
Program #3
Debugging

Due in Class Wednesday, November 26, 2003

Name:

Lab Time:

Grade: /30

A Car Dealership Database

For this program you will be debugging a car dealership database pro-
gram. Below is the specification for this program. A correct executable named
Dealer-okay exists in the directory ~csci3308/arch/$ARCH/bin for all archi-
tectures. The correct executable is for you to understand how the program is
supposed to work. We are also providing the correct executable as part of the
program specification for this assignment. You can use the Dealer-okay program
to generate the expected output for the test case that ships with the buggy ver-
sion of the system. The buggy source code and a test case are contained in a tar
file ~csci3308/src/Dealer-bugs.tar. This is the source code you will debug.

Unpack the source code into your source directory. Before you compile
the program, make sure you are using the g++ compiler in </usr/bin> or the
one in </tools/cs/gcc-3.3/bin/g++>. Now go to the architecture-specific build
directory for Dealer-bugs (note: you will need to create this directory first!) and
build the program (you can ignore the warnings about “deprecated” headers):

make -f ~/csci3308/src/Dealer-bugs/Makefile install

Type rehash and verify that Dealer-bugs is in your path.
You will now want to have two terminal windows open. One should stay in

the architecture-specific build directory and the other should stay in the Dealer-
bugs src directory. You will run test cases and make fixes to the Dealer-bugs
source code in the src directory. You will build and debug the program in the
build directory. (Copy the easytest.in file from the src directory into the build
directory, so you have it in both places.) Each time you fix a bug in the src
directory, you will re-run the above make command to build Dealer-bugs to see
if the bug has been fixed. Feel free to write new test cases for this program.
Indeed, the supplied test case can be viewed as an “acceptance test” for the
Dealer-bugs program, and as such, you may find it more productive to create
smaller test cases that test specific functions of the program. If you do so, you
can use the Dealer-okay program to generate the expected output for the test
case, as mentioned above.

In the src directory, run the correct version of the dealer program on the test
case that came with the Dealer-bugs distribution. Dealer-okay is located in the
csci3308 bin directory so it should be in your path:

1

Dealer-okay < easytest.in

Now that you know the expected output, run the buggy version you just
compiled:

Dealer-bugs < easytest.in

There are seven bugs in the program. You must debug the program until the
easytest.in test case passes. Be sure to use the version of gdb in </usr/bin>.

When you find a bug, use RCS version control to track changes to the source
files. Check in the original buggy files, and check in each file when you make
a change. When you are done, use the program rcsdiff to print out the
differences between your correct version, and the original buggy files. The only
thing you will turn in is the printout of this rcsdiff. From this printout we
will see whether you found all the bugs and fixed them correctly. Please include
a comment in the code about what you did to fix each bug and make sure to
include your name and lab section on the printout.

This program is due in lecture on Wednesday, November 26th.

2

Requirements Specification of a Car Dealership Database

1. The database stores information about cars. Information about a car is
entered into the database when a car is added to the inventory of the
dealership. It is removed from the database when the car is sold. The
dealer can ask to print information about a particular car given its iden-
tification number. The dealer can also ask for a printout of all the cars in
the inventory in three different ways

2. The program reads a sequence of commands from stdin. The input should
be formatted as a sequence of integers separated by whitespace. The first
integer selects the command to perform. Some commands take a certain
number of parameters. If the command takes parameters then one integer
is read from stdin for each parameter. After the command is executed
the process repeats with the next integer being interpreted as a command
until all input is exhausted.

3. Splitting the input across multiple lines has no effect except that a newline
is considered whitespace, so there can be multiple commands on a single
line, or a single command can be split across multiple lines.

4. The commands are as follows

1 Add a car. Has 4 parameters: CarId, Speed, Doors, Price.
2 Remove a car. Has 1 parameter: CarId.
3 Print information about a particular car. Has 1 parameter: CarId.
4 Print information about all cars ordered by identification number, from

smallest to largest. Has no parameters.
5 Print information about all cars ordered by time the car has been in

inventory, longest to shortest. Has no parameters.
6 Print information about all cars ordered by time in inventory, shortest

to longest. Has no parameters.

5. Output should only occur in response to commands 3 through 6. For each
car that is printed the program should print the CarId, Speed, Doors, and
Price all on one line. Each car should be printed on a separate line even
if subsequent output is the result of the next command.

6. The following error conditions must be checked by the database program.

• A command number less than zero.
• Adding a car whose identification number is already in the database.
• Selling or asking for information about a car whose identification

number is not in the database.

The response to an error should be that the current command is ignored.
The program can assume that the number of parameters provided for a
command will always be correct.

3

