
Lecture 22: Design and Refactoring

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

November 10, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

The material for this lecture is based on

content from “Refactoring: Improving

the Design of Existing Code” by Martin

Fowler

As such, some of this material is

copyright © Addison Wesley, 1999

November 10, 2003 © University of Colorado, 2003 3

Goals for this lecture

(Very) Briefly introduce the concept of

design

Introduce Refactoring and cover a few

examples

November 10, 2003 © University of Colorado, 2003 4

Software Design (I)

Software design is the process of creating a

software system that meets a set of customer

requirements

Designs require conceptual integrity

Traditional software design consists of

high-level design (architecture, modules)

low-level design (interfaces, algorithms)

with these two pieces, implementation is often much

simpler than it would be if you start coding from scratch

November 10, 2003 © University of Colorado, 2003 5

Software Design (II)

Many different techniques to choose from

Structural

Stepwise Refinement; “Top Down” vs. “Bottom Up”

Abstractions used in design are often different from those used in

requirements

Typically result in procedural solutions that share data structures; the

shared data structures is how modules “communicate”

Object-Oriented

World consists of objects; Thus, systems should consist of objects that

“model” their real-world counterparts

Objects appear in all phases (requirements; design; implementation)

Typically result in “federations” of objects that work together to achieve

system functionality; data and algorithms “live” in objects;

communication (data sharing) occurs via “message passing”

November 10, 2003 © University of Colorado, 2003 6

Software Design (III)

Good design requires experience
also depends on talent (great designers ala
Brooks)

We can’t teach experience (you just have to
earn it); we can however teach good design
techniques

Example: Refactoring
Useful because its focus is on source code not a
specific design notation (so you do not need to
learn a new notation to learn this technique)

November 10, 2003 © University of Colorado, 2003 7

What is Refactoring

Refactoring is the process of changing a

software system such that

the external behavior of the system does not

change

e.g. functional requirements are maintained

but the internal structure of the system is improved

This is sometimes called

“Improving the design after it has been written”

November 10, 2003 © University of Colorado, 2003 8

Very Simple Example (I)

What’s wrong with this code?

if (isSpecialDeal()) {
total = price * 0.95;
send()

} else {
total = price * 0.98;
send()

}

November 10, 2003 © University of Colorado, 2003 9

Answer: Duplicated Code

The call to send() appears twice, once in the
true branch and once in the false branch

What’s wrong with that?
In a small project, probably not much

But as a project evolves, duplicated code can
cause all sorts of problems

often associated with “cut and paste” bugs

you may copy this code to a context where a call to send()
is not appropriate

or you may decide to change one branch and forget the
other (especially if the code in each branch is long and
you can’t keep both branches on the screen at once)

November 10, 2003 © University of Colorado, 2003 10

Very Simple Example (II)

How to fix? “Refactor the code”

We’ll use “Consolidate Duplicate Conditional
Fragments” and the code becomes
if (isSpecialDeal()) {

total = price * 0.95;
} else {

total = price * 0.98;
}
send();

November 10, 2003 © University of Colorado, 2003 11

A Rose is a Rose…

Why is it so important to give a stuffy sounding name
to something so simple?

Answer: to improve the “state of practice” in the software
development industry

As we add standardized vocabulary which all professional
developers are required to know; we improve the
professionalism of the entire field

Refactoring vocabulary is especially important since its
improving developer’s “design skills”

Also: some refactorings are NOT simple and giving
them a name, makes it easier to discuss the
technique with other developers

November 10, 2003 © University of Colorado, 2003 12

Benefits of Refactoring

The idea behind refactoring is to acknowledge that it

will be difficult to get a design right the first time

and as a program’s requirements change, the design may

need to change

thus, refactoring provides techniques for evolving the design

in small incremental steps

Benefits

Often code size is reduced after a refactoring

Confusing structures are transformed into simpler structures

thus, these new structures are easier to maintain and

understand

November 10, 2003 © University of Colorado, 2003 13

Definition of Refactoring

From Fowler’s book

Refactoring (noun)
a change made to the internal structure of
software to make it easier to understand and
cheaper to modify without changing its
observable behavior

Refactoring (verb)
to restructure software by applying a series of
refactorings without changing its observable
behavior

November 10, 2003 © University of Colorado, 2003 14

How do you make refactoring safe?

First, use refactoring “patterns”
Fowler’s book is a “refactoring cookbook”
providing systematic steps for performing various
type of refactoring

Second, test constantly!
write tests before you write code

after you refactor code, you run the tests and
make sure they all still pass

if a test fails, the refactoring broke something, but you
know about it right away and can fix the problem before
you move on

November 10, 2003 © University of Colorado, 2003 15

Why should you refactor?

Refactoring improves the design of software
without refactoring, a design will “decay” as people make
changes to a software system

Refactoring makes software easier to understand
because structure is improved, duplicated code is eliminated,
etc.

Refactoring helps you find bugs
Refactoring promotes a deep understanding of the code at
hand, and this understanding aids the programmer in finding
bugs and anticipating potential bugs

Refactoring helps you program faster
because a good design enables progress

November 10, 2003 © University of Colorado, 2003 16

Refactoring: Where to Start?

How do you identify code that needs to

be refactored?

Fowler uses an olfactory analogy

(attributed to Kent Beck)

Look for “Bad Smells” in Code

A very valuable chapter in Fowler’s book

It presents examples of “bad smells” and then

suggests refactoring techniques to apply

November 10, 2003 © University of Colorado, 2003 17

Bad Smells in Code

Duplicated Code
bad because if you modify one instance of
duplicated code but not the others, you (may)
have introduced a bug!

Long Method (Functions)
long methods are more difficult to understand and
maintain

performance concerns with respect to lots of short
methods are largely obsolete

Martin’s Rule of Performance: Assume costs [of lots of
short functions] are negligible and wait to be proven
wrong!

November 10, 2003 © University of Colorado, 2003 18

Bad Smells in Code

Shotgun Surgery

a change requires lots of little changes in a lot of

different objects

Feature Envy

A method requires lots of information from some

other object (move it closer!)

Data Clumps

attributes that are used together but are not part of

the same object

November 10, 2003 © University of Colorado, 2003 19

The Catalog

The refactoring book has 72 refactoring

patterns!

We’ll cover three

Extract Method

Replace Temp with Query

Move Method

November 10, 2003 © University of Colorado, 2003 20

Extract Method (I)

You have a code fragment that can be

grouped together (and may be

duplicated in several places in the code)

Turn the fragment into a method whose

name explains the purpose of the

fragment

November 10, 2003 © University of Colorado, 2003 21

Extract Method (II)
void printOwing(double amount) {

printBanner()
//print details
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}
===
void printOwing(double amount) {

printBanner()
printDetails(amount)

}

void printDetails(double amount) {
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}

November 10, 2003 © University of Colorado, 2003 22

Replace Temp with Query (I)

You are using a temporary variable to

hold the result of an expression

Extract the expression into a method;

Replace all references to the temp with

the expression

The new method can then be used in

other methods

November 10, 2003 © University of Colorado, 2003 23

Replace Temp with Query (II)
double basePrice = _quantity * _itemPrice

if (basePrice > 1000)

return basePrice * 0.95;

else

return basePrice * 0.98;

==============================

if (basePrice() > 1000)
return basePrice() * 0.95;

else

return basePrice() * 0.98;

…

double basePrice() {
return _quantity * _itemPrice;

}

November 10, 2003 © University of Colorado, 2003 24

Move Method

A method is using more data and functions of

some other object than its own object

Create a new method with a similar body in

the class it uses most

Have the original method call the old method

or remove it altogether

(I’ll provide an example of this refactoring in

class)

