11. Now, create a subdirectory in your build directory for gnuchess. Call
this directory gnuchess, and change to the new directory. Type the
following all on one line:

~/csci3308/src/chess-5.02/src/configure
--prefix=$HOME/csci3308
--exec-prefix=$HOME/csci3308/arch/$ARCH

You should now have several files in your directory including one called
Makefile.

Building

In your gnuchess build directory, type make. This will take some time,
and there will be a lot of output generated to your screen. Some of the
output may be warnings. You can ignore these warnings. Gnuchess should
still build correctly. All of the intermediate files, and the gnuchess executable
should now be in this directory.

Installing

Before you install type the following:

which gnuchess
man gnuchess

12. These commands will report that they cannot find the gnuchess pro-
gram that you just created, or its man page, despite the fact that you
have just finished building gnuchess from its source code. (Note: The
which command will most likely report that it found a separate copy
of gnuchess located in </usr/bin>. We want to arrange things such
that you make use of the version that you just built.)

13. Why can’t the shell find the version of gnuchess that you just created,
or its man page?

14. The “which gnuchess” may report (as discussed above) that it has
found another installation of gnuchess. If so, explain why it found that
version and not the one that you compiled.

5

15. The directory ~/csci3308/man/man6 is the correct location to install
the Gnuchess man page, but that directory doesn’t exist yet, and the
gnuchess makefile doesn’t create it correctly. Go into your directory
~/csci3308/man, and create a directory called man6. Man pages in
this directory will be in section 6 of the manual.

16. Now return to the build directory where you just built gnuchess. type
make install. Some of the files that you created when you did the
building step will be copied to their final destinations so that you can
run gnuchess. Now type the following:

rehash
which gnuchess
man gnuchess

If you added the relevant 3308 directories to your path and MAN-
PATH correctly in lab 0, you should now see the gnuchess program
and documentation that you just created and installed. (Make sure
that your 3308 architecture-specific bin directory is situated in your
command path before the directory </usr/bin>.)

Sanity Testing

After you install gnuchess you should make sure that it functions prop-
erly. This process is called sanity testing. The purpose of sanity testing is
not to find bugs in a program. Rather, it is to check that a program has been
installed correctly. Generally, sanity testing involves using the program at
least once to make sure that it appears to operate as expected. However,
sanity testing can be a much more involved process in which a test suite is
run to confirm that a new version of a program can still provide the same
functionality that a previous version did.

Type gnuchess. gnuchess will print a prompt waiting for your first
command. Now type go and the computer will calculate the first move for
the white player. Once it is done, it will print a chess board displaying its
results. Type go again to have the computer calculate a move for the black
player. You can continue typing go if you want, but for our purposes the
sanity test is now complete. To exit gnuchess, simply type exit.

You can also perform the sanity test that is recommended by gnuchess’s
own documentation. Type gnuchess to start the program. Then type post,
then depth 8, and then go. Finally, type exit to leave the program.

6

17. Where were the instructions for this sanity test located in the gnuchess
distribution?

Cleaning Up

Now that we have gnuchess installed and tested, we should clean up its
build files. Normally, we have two choices, we could either run the command
make clean or we can delete the contents of the gnuchess build directory.
The command make clean is typically used to have the makefile remove
all files that it generated except for its installed software, man pages, li-
brary files, etc. gnuchess’s makefile unfortunately doesn’t do this, so we will
instead clean out the build directory by hand. We don’t want to remove
everything in this directory, or we will have to run the configure command
again to create a copy of the Makefile. So, instead, we will just remove the
.o files that were generated when gnuchess was compiled, along with the
gnuchess executable. (Don’t worry, there is still a copy of gnuchess in your
architecture-specific bin directory.)

18. Go to the gnuchess build directory and execute the command:

yes | rm *.o gnuchess

This lab is meant to give you a feel for the “life cycle” of a program’s
installation. As mentioned in lecture, it is important for software engineers
to engineer this process, and we’ve seen several tools (from shell scripts to
makefiles to standardized directory layouts) in this lab that help make that
possible.

7

