
Lecture 21: Software Disasters

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

November 7, 2003 © University of Colorado, 2003 2

Today’s Lecture

Discuss several different software disasters to
provide insights into

the types of errors that can occur

the costs associated with them

Examples

Mars Climate Orbiter

Mars Polar Lander

Patriot Missile Defense System

Ariane 5

November 7, 2003 © University of Colorado, 2003 3

Mars Climate Orbiter

Science Objectives

Monitor climate changes

Serve as relay for Mars Polar Lander

Costs for Climate Orbiter and Polar Lander
combined

Spacecraft Development - 193.1 million

Launch - 91.7 million

Mission and Operations - 42.8 million

Total - 327.6 million

November 7, 2003 © University of Colorado, 2003 4

Mars Climate Orbiter, continued

Supposed to enter Martian atmosphere “at a high trajectory” and
“lightly aerobrake” to achieve orbit, which uses less fuel

Due to a conversion error in which commands to the spacecraft
were sent in English units rather than metric units, the
spacecraft entered the atmosphere at “a trajectory 170km lower
than planned”

The spacecraft hit the atmosphere earlier than was planned and
was thus traveling too fast; this led to the destruction of the
spacecraft

Since the Polar Lander was also lost, the combined cost of the
project stands at 327.6 million dollars

Compare to Mars Observer (lost in 1989): 4 billion dollars!

Unofficially, the problem had been detected but due to politics
between the development team and JPL, a fix was never
deployed

November 7, 2003 © University of Colorado, 2003 5

Mars Climate Orbiter, continued

The official report cited the following “contributing
factors” to the loss of the spacecraft

undetected errors in ground-based models of the spacecraft

the operational navigational team was not fully informed on
the details of the way that Mars Climate Orbiter was pointed
in space

a final, optional engine firing to raise the spacecraft’s path
relative to Mars before its arrival was considered but not
performed

November 7, 2003 © University of Colorado, 2003 6

Mars Climate Orbiter, continued

Contributing Factors, continued
the systems engineering function within the project that is
supposed to track and double-check all interconnected
aspects of the mission was not robust enough

this was exacerbated by the first-time handover of a Mars-
bound spacecraft by the team that constructed and launched
the vehicle to a new multi-mission operations team (this is the
“politics” part!)

some communications channels among project engineering
groups were too informal (e.g. not documented!)

November 7, 2003 © University of Colorado, 2003 7

Mars Climate Orbiter, continued

Contributing Factors, continued
the small mission navigation team was oversubscribed and
its work did not receive peer review by independent experts

personnel were not trained sufficiently in areas such as the
relationship between the operation of the mission and its
detailed navigational characteristics, or the process of filing
formal anomaly reports

the process to verify / validate certain engineering
requirements and the technical interfaces between some
project groups, and between the project and its prime
mission contractor was inadequate

November 7, 2003 © University of Colorado, 2003 8

Mars Climate Orbiter, summary

One Technical Problem

failed conversion of units

Many Process and Social Problems

No review (e.g. verification), insufficient training,
informal processes in place, formal processes
ignored

Led to a destroyed spacecraft

November 7, 2003 © University of Colorado, 2003 9

Mars Polar Lander

Part of the same project as the Mars Climate
Observer

Last communication with spacecraft occurred just
prior to its entry into the Martian atmosphere

Loss of spacecraft can be attributed to the lack of
integration testing

e.g. the failure was not detected by “module” testing

an integrated test across subsystems was required to detect
the problem

November 7, 2003 © University of Colorado, 2003 10

Details

Module Test 1

Give command to deploy spacecraft’s legs
Legs deploy

Test Passed!

Module Test 2

When spacecraft detects “jolt” of landing on the
surface of Mars, turn engine off

Simulated “jolt” detected, engine shuts off

Test Passed!

November 7, 2003 © University of Colorado, 2003 11

Details, continued

What actually happened

Spacecraft enters atmosphere

Legs deploy and “jolt” the craft

“Jolt” detected and engine shuts off

The problem

Spacecraft was still miles above the surface of
Mars!

Spacecraft crashes into Mars and is destroyed

November 7, 2003 © University of Colorado, 2003 12

Mars Polar Lander, summary

Clear demonstration of the importance of
integration testing

If the team testing the deployment of the legs had
conducted the test while also testing the flight
software, the “bug” may have been detected

Unfortunately, with the “faster, better, cheaper”
philosophy of NASA at the time, integration testing
was deemed too expensive and was not
conducted in a comprehensive fashion

November 7, 2003 © University of Colorado, 2003 13

Credit Where Credit is Due

Information for the rest of the lecture comes
from

<http://dutita0.twi.tudelft.nl/users/vuik/wi211/disasters.html>

and
<http://www.eiffel.com/doc/manuals/technology/contract/ariane/>

Additional Info on Ariane 5

<http://www.math.ufl.edu/~cws/3114/ariane-siam.html>

November 7, 2003 © University of Colorado, 2003 14

Patriot Missile Defense System

On February 25, 1991, during the Gulf War, a patriot
missile failed to intercept an incoming Iraqi Scud
missile

The cost of this failure was the lives of 28 soldiers when the
Scud missile struck a military barracks

The cause of the failure was a numerical error in the Patriot’s
operating system to correctly calculate “time since boot”

This caused the system’s time to get out of synch with actual
time and led to a failure in the system designed to track the
Scud missile’s position in the air

November 7, 2003 © University of Colorado, 2003 15

Details

The system’s internal clock measured
time in tenths of seconds

Actual time was reported in seconds by
multiplying the internal clock’s value by
1/10

This calculation was performed using a 24-
bit fixed point register

November 7, 2003 © University of Colorado, 2003 16

Details, continued

The problem?
1/10 has a non-terminating binary expansion, so its actual
value was chopped to fit into a 24-bit register

This introduces an error equal to 0.000000095

After running for 100 hours, this error means that the system
is 0.34 seconds out of synch with reality

What’s wrong with that?
Scud Missiles travel at 1676 meters per second!

In 0.34 seconds, it travels half a kilometer (~0.3 of a mile)!

Without an accurate location, the Patriot missile had no
chance to intercept the missile

November 7, 2003 © University of Colorado, 2003 17

Patriot Missile System, summary

Software Engineering Issues

Numerical algorithm at an extremely low level led
to total system failure and loss of human life

But there was also a maintenance related problem
The error was known, and a fix had been applied in
some parts of the software but not others!

Inadequate maintenance process!
A complete set of regression tests, if applied after every
modification, may have detected the problem

November 7, 2003 © University of Colorado, 2003 18

Ariane 5 Disaster

On June 4, 1996, after 7 billion dollars of development, an
unmanned Ariane 5 rocket exploded just forty seconds after lift-
off

The rocket and its cargo were valued at $500 million for a total cost
of 7.5 billion dollars!

The error was traced to a software component in the Inertial
Reference System that had been reused from the Ariane 4 flight
software

The reused component was more than 10 years old and had flown
successfully on numerous Ariane 4 flights

The problem => certain assumptions changed between the Ariane
4 and the Ariane 5 and the software was not updated in response

November 7, 2003 © University of Colorado, 2003 19

Ariane 5, background info

The flight software was written in Ada which
has a first class exception construct

(it predates C++ and Java in this regard)

If an exception is thrown but not caught, the
error will “percolate” up through the call stack
and will eventually terminate the entire
system

November 7, 2003 © University of Colorado, 2003 20

Ariane 5, the details

The failure of the Ariane 5 can be traced to the
conversion of a 64-bit integer to a 16-bit signed
integer

The 64-bit value was greater than 215 which caused an
exception to be generated

This exception was not caught and it caused the termination
of the flight control software 37 seconds into the launch

The rocket shortly thereafter (3 seconds) lost control and
was destroyed

November 7, 2003 © University of Colorado, 2003 21

More information

Jean-Marc Jézéquel and Bertrand Meyer wrote a paper that
traces the problem to an inappropriate reuse of a 10-year old
software component

They reveal that one “vexing” aspect of this disaster is that the error
occurred in a software system that was not needed during launch!

The calculation was supposed to be stopped 9 seconds before
launch, but the inertial reference system had been reset during
a hold in the countdown and its initialization sequence
proceeded during launch.

This is what caused the rocket to veer off course… the
initialization sequence was sending random sequences of
1s and 0s to the flight control software, which was
interpreting them as commands to fire various sets of
booster jets in completely random patterns!

November 7, 2003 © University of Colorado, 2003 22

Details, continued

Their paper reveals that sufficient software dev. processes were
in place and the system that caused the error had even been reviewed
extensively before launch

exception handlers had been placed around 4 of 7 variables;
unfortunately, the data conversion error occurred in one of the
3 unprotected variables

why leave 3 variables unprotected? Performance! If you add
exception handling code, you slow the performance of the
system

plus, the developers had an analysis that showed that overflow
could not occur with the 3 unprotected variables

so they had good reason to leave them unprotected

November 7, 2003 © University of Colorado, 2003 23

Details, continued

The problem?

The overflow analysis was conducted for
the Ariane 4, not the Ariane 5

Its prediction that overflow could not occur for
the three unprotected variables was no longer
valid!

So, it was a reuse error!

November 7, 2003 © University of Colorado, 2003 24

Ariane 5, summary

The authors conclude that “Design by Contract” was needed in
this situation

In particular, the component needed to specify a “contract” with its
users; one aspect of this contract is specifying the legal input
values

If the component had done something similar to an assert construct
like this

proc foo(actual_value: int)

assert(actual_value <= maximum_value)

The authors argue that the error may well have been detected
during system test; they further argue that such “contracts” should
be a first-class, required programming language construct; not an
optional construct that few use

