A TUTORIAL INTRODUCTION TO GCT

Brian Marick
Testing Foundations

Documentation for version 1.4 of GCT.
Document version 1.4

This document is a step-by-step guide to the basics of using the Generic Coverage Tool (GCT). The
manual pages and the Generic Coverage Tool (GCT) User’s Guide have the full details.

Please suggest improvements to this manual, to other manuals, or to GCT itself.

Preface

GCT is free software; you are encouraged to redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 1, or (at your option)
any later version.

GCT is sometimes bundled with Expansion Kits, also distributed in source form but licensed separately. If
you redistribute GCT, please take care to redistribute only GCT.

GCT and its Expansion Kits are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. For more details, refer to the GNU General Public License (the file COPYING in
the distribution) or to the separate license you received with an Expansion Kit.

For more information about GCT, other products, or other services, contact:

Brian Marick

Testing Foundations

809 Balboa

Champaign, Illinois 61820

(217) 351-7228
Email: marick@cs.uiuc.edu, testing!marick@uunet.uu.net

You can join the GCT mailing list by sending mail to gct-request@cs.uiuc.edu.

This document is Copyright © 1992 by Brian Marick, who hereby permits you to reproduce it verbatim for
personal use. You may not reproduce it for profit.

CHAPTER 1

I ntroduction

In thistutorial, you'll step through the basics of using GCT:

(1) Instrumenting a program.

(2) Obtaining coverage data.

(3) Writing new tests to increase coverage.

(4) Changing the program and reinstrumenting.

Most of the ideas will be introduced as they’ re used, but a summary of what GCT does seemsin order.

A perfectly effective test suite would find every bug. Since we don’t know how many bugs there are, we
can’'t measure how closely a test suite approaches perfection. Conseguently, we use some approximate
measure of test suite quality: since we can’'t measure what we want, we measure something related.

With coverage, we estimate test suite quality by examining how thoroughly the tests exercise the code:

(1) Isevery if statement taken in both the true and false directions? (If it's never taken in the true direc-
tion, why do you believe that case works?)

(2) Isevery case taken? What about the default case?

(3) Isevery while loop executed more than once? Does some test force the while loop to be skipped?
(That is, force the loop test to be false thefirst timeit’ s tested.)

(4) Isevery loop executed exactly once? (There are potential initialization bugs that can be masked by
later iterations of the loop.)

(5) Do thetests probe off-by-one errors?

GCT answers these questions; equivalently, it measures branch, loop, and relational operator coverage.
These types of coverage are most appropriate near the time the code is written ("unit testing"). Other types
of coverage are better suited for later testing ("system testing"), but they aren’'t described here. The princi-
ples are the same.

One of these principlesisthat coverage numbers must be used carefully. Approximate measures of quality
are dangerous; it's easy to concentrate on the "making the numbers', and somehow losing quality in the
process. By anaogy, consider hiring a college graduate. A perfect grade point average from the best
school in the country means something quite different than one from <insert your alma mater’s traditional
rival here>. You wouldn’t hire based only on GPA; don’t judge test quality only on coverage.

In particular, it is usually unwise to generate tests solely to achieve high coverage. While it is true that
good tests imply coverage, the converse is not necessarily true. Many of the important bugs in programs
are caused by omitted code (such as missing error handling) -- designing tests only to exercise code may do

apoor job of finding those bugs.

Because the focus of this tutorial is the mechanics of GCT, little more will be said on this very important
topic.

Here are some references about the prevalence of different types of errors. Robert L. Glass, ‘‘ Persistent Software Errors'’, Tran-
sactions on Software Engineering, vol. SE-7, No. 2, pp. 162-168, March, 1981. V. Basili and D. Weiss, ‘* A Methodology for collect-
ing valid software engineering data’’, |IEEE Transactions on Software Engineering, vol. SE-10, pp. 728-738, November, 1984. Tho-
meas J. Ostrand and Elaine J. Weyuker, *‘ Collecting and Categorizing Software Error Data in an Industrial Environment’’, Journal of
Systems and Software, Vol. 4, 1984, pp. 289-300. Dewayne E. Perry and W. Michael Evangdlist, ‘* An Empirical Study of Software
Interface Errors”’, Proceedings of the International Symposium on New Directions in Computing, |EEE Computer Society, August
1985, Trondheim, Norway, pages 32-38.

-2- GCT Tutorial

CHAPTER 2

Instrumenting Y our Program

1. Usinglc

The first step is to copy the source from the GCT demo directory and its subdirectories to your own direc-
tory. (The person who installed GCT can tell you where the demo files are.)

Take alook at the directory. You'll see many files. Some of the more important are:

Ic.h, Ic.c, and get.c
This is the source for the program you’ |l instrument. It's a program that counts the lines of code and
commentsin C programs.

lc.1
This is the manpage, suitable for formatting with nroff. Ic.1t is more useful when using troff output
for printing.
Makefile
Thisisthe makefile for the program.
run-suite
This is a test suite driver for Ic. The test data are in the files named Icl, Ic2, and so on. This test
suite was developed using techniques described elsewhere!, but a few tests were removed for this
tutorial.
Type
% make
% Iclc.c

to see how Ic works. Y ou should see this output:

% Ic Ic.c
Pure Pure Both Total Total Total
Code Comment Cod&Com Blank Code Comment Lines Pages

Ic.c 164 305 19 61 183 324 549 19

"Pure Code" means lines of code with no comments, "Pure Comment” means lines with only comments;
"Both Cod& Com" means lines containing both. "Blank" lines contain neither code nor comments.

2. Deciding What to Measure
Thefirst stepisto tell GCT what to measure. That information is kept in the file get-ctrl, which contains;

(coverage branch multi loop relational)
(options instrument)

The first line tells GCT we want branch, multi-condition, loop, and relational operator coverage. These are
the types of coverage | recommend for detailed testing (unit and subsystem testing). We'll see what these
coverages mean when we look at GCT’s reports. Other types of coverage are possible; see the User’'s

1 Brian Marick, *‘ Experience with the Cost of Test Suite Coverage Measures'’, Pacific Northwest Software Quality Conference,
October, 1991. Also available as a compressed postscript file in cs.uiuc.edu:/publ/testing/experience.ps.Z.

-3- GCT Tutorial

-4- GCT Tutorial

Guide.
The second line tells GCT to measure coverage for al files. We could also name Ic.c and get.c specifically.

3. Instrumenting the Program

The next step is to instrument the program so that it collects data about its execution as it runs. We will do
this by substituting GCT for the normal C compiler when running the makefile.

3.1. Preparation
Before doing that, we need to make sure that the Makefile will recompile both files in the program:

% make clean
Since thisis the first time we' re instrumenting these files, we need to initialize GCT:
Y% gct-init

This program copies a number of filesinto your directory. Most users will only care about two GCT files:

GCTLOG
The logfile contains the raw coverage information from one or more tests. The name can be
changed; see the User’'s Guide. There’s no logfile yet, because we haven't run any tests.

gct-map
The mapfile contains the information used to translate the logdfile into comprehensible text. Its name
can a'so be changed.

Y ou may be curious about what the other files are:

gct-ps-defs.h
A makefile usually invokes the C compiler separately for each source file. GCT is invoked in the
sameway. Thisfile stores information about where the previous invocation left off.

gct-ps-defs.c
For speed, the coverage data is stored in the memory of the instrumented program. This file defines
that in-core log; it islinked into the final executable.

gct-write.c
To be useful, the in-core log must be written into the logfile. This file contains a routine that does
that. It also contains a routine that reads in the logfile, so that the log can accumulate over severa
tests.

gct-defs.h
This file contains various C macros used to manipulate the in-core log. It isincluded by all instru-
mented files.

2 |f the shell cannot find gct-init, the directory that GCT was installed in must not be in your search path (SPATH). Ask the
person who installed GCT whereit is.

-5 GCT Tutorial

3.2. Instrumentation

In this step, we tell the makefile to compile the program in the normal way, but to use GCT as the "com-
piler". Thisisdone by calling the makefile like this:

% make CC=gct

Y ou should see something like this:

gct -c le.c
gct -c get.c
gct-olc Ic.o get.o

make gives Ic.c to GCT. The result is an instrumented object file, Ic.0. Although GCT appearsto bea C
compiler, what it is actually doing is instrumenting Ic.c, placing the result into a temporary file, calling the
system’s C compiler to compile that file, and leaving the result in Ic.o.

Severa options provide finer control over what GCT does with the instrumented source, which C compiler
it uses, and so on. Seethe User’'s Guide.

CHAPTER 3

A First Pass Over the Coverage Data

To run the test suite, type
% run-suite

It will print lines like this to the screen:

==T2

Any line not beginning with an equal sign signals atest failure. (There shouldn’t be any.)

Now that tests have run, the logfile, GCTLOG, exists. To get afirst idea of how thorough the test suite is,
type

% gsummary GCTLOG

Y ou should see this:

testing-182% gsummary GCTLOG

BINARY BRANCH INSTRUMENTATION (70 conditions total)
2 (2.86%) not satisfied.

68 (97.14%) fully satisfied.

SWITCH INSTRUMENTATION (14 conditions total)
0 (0.00%) not satisfied.
14 (100.00%) fully satisfied.

LOOP INSTRUMENTATION (18 conditions total)
1 (5.56%) not satisfied.
17 (94.44%) fully satisfied.

MULTIPLE CONDITION INSTRUMENTATION (42 conditionstotal)
2 (4.76%) not satisfied.
40 (95.24%) fully satisfied.

OPERATOR INSTRUMENTATION (21 conditions total)
1 (4.76%) not satisfied.
20 (95.24%) fully satisfied.

SUMMARY OF ALL CONDITION TYPES (165 total)
6 (3.64%) not satisfied.
159 (96.36%) fully satisfied.

I’ll explain the first two sections; the other types of instrumentation are covered in the next chapter.

Every branching statement (if, ?, or loop test) generates two coverage conditions. one that the true case be
taken, and one that the false case be taken. In Ic, there are 35 branching statements generating 70 condi-
tions. Of these, two have not been satisfied; two cases (true or false) remain to be exercised.

-6- GCT Tutorial

-7- GCT Tutorial

Ic also contains some switch statements with a total of 14 cases (including defaults). All the cases have
been taken. (Each case label is a separate coverage condition.)

The summary coverage is high. That’s not surprising, since this test suite was derived by removing a few
tests from atest suite that reached 100% coverage. However, asummary coverage greater than 90% istyp-
ical of thorough test suites.

Simple numbers like gsummary’s are a blunt instrument. Don’t use GCT to reduce your testing to a few
numbers, but rather to expand your understanding of what your test suite really does. greport, described in
the next chapter, isthe tool you'll use.

1 In addition to the Experience paper mentioned earlier, | can send an unpublished case study: the coverage of GCT’s own test
suite.

CHAPTER 4

Writing New Tests

1. Analysing missed coverage
Type

% greport GCTLOG
Y ou should see:

"lc.c", line 137: operator > might be >=. (L==R)

"lc.c”, line 137: condition 1 (argc, 1) was taken TRUE 43, FALSE 0 times.
"lc.c", line 139: condition 1 (<...>[...], 1) was taken TRUE 0, FALSE 14 times.
"lc.c”, line 153: if was taken TRUE 0, FALSE 29 times.

"lc.c", line 162: loop zero times: 0, one time: 19, many times: 10.

"lc.c", line 172: if was taken TRUE 0, FAL SE 43 times.

You'll notice that thislooks alot like error output from a C compiler. Thisisintentional, for two reasons:

(1) Psychological. As with a compiler’s output, you examine the errors (in this case, test deficiencies),
fix them, redo the compile (rerun the test suite), and repeat the process until you get no more output.
Just as with a compiler, the messages you see may prompt large changes, larger than is strictly neces-
sary to make them go away.

(2) Practical. These error messages are compatible with the error (1) program (on BSD UNIX) and the
GNU Emacs next-error function. (A version of next-error tailored to GCT is provided with GCT.
If you're an Emacs user, you may want to look at Appendix A now.)

Let's examine the output line by line. The first two lines of greport output refer to line 137, which is the
option processing loop. The line in question is highlighted below, but | recommend you edit |c.c; the dis-
cussion will be easier to follow if you don’t have to constantly flip pages of thistutorial.
while(--argc > 0& & (**++argv =="-"))
if ((*argv)[1] == LCURL || (*argv)[1] == RCURL)
white_bracket = TRUE;
}
eseif (sscanf (*argv + 1, "%d", & page _size) == FALSE)
fprintf (stderr, "lc: Bad page size argument: %s\n", *argv);
exit (BAD_FLAG);

}
}

Thefirst greport line,
"lc.c", line 137: operator > might be >=. (L==R)
is from relational coverage, which checks for tests that probe common misuses of relational operators. In

this case, we're worried that the programmer made the mistake of using > instead of >=. The parenthetical
remark (L==R) is suggesting that the unexercised boundary condition, --argc==0, is the best way to find

-8- GCT Tutorial

-9- GCT Tutorial

this hypothetical bug.

Why? Suppose that > isin fact wrong. We want to write the test with the best chance of causing this pro-
gram to fail. If we choose --argc==0, the program we have will not enter the while loop, whereas the
correct program (with >=) would. For all other possible values, the given program would take the same
path as the correct program, so itislesslikely to fail.

To force this case, the call to Ic must have no non-option arguments. It must look like one of these:

% lc < INPUT
% Ic -} < INPUT
% Ic -34 < INPUT

If you look at the run-suite file, you'll see that there are no such tests: Ic is never tested when it takes its
input from standard input. This is a mgjor omission. Rather than writing a test like this right away, we
should write down "input from standard input” as a test condition in a separate list of test conditions. We

may later be able to combine several of these test conditions into a single test case, which saves us effort.

A relational operator can produce up to three lines of greport output. See the Generic Coverage Tool
(GCT) User’s Guide for descriptions of the other two.

The next line of greport output is from the same line of the program.
"lc.c", line 137: condition 1 (argc, 1) was taken TRUE 43, FALSE 0 times.

This is from multicondition coverage, which checks that al parts of a logical expression are used. Line
137’s while loop test has two components:

--argc >0
and
**++argy == -’
The first of them was aways true in every test, never fase. The second component isn’'t mentioned,

because it's evaluated to both true and false. If you want to see how many times it's evaluated to each
value, use greport -all (see the manpage).

This condition tells us the same thing that we already knew. To get --argc equal to zero, there can be only
arguments beginning with a dash -- that is, Ilc must take its input from standard input.

1 It'salso likely to result in a better test -- more complicated test cases are better (up to a point) because they are more likely to
catch bugs by chance.

-10- GCT Tutorial

The next line,
"lc.c", line 139: condition 1 (<...>[...], 1) was taken TRUE 0, FALSE 14 times.
corresponds to this code:
while (--argc > 0 && (**++argv =="-"))
if ((*argv)[1] == LCURL || (*argv)[1] == RCURL)
{ white_bracket = TRUE;
};Ise if (sscanf (*argv + 1, "%d", & page_size) == FALSE)

fprintf (stderr, "lc: Bad page size argument: %s\n", *argv);
exit (BAD_FLAG);
}
}

It is also an example of multicondition coverage, but the message looks peculiar. What does (<...>[...], 1)
mean? It'stherein case "condition 1" is not enough to locate the condition greport refersto. (In this case,
the condition is (*argv)[1] == LCURL.)

Conditions are numbered from left to right. But in a deeply nested expression, like (A && (B || C) || D), it
can be hard to count conditions accurately. The parenthetical remark helps you find them. The first com-
ponent is the leftmost operand of the condition. In this case, it's (*argv[1]). Greport aways abbreviates
arrays as arrayname]...], because the expression in brackets is often complex and would make the line too
long. When arrayname is more complicated than a simple identifier, GCT abbreviates it as <...>, again to
save space.

These abbreviation rules are perhaps a bad idea, but in practice it’ srarely difficult to figure out what subex-
pression is meant. As an additional help, the number in parentheses is the nesting depth of the subexpres-
sion, starting with 1. (It's always deeply parenthesized expressions that cause trouble.)

What this line tells us is that *argv[1] is never LCURL. (LCURL isdefined inlc.h.) That is, we've never
given the program the -{ option. A quick check of run-suite confirms this. We'll write that down in our
test condition list.

The next line,
"lc.c", line 153: if was taken TRUE 0, FAL SE 29 times.
tells us that this if has never been taken in the true direction.
if (argc==0)
{ taly file (stdin, &file _tally);

show_header ();
show_tally (*", &file_tally);

}

We already knew that: the program never reads from standard input.

-11- GCT Tutorial

The next line,
"lc.c", line 162: loop zero times: 0, one time: 19, many times: 10.
isthe first example of loop coverage. This particular loop traverses al of Ic’s non-option arguments.
for (index = 1; index <= argc; index++)
i{f ((fp = fopen (*argv, "r")) == NULL)

status= FILE_NOT_FOUND;
fprintf (stderr, "lIc: can’'t open %s\n", *argv);

}
else
{
tally file (fp, &file_taly);
if (fclose (fp) == EOF)
panic (PANIC, "Fclose error.");
show_tally (*argv, &file_taly);
if (argc>1)
make total (&total taly, &file tally);
}
argv++;

}

A greport linefor aloop tells about three types of traversals:

(1) oneswherethe loop test failed on the first try, so the loop body was never entered.

(2) oneswherethe loop test failed on the second try, so the loop body was entered exactly once.
(3) oneswhere the loop body was traversed more than once.

Some types of bugs are only detected by one of these cases.

In this particular case, we know that argc>0 (because we just looked at the if statement that handled the
zero case). So it isimpossible to traverse the while loop O times. This is an example of an infeasible test
condition. We can ignore it.

Of the two feasible cases, we see that Ic was given a single argument 19 times and more than one argument
10 times.

We move on to:
"lc.c”, line 172 if was taken TRUE 0, FAL SE 43 times.
which corresponds to thisline:

if (fclose (fp) == EOF)
panic (PANIC, "Fclose error.");

Evidently, the programmer thinks an EOF return from fclose() isimpossible (but is checking anyway, just
in case). Of course, what a programmer thinks and what is true may be two different things. We as testers
would want to think hard about how to generate EOF returns. (Error handling is afertile source of serious
bugs caused by mistaken assumptions.) Let's assume that we'll fail, that this is another example of an
infeasible test condition.

WEe're finished. We generated only a short list of things to test. Thisis as it should be, given a thorough
starting test suite. We wasted some time looking at impossible conditions, but not very much.

-12- GCT Tutorial

2. Thenew tests
We have two new test conditions:

1. input from standard input.
2. Use the -{ option.

Thisis easy to do with asingle test, which you should just type to the shell:
% echo "{" | Ic "-{"

(Notice that braces are quoted to prevent possible interpretation by your shell.) Thisis not avery thorough
test of the -{ option, but it will do for thistutorial. Isthe output correct?

Now type
% gsummary GCTLOG
You'll seethat total coverage has gone up to 98.79%. greport GCTLOG shows:

"lc.c”, line 162: loop zero times: 0, one time: 19, many times: 10.
"lc.c", line 172: if wastaken TRUE 0, FALSE 43 times.

We know that both of these are infeasible.

3. Suppressing infeasible coverage

It's annoying that we can't make the infeasible test conditions go away. Worse, if we're testing a large
program - one where it may take us many tries to eliminate all feasible test conditions - we don’t want to
waste time looking at infeasible conditions every time we run greport after a change to the test suite.

The gedit program can help. To useit, type
% greport -edit GCTLOG > edit.g
Edit edit.g. You'll seethis:

"lc.c", line 162: [25: 0 19 10] loop zero times: 0, one time: 19, many times: 10.
"lc.c", line 172: [34: 0 43] if was taken TRUE 0, FAL SE 43 times.

The numbers in brackets are the raw versions of what the text says. In the first case (line 162), the O isthe
number of times the loop was skipped. The next two numbers are the numbers the loop was taken once
and many times. In the case of branches, like line 172, the first number is the true count, the second the
false count.

Replace the zeros that are impossible with either "s", "S", "0s", or "0S":?

"lc.c”, line 162: [25: 0S 19 10] loop zero times: 0, one time: 19, many times: 10.
"lc.c”, line 172: [34: s 43] if was taken TRUE 0, FALSE 43 times.

2|f you' re using Emacs "gedit-mode", SPC will helpfully position you at the first zero in the next line.

-13- GCT Tutorial

Now type

% gedit edit.g
% gsummary GCTLOG

You'll see:

BINARY BRANCH INSTRUMENTATION (70 conditions total)
0 (0.00%) not satisfied.
70 (100.00%) fully satisfied. [1 (1.43%) suppr essed]

SWITCH INSTRUMENTATION (14 conditions total)
0 (0.00%) not satisfied.
14 (100.00%) fully satisfied.

LOOP INSTRUMENTATION (18 conditions total)
0 (0.00%) not satisfied.
18 (100.00%) fully satisfied. [1 (5.56%) suppressed]

MULTIPLE CONDITION INSTRUMENTATION (42 conditions total)
0 (0.00%) not satisfied.
42 (100.00%) fully satisfied.

OPERATOR INSTRUMENTATION (21 conditions total)
0 (0.00%) not satisfied.
21 (100.00%) fully satisfied.

SUMMARY OF ALL CONDITION TYPES (165 total)
0 (0.00%) not satisfied.
165 (100.00%) fully satisfied. [2 (1.21%) suppressed]

If you use greport, it will show you nothing. Y ou're done using coverage on your test stite.

gedit works by adding information to the mapfile. The user’'s manual describes other ways to edit the
mapfile to control what information the reporting tools display.

CHAPTER 5

Updating M apfiles and L ogfiles

The facilities described in this chapter are available only with GCT Expansion Kit 1, which is purchased
separately. The Expansion Kit provides two facilities:

(1) You can change a single file and incrementally update the mapfile. Without the expansion kit, you
must reinstrument and recompile all the files when one of them changes.

(2) Asyou test a program, you accumulate information: which coverage conditions have been satisfied,
and which you've ruled out as infeasible. This information is stored in the logfile and by gedit’s
changes to the mapfile. In theory, anew version of the program that differsin only a single character
could invalidate al that information. Without the expansion kit, old information must be discarded
when each new version is produced. With it, you can assume that the old information is still
(mostly) valid, and update it to match the new version. This allows you to defer worrying about
invalidated information until the program’s final version. Thisis more efficient.

The full capabilities of the Expansion Kit are described in the User’s Guide.

1. Updating the M apfile
Here, we'll see how the mapfile is updated after asingle file changes. Edit main() inlc.c. Addtheline

argc=argc+1-1;

anywhere in the routine. (We want to add a line that does nothing, so the tests don't fail.)

Recall that main is the routine where we suppressed two infeasible coverage conditions. that fclose can
fail and that the file-processing for loop be entered zero times.

Once again, type
% make CC=gct
Y ou should see something like this:

gct -c le.c
gct-olclc.o get.o

Notice that get.c was not reinstrumented because it hasn’t been changed.
Now type

% gsummary GCTLOG
You'll see something like this:
The mapfile and logfile come from two different instrumentations.
The mapfile comes from one begun on Sun Aug 23 09:56:15 1992.
The logfile comes from one begun on Sun Aug 23 09:48:24 CDT 1992.
Data from an old logfile might be invalid for this changed source, so gsummary complains. The next sec-

tion will describe how to update the logfile. For now, create a new log file by rerunning the old test suite
and the new test we designed.

-14- GCT Tutorial

-15- GCT Tutorial

% rm GCTLOG!

% run-suite

% echo "{" | Ic "-{"

% gsummary GCTLOG

gsummary should show you this:

BINARY BRANCH INSTRUMENTATION (70 conditions total)
0 (0.00%) not satisfied.
70 (100.00%) fully satisfied. [1 (1.43%) suppressed]

SWITCH INSTRUMENTATION (14 conditions total)
0 (0.00%) not satisfied.
14 (100.00%) fully satisfied.

LOOP INSTRUMENTATION (18 conditions total)
0 (0.00%) not satisfied.
18 (100.00%) fully satisfied. [1 (5.56%) suppressed]

MULTIPLE CONDITION INSTRUMENTATION (42 conditions total)
0 (0.00%) not satisfied.
42 (100.00%) fully satisfied.

OPERATOR INSTRUMENTATION (21 conditions total)
0 (0.00%) not satisfied.
21 (100.00%) fully satisfied.

SUMMARY OF ALL CONDITION TYPES (165 total) 0 (0.00%) not satisfied.
165 (100.00%) fully satisfied. [2 (1.21%) suppressed]

Even though main has changed, the two suppressed conditions remain suppressed. We are assuming that
they remain impossible. Thisis a reasonable assumption to make during code and test development. You
want to reexamine the impossibility of those conditions after al changes are made, instead of as each
change is made.

GCT retained suppression because the change was a minor change, defined as one that didn’'t change the
instrumentation of the routine. Had the change been major - adding an if statement, for example - GCT
would have forced you to reevaluate the two impossible conditions. They would not have been suppressed
in the updated mapfile, so they would have reappeared in greport output.

You can instruct GCT to force reevaluation after minor changes, or even whenever any change is made to
any routine. Seethe User’s Guide.

2. Updating the L odfile

In addition to updating the mapfile, you may also want to update the logfile. As an example of this, edit
get.c. In the routine skip_token, you’'ll see a commented-out if statement. Remove the comments to pro-
duce a changed routine. Notice that thisisamajor change.

! run-suite actually deletes GCTLOG so that the log contains information only about that run. But an explicit removal is clear-
er for this tutorial.

-16- GCT Tutorial

Reinstrument and update the mapfile, first saving a copy of the old information:

% cp gct-map gct-map.save
% cp GCTLOG GCTLOG.save
% make CC=gct

Now update the log:
% gct-newlog gct-map.save GCTLOG.save > GCTLOG

Y ou should see
Routine skip_token (in get.c) has changed too much; its entries will be zeroed.

All information about how the test suite exercises skip_token has been lost, because it is very likely mean-
ingless for the new routine.?2 However, the information for the rest of the program remains. Type

% greport GCTLOG

and you'll see that only the lines from the changed routine appear:

"get.c", line 148: if was taken TRUE 0, FALSE O times.

"get.c", line 150: while was taken TRUE 0, FALSE 0 times.

"get.c", line 150: loop zero times: 0, one time: 0, many times: 0.

"get.c", line 151: condition 1 (ch, 4) was taken TRUE 0, FALSE 0 times.
"get.c", line 151: condition 2 (ch, 4) was taken TRUE 0, FALSE 0 times.
"get.c", line 152: condition 1 (ch, 3) was taken TRUE 0, FALSE 0 times.
"get.c", line 152: condition 2 (ch, 3) was taken TRUE 0, FALSE 0 times.
"get.c", line 153: condition 1 (ch, 2) was taken TRUE 0, FALSE O times.
"get.c", line 153: condition 2 (ch, 2) was taken TRUE 0, FALSE 0 times.
"get.c", line 154: condition 1 (ch, 1) was taken TRUE 0, FALSE 0O times.
"get.c", line 154: condition 2 (ch, 1) was taken TRUE 0, FALSE 0O times.

Had any of the linesin the routine been suppressed, that suppression would have been forgotten as well.

Since we changed this routine, we're presumably about to rerun al its tests again, so losing its coverage
information is no hindrance. However, if we were also in the midst of testing another unrelated routine,
we'd be glad that that routine' s coverage information was retained.

Once the program was finished and tested, we' d typically reinstrument completely, rerun all the tests, and
check coverage one last time.

3. Utility scripts

Because information about your testing of a program is distributed among severa files (the current execut-
able, the source it was built from, the mapfile and its edits, and one or more logfiles), it’s unfortunately easy
for those files to become inconsistent. Unless you make fewer stupid mistakes than | do, using ssmple shell
scripts to keep checkpoints of GCT files will save you pain. This section describes some recommended
shell scripts that you can adapt to your needs.

2 |n this particular case, the old coverageis actually still valid, since the if doesn'’t affect the routine.

-17- GCT Tutorial

3.1. Basicuse
First, copy the scripts into the demo directory:

% cp kitl/* .

To instrument the entire program for the first time, use instrument.
% instrument

You'll see
Save current instrumented state of program?

Answer 'n’ (without the quotes) because there isn't a current state the first time you instrument. You
should then see something like

gct-c lc.c

gct-c get.c

gct-olc Ic.o get.o

FINISHED: Use 'update’ if you want to update the logfile.

Run the test suite (run-suite), and use gedit to edit the mapfile. Then change Ic.c, but make a syntax error.
To reinstrument the changed file, type

% reinstrument
Now that you have alogfile and edited mapfile, you should answer 'y’. You'll get acompile error:

Ic.c: In function main:

Ic.c:158: ‘x’ undeclared (first use this function)

Ic.c:158: (Each undeclared identifier is reported only once
lc.c:158: for each function it appears in.)

Ic.c:158: parse error before ‘show_tally’

*** Error code 1

make: Fatal error: Command failed for target ‘Ic.0’

Fix the error and reinstrument again. Thistime, answer 'n’ when asked if you want to save the state. For

one thing, you just saved it. For another, the mapfile has been changed by the incomplete instrumentation,
but the logfile has not been updated, so the two files are no longer consistent.

Next, type
% update
This produces a GCTLOG that matches the reinstrumented program. Y ou can now continue your testing.

3.2. Recovery
Now let’s consider a case where you accidentally destroy some data. Type

% gclean

Thiswipes out all GCT files, including the mapfile. Y ou now have a logfile with no way of interpreting it.
If you didn’t know that, you might try reinstrumenting:

% reinstrument
Save current instrumented state of system?

-18- GCT Tutorial

y
cp: gct-map: No such file or directory

Investigating this error, you discover what's happened. reinstrument normally makes the checkpoint in
save, first saving the previous checkpoint in save2. Because the current state isinconsistent, the checkpoint
directory is empty. What you need to do is make a consistent state in the build directory, then update it with
the information in save2. Typethis:

% instrument # answer 'n’
% cp save2/* save # Recover works on this directory
% recover

Y ou should now have alogfile and mapfile corresponding to the latest version of your program, including
all applicable edits and coverage information. Unless you keep good records, the coverage information
might not be that useful, since you probably won't know what tests it corresponds to. But not having to
rethink and reapply the edits will be arelief.

APPENDIX A

Using gedit.€l

gedit.el provides a version of the Emacs next-error interface that works better for greport output. The
source for gedit.el is, by default, in the GCT library directory; whoever installed GCT may have put it with
other local emacs files.

The most convenient way to use gedit.el is to always put greport output into files ending in .g and put
something like

(setq auto-mode-alist (cons (cons "\.g$" 'gedit-mode) auto-mode-alist))
(autoload 'gedit-mode (expand-file-name ""/gct/src/gedit.el"))

into your .emacs file. That done, whenever you edit such afile, you'll use gedit-mode.

When in gedit-mode, each time you hit SPC, anew greport line will move to the top of one window. The
appropriate source file will appear in the other window. An arrow (=>) will point to the line in question.
(The arrow is not part of thefile.)

Like next-error, there's no convenient way to back up. If you hit e, you'll restart from the beginning.

-19- GCT Tutorial

