
Lecture 24: Debugging and gdb

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

November 17, 2003 © University of Colorado, 2003 2

Today’s Lecture

Debugging

The concept

Terminology

Types of Debuggers

gdb - The GNU Debugger

November 17, 2003 © University of Colorado, 2003 3

Debugging

Debugging is the process of finding faults in a

program after a failure has been detected

Typically

a program fails a test case (or a bug is reported)

a programmer is given the test case, checks out

the associated source code, and “debugs” the

program until the fault has been corrected

the program, having been fixed, passes the test

case and no longer exhibits the failure

November 17, 2003 © University of Colorado, 2003 4

Finding Faults

The hard part of debugging is locating faults

Once a fault is located, it is typically

straightforward to fix

Having a failing test case is helpful

because the fault must be in some part of the code

that was executed by the program before the

failure occurred

The entire program does not have to be examined

November 17, 2003 © University of Colorado, 2003 5

Bridging the Gap

One problem with faults is that they are not

necessarily located “near” their associated failure

Therefore, “bring the failure close to the fault”

the idea being that if we do, less code needs to be examined

to find the fault

Thus, we often insert “print” statements into code to force the

failure to appear as soon as possible after the fault

Taken to the extreme, a programmer should be able to see

the value of any variable at any time during a program’s

execution

November 17, 2003 © University of Colorado, 2003 6

Debugging Tools

This is the purpose of debugging tools

called “debuggers”

A debugger allows a programmer to monitor

the internal state of a program while its

executing

Two types of debuggers

Interpretive

Direct Execution

November 17, 2003 © University of Colorado, 2003 7

Types of Debuggers

Interpretive debugger

works by reading a program and simulating its

execution one line at a time

Direct Execution Debugger

works by running the actual program in a special

mode where the debugger can read and write the

program’s memory

November 17, 2003 © University of Colorado, 2003 8

Two styles of use

Line-at-a-time

A programmer loads a program into the debugger and “steps”

through the program one line at a time.

The debugger stops the program after each line and gives

the programmer a chance to check the program’s variables

to see if it is operating correctly

Breakpoints

A programmer loads a program into the debugger and

specifies “breakpoints” at various locations in the program

The program runs until it hits a breakpoint

November 17, 2003 © University of Colorado, 2003 9

More on Breakpoints

How are breakpoints useful?
If you think you have a function that might have a
fault

set a breakpoint at the beginning of the function

set another breakpoint at the end of the function

if a program’s data is correct at the beginning of the
function but incorrect at the end, then there is a fault in
the function

They also allow you to skip over “init” code and
debugged code quickly; letting the programmer
focus on finding the fault

November 17, 2003 © University of Colorado, 2003 10

Implementing Breakpoints

How do debuggers implement breakpoints?

Interpretive Debuggers essentially execute as a while loop

while (…)
Read the next line of the program

Is there a breakpoint on this line?
Yes, stop and print a prompt

Execute this instruction

end while

Direct Execution debuggers implement breakpoints by “cutting-and-

pasting” the executable instructions of the program itself

that is, they insert instructions into the program that notifies the debugger

when a breakpoint has been hit

November 17, 2003 © University of Colorado, 2003 11

Editing Variables

Debuggers let the programmer explore “what-if”

scenarios

You can execute a program to a certain point, and then alter

the values of the program’s variables

You can thus explore unusual cases in the code

Plus, if a bug occurs, you can correct an incorrect value and

see how far the program goes before it encounters another

fault

November 17, 2003 © University of Colorado, 2003 12

Advantages

Advantages of interpretive debuggers

Easier to program the debugger

Safer, a program cannot crash the machine (just

the debugger)

Advantages of direct execution debuggers

Faster

More accurate, the actual program instructions are

being executed

November 17, 2003 © University of Colorado, 2003 13

The GNU Debugger

The GNU Debugger (gdb) is a direct

execution debugger

There are separate processes for the

debugger and the program

All of the variables are kept in the

program’s process

GDB can read/write the program’s memory

November 17, 2003 © University of Colorado, 2003 14

GDB Architecture

GNU Debugger Program

Symbol Table

Code

Data

November 17, 2003 © University of Colorado, 2003 15

Preparing to use the Debugger

In order for gdb to process a program,

it must be compiled using the “-g” flag
gcc -c -g program.c
gcc program.o -o program

This flag tells the compiler to include a

symbol table into the compiled program

November 17, 2003 © University of Colorado, 2003 16

What’s a symbol table?

A symbol table records the mapping between

a program’s variables and their locations in

memory

Executable code uses machine addresses to

reference memory. The variable “x” might be

stored at address 0xF8E3

So rather than typing “print 0xF8E3” to see the

value of the variable “x”, you can instead type

“print x” and gdb uses the symbol table to locate

and print the correct memory location

November 17, 2003 © University of Colorado, 2003 17

An Example

GNU Debugger

“(gdb) print x”

Program

x: 0xF8E3

Code

100xF8E3

November 17, 2003 © University of Colorado, 2003 18

More on the Symbol Table

A symbol table is not automatically included in a

program because

it takes up space

its not required for a program to execute

You can still use gdb on a program that doesn’t have

a symbol table

however, you then have to type things like “print 0xF8E3”

since the debugger will not be able to map these values to

variable names

November 17, 2003 © University of Colorado, 2003 19

Debugging Programs

A debugger does not automatically execute the

program to be debugged

 You need to have a chance to configure a program’s values,

set breakpoints, etc. before running it

Instead, it loads the program into a separate process

and prints a prompt
gdb program

GNU gdb 4.17…
(gdb)

November 17, 2003 © University of Colorado, 2003 20

Running programs in GDB

Typing “run” at the prompt will run the program as
normal

e.g. it will function as if you had invoked it from the shell

In order to debug the program, you need to set a
breakpoint

(gdb) break main

Breakpoint 1 at 0x229c

(gdb) run

Starting program: program

Breakpoint 1, 0x229c in main ()

(gdb)

November 17, 2003 © University of Colorado, 2003 21

Supplying Input to a Program

Normally, you use shell redirection to supply
input to a program

%program < test-input

If you want to do this to a program that you
want to debug, you may try

%gdb program < test-input

Unfortunately, this supplies the input to gdb
not to the program! So, you need to do this:

%gdb program

(gdb) run < test-input

November 17, 2003 © University of Colorado, 2003 22

Program Crashed. Core Dumped

When a program crashes in Unix, it creates a
file called “core”

Core stands for “Core Memory Dump”

The entire contents of a program’s memory is
dumped into this file

gdb can read this file to tell you
what instruction was being executed when the
crash occurred

what the value of the program’s variables were at
the time of the crash

November 17, 2003 © University of Colorado, 2003 23

To Read a Core File

An example

%program
Segmentation fault (core dumped)
%gdb program core

When debugging a program using its core file,

you cannot continue execution

because the program crashed!

but you can “take a look around”

November 17, 2003 © University of Colorado, 2003 24

More on Debugging

When gdb hits a breakpoint, it is possible to

look at the program’s “call stack”

When a function is called, it is placed on the call

stack

When a function returns, it is popped off the call

stack and control returns to the calling function

gdb provides operations for examining this

stack

November 17, 2003 © University of Colorado, 2003 25

Example

main() {
int i;

i = 2;
func(4);

}

func (int i) {
…

}

(gdb) backtrace
#0 func (i=4) at main.c:8

#1 0x22b0 in main() at main.c:4
(gdb) print i
4

(gdb) frame 1
#1 0x22b0 in main () at main.c:4
(gdb) print i

2

November 17, 2003 © University of Colorado, 2003 26

Common Commands

run - execute program

b <number> or <name> - break at line number or subroutine

list - list source code

list filename:number

step - execute one line (step into subs)

continue - continue execution until next breakpoint or end of

program

next - execute next instruction (step over subs)

bt - view call stack

frame - select frame on call stack

print <variable> or <expression>

