Lecture 23: Agile Development and
q Extreme Programming

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2003

i Credit where Credit Is Due

= The material for this lecture is based on
content from “Agile Software
Development: Principles, Patterns, and
Practices” by Robert C. Martin

= As such, some of this material is
copyright © Prentice Hall, 2003

November 14, 2003 © University of Colorado, 2003 2

i Goals for this lecture

= (Very) Briefly introduce the concepts of Agile
Design and Extreme Programming

= Agile Design is a design framework
= Extreme Programming is one way to
“implement” agile design

= Other agile life cycles include SCRUM, Crystal,
feature-driven development, and adaptive
software development

= See <http://www.agilealliance.org/> for pointers

November 14, 2003 © University of Colorado, 2003 3

:L Agile Development (1)

= Agile development is a response to the
problems of traditional “heavyweight”
software development processes
= {00 many artifacts
= too much documentation
= inflexible plans
= late, over budget, and buggy software

November 14, 2003 © University of Colorado, 2003 4




Agile Development (II)

= A manifesto (from the Agile Alliance)

= “We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value
= individuals and interactions over processes and tools
= working software over comprehensive documentation
= customer collaboration over contract negotiation
= responding to change over following a plan
= That s, while there is value in the items on the
right, we value the items on the left more

November 14, 2003 © University of Colorado, 2003 5

Agile Development (l11)

= From this statement of values, agile
development has identified twelve principles
that distinguish agile practices from traditional
software life cycles
= Lets look at five of them
= Deliver Early and Often to Satisfy Customer
= Welcome Changing Requirements
= Face to Face Communication is Best
= Measure Progress against Working Software
Simplicity is Essential

November 14, 2003 © University of Colorado, 2003 6

Deliver Early and Often to Satisfy Customer

= MIT Sloan Management Review published an
analysis of software development practices in 2001

= Strong correlation between quality of software system and
the early delivery of a partially functioning system

= the less functional the initial delivery the higher the quality of
the final delivery!

= Strong correlation between final quality of software system
and frequent deliveries of increasing functionality

= the more frequent the deliveries, the higher the final quality!
= Customers may choose to put initial/intermediate
systems into production use; or they may simply
review functionality and provide feedback

November 14, 2003 © University of Colorado, 2003 7

Welcome Changing Requirements

= Welcome change, even late in the project!

s Statement of Attitude

= Developers in agile projects are not afraid of
change; changes are good since it means our
understanding of the target domain has increased

= Plus, agile development practices (such as
refactoring) produce systems that are flexible and
thus easy to change

November 14, 2003 © University of Colorado, 2003 8




:L Face to Face Communication is Best

= In an agile project, people talk to each other!

= The primary mode of communication is
conversation
= there is no attempt to capture all project information in
writing
= artifacts are still created but only if there is an
immediate and significant need that they satisfy
= they may be discarded, after the need has passed

November 14, 2003 © University of Colorado, 2003 9

i Measure Progress against Working Software

= Agile projects measure progress by the
amount of software that is currently
meeting customer needs
= They are 30% done when 30% of required
functionality is working AND deployed
= Progress is not measured in terms of
phases or creating documents

November 14, 2003 © University of Colorado, 2003 10

i Simplicity is Essential

= This refers to the art of maximizing the
amount of work NOT done

= Agile projects always take the simplest
path consistent with their current goals

= They do not try to anticipate tomorrow’s
problems; they only solve today’s problems

= High-quality work today should provide a
simple and flexible system that will be easy
to change tomorrow if the need arises

November 14, 2003 © University of Colorado, 2003 11

i Extreme Programming

= Extreme Programming (XP) takes
commonsense software engineering
principles and practices to extreme levels
= For instance
= “Testing is good?”
= then

= “We will test every day” and “We will write test cases
before we code”

= As Kent Beck says extreme programming
takes certain practices and “sets them at 11
(on a scale of 1 to 10)”

November 14, 2003 © University of Colorado, 2003 12




i XP Practices

= The best way to describe XP is by looking at
some of its practices

= There are fourteen standard practices, we’ll look
at six important ones
= Customer Team Member
= User Stories
= Pair Programming
= Test-Driven Development
= Collective Ownership
= Continuous Integration

November 14, 2003 © University of Colorado, 2003 13

i Customer Team Member

= The “customer” is made a member of the
development team
= A customer representative should be “in the same
room” or at most 100 feet away from the
developers
= “Release early; Release Often” delivers a working
system to the client organization; in between, the

customer representative provides continuous
feedback to the developers

November 14, 2003 © University of Colorado, 2003 14

i User Stories (1)

= We need to have requirements

= XP requirements come in the form of
“user stories” or scenarios
= We need just enough detail to estimate
how long it might take to support this story

= avoid too much detail, since the requirement
will most likely change; start at a high level,
deliver working functionality and iterate based
on explicit feedback

November 14, 2003 © University of Colorado, 2003 15

i User Stories (lIl)

s User stories are not documented in detail
= we work out the scenario with the customer “face-
to-face”; we give this scenario a name

= the name is written on an index card

= developers then write an estimate on the card based on
the detail they got during their conversation with the
customer

= The index card becomes a “token” which is
then used to drive the implementation of a
requirement based on its priority and
estimated cost

November 14, 2003 © University of Colorado, 2003 16




Pair Programming

= All production code is written by pairs of programmers working
together at the same workstation

= One member drives the keyboard and writes code and test cases;
the second watches the code, looking for errors and possible
improvements

= The roles will switch between the two frequently

= Pair membership changes once per day; so that each programmer
works in two pairs each day

= this facilitates distribution of knowledge about the state of the code
throughout the entire team

= Studies indicate that pair programming does not impact
efficiency of the team, yet it significantly reduces the defect rate!
= [Laurie Williams, 2000] [Alistair Cockburn, 2001] [J. Nosek, 1998]

November 14, 2003 © University of Colorado, 2003 17

Test-Driven Development

= All production code is written in order to make failing
test cases pass

= First, we write a test case that fails since the required
functionality has not yet been implemented

= Then, we write the code that makes that test case pass
= lIteration between writing tests and writing code is very short;
on the order of minutes
= As aresult, a very complete set of test cases is
written for the system; not developed after the fact

November 14, 2003 © University of Colorado, 2003 18

Collective Ownership

= A pair has the right to check out ANY module
and improve it
= Developers are never individually responsible for a
particular module or technology
= Contrast this with Fred Brook’s conceptual
integrity and the need for a small set of
“minds” controlling a system’s design
= Apparent contradiction is resolved when you note
that XP is designed for use by small programming
teams; | haven’t seen work that tries to scale XP to

situations that require 100s or 1000s of

developers
November 14, 2003 © University of Colorado, 2003 19

Continuous Integration

= Developers check in code and integrate it into
the larger system several times a day

= Simple Rule: first one to check-in “wins”;
everyone else merges

= Entire system is built every day; if the final
result of a system is a CD, a CD is burned
every day; if the final result is a web site, they
deploy the web site on a test server, etc.

= This avoids the problem of cutting integration
testing to “save time and money”

November 14, 2003 © University of Colorado, 2003 20




