
Lecture 20: What is Software Engineering?

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2002

November 3, 2003 © University of Colorado, 2003 2

Today’s Lecture

Discuss history of Software Engineering

Discuss Several Definitions of Software
Engineering

Discuss qualities that software engineering
strives to achieve in software

November 3, 2003 © University of Colorado, 2003 3

Historical Background: 30 years

First Software Engineering Conference

NATO-sponsored conference in 1968

“Software Crisis”

Systems were designed by identifying the
hardware first

Software was allocated about 1-2% of the budget

However, software was causing all the problems (!)
and thus needed more attention

November 3, 2003 © University of Colorado, 2003 4

Progression of SE

An evolution of the programming activity

Early stages of computing

User/Developer were the same person

Problems were well-understood
First programs calculated metrics about artillery
shells for the Navy!

High level languages began to appear in
the 1950s

Along with the profession of “programmer”



November 3, 2003 © University of Colorado, 2003 5

SE Progression, continued

1960’s

Large Software Systems for Commercial
Ventures

Teams of Programmers

Separate end-users

Complex Problems

“Software Crisis” coined, as problems
became apparent

November 3, 2003 © University of Colorado, 2003 6

The problem?

Software is typically

late

over budget

faulty

costly to maintain

difficult to evolve

etc.

November 3, 2003 © University of Colorado, 2003 7

Consider the following:

Loss of NASA’s Mars Climate Observer
due to conversion error of English and Metric units!

even worse: problem was known but politics between JPL
and Houston prevented fix from being deployed

Leap-year bug
A supermarket was fined $1000 for having meat around 1
day too long on Feb. 29, 1988

Denver International Airport
Luggage system: 16 months late, 3.2 billion dollars over
budget!

November 3, 2003 © University of Colorado, 2003 8

SE Progression, continued

1968

Software Engineering formed

Many “solutions” put forward

New approaches to Project Management

New Team Organizations

Better Languages and Tools

Organizational Standards

And here we are 35 years later! :-)



November 3, 2003 © University of Colorado, 2003 9

Multiple Definitions of SE

There are many ways to define software
engineering

We shall look at a few to try to gain a feel for an
overall definition

These definitions come from textbooks, prominent
software engineers, etc.

November 3, 2003 © University of Colorado, 2003 10

Software Engineering

Software

Computer programs and their related artifacts
e.g. requirements documents, design documents, test
cases, specifications, protocol documents, UI guidelines,
usability tests, ...

Engineering

The application of scientific principles in the
context of practical constraints

November 3, 2003 © University of Colorado, 2003 11

What is Engineering?

Engineering is
a sequence of well-defined, precisely-stated, sound steps,
which follow a method or apply a technique based on some
combination of

theoretical results derived from a formal model

empirical adjustments for unmodeled phenomenon

rules of thumb based on experience

This definition is independent of purpose...
i.e. engineering can be applied to many disciplines

November 3, 2003 © University of Colorado, 2003 12

Software Engineering
(Daniel M. Berry)

Software engineering is that form of engineering that
applies:

a systematic, disciplined, quantifiable approach,

the principles of computer science, design, engineering,
management, mathematics, psychology, sociology, and
other disciplines,

to creating, developing, operating, and maintaining
cost-effective, reliably correct, high-quality solutions
to software problems.



November 3, 2003 © University of Colorado, 2003 13

Software Qualities

Correctness

Reliability

Robustness

Performance

User Friendliness

Verifiability

Maintainability

Reusability

Portability

Understandability

Interoperability

Productivity

Timeliness

Visibility

November 3, 2003 © University of Colorado, 2003 14

Software Engineering Principles

Rigor and Formality

Separation of Concerns

Modularity

Abstraction

Anticipation of Change

Generality

Incrementality

November 3, 2003 © University of Colorado, 2003 15

SE Research Topics (just a subset)

Software Architecture

Design Patterns for Large Systems

Web Services

Semantics of Component Frameworks

Life Cycles

Understanding the pros/cons of XP

Requirements Traceability

techniques for managing artifact relationships

November 3, 2003 © University of Colorado, 2003 16

SE “Hot Topics”

Open Source and Agile Design Methods

Refactoring and Design Patterns
especially “refactoring browsers/editors”

Automated Testing and Test Driven
Development

See for instance JUnit/HttpUnit

Software Architecture
In particular “architecture patterns”


