Lecture 20: What is Software Engineering?

"

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2002

:L Today’s Lecture

= Discuss history of Software Engineering

= Discuss Several Definitions of Software
Engineering

= Discuss qualities that software engineering
strives to achieve in software

November 3, 2003 © University of Colorado, 2003 2

i Historical Background: 30 years

= First Software Engineering Conference
= NATO-sponsored conference in 1968

= “Software Crisis”
= Systems were designed by identifying the
hardware first
= Software was allocated about 1-2% of the budget

= However, software was causing all the problems (!)
and thus needed more attention

November 3, 2003 © University of Colorado, 2003 3

:L Progression of SE

= An evolution of the programming activity

» Early stages of computing
= User/Developer were the same person

= Problems were well-understood

First programs calculated metrics about artillery
shells for the Navy!

= High level languages began to appear in
the 1950s

= Along with the profession of “programmer”

November 3, 2003 © University of Colorado, 2003 4

i SE Progression, continued

= 1960’s

= Large Software Systems for Commercial
Ventures
= Teams of Programmers
= Separate end-users
=« Complex Problems

= “Software Crisis” coined, as problems
became apparent

November 3, 2003 © University of Colorado, 2003 5

i The problem?

= Software is typically
= late
= over budget
= faulty
= costly to maintain
=« difficult to evolve
= etc.

November 3, 2003 © University of Colorado, 2003

i Consider the following:

= Loss of NASA’s Mars Climate Observer
= due to conversion error of English and Metric units!

= even worse: problem was known but politics between JPL
and Houston prevented fix from being deployed

= Leap-year bug

= A supermarket was fined $1000 for having meat around 1
day too long on Feb. 29, 1988

= Denver International Airport

= Luggage system: 16 months late, 3.2 billion dollars over
budget!

November 3, 2003 © University of Colorado, 2003 7

i SE Progression, continued

= 1968
= Software Engineering formed

= Many “solutions” put forward
= New approaches to Project Management
= New Team Organizations
« Better Languages and Tools
= Organizational Standards

= And here we are 35 years later! :-)

November 3, 2003 © University of Colorado, 2003

Multiple Definitions of SE

= There are many ways to define software
engineering
= We shall look at a few to try to gain a feel for an
overall definition

= These definitions come from textbooks, prominent
software engineers, etc.

November 3, 2003 © University of Colorado, 2003 9

Software Engineering

s Software

= Computer programs and their related artifacts

= e.g. requirements documents, design documents, test
cases, specifications, protocol documents, Ul guidelines,
usability tests, ...

= Engineering

= The application of scientific principles in the
context of practical constraints

November 3, 2003 © University of Colorado, 2003 10

What is Engineering?

= Engineering is
= a sequence of well-defined, precisely-stated, sound steps,
which follow a method or apply a technique based on some
combination of
= theoretical results derived from a formal model
= empirical adjustments for unmodeled phenomenon
= rules of thumb based on experience
= This definition is independent of purpose...
= i.e. engineering can be applied to many disciplines

November 3, 2003 © University of Colorado, 2003 11

Software Engineering
(Daniel M. Berry)

= Software engineering is that form of engineering that
applies:
= a systematic, disciplined, quantifiable approach,
= the principles of computer science, design, engineering,
management, mathematics, psychology, sociology, and
other disciplines,
= to creating, developing, operating, and maintaining
cost-effective, reliably correct, high-quality solutions
to software problems.

November 3, 2003 © University of Colorado, 2003 12

i Software Qualities

= Correctness = Reusability
= Reliability = Portability
= Robustness = Understandability
= Performance = Interoperability
= User Friendliness = Productivity
= Verifiability = Timeliness
= Maintainability = Visibility
November 3, 2003 © University of Colorado, 2003 13

:L Software Engineering Principles

= Rigor and Formality

= Separation of Concerns
= Modularity

= Abstraction

= Anticipation of Change
= Generality

= Incrementality

November 3, 2003 © University of Colorado, 2003 14

i SE Research Topics (ust a subset)

= Software Architecture
= Design Patterns for Large Systems

= Web Services
= Semantics of Component Frameworks
= Life Cycles
= Understanding the pros/cons of XP
= Requirements Traceability
= techniques for managing artifact relationships

November 3, 2003 © University of Colorado, 2003 15

:L SE “Hot Topics”

= Open Source and Agile Design Methods
= Refactoring and Design Patterns
= especially “refactoring browsers/editors”

= Automated Testing and Test Driven
Development

= See for instance JUnit/HttpUnit
= Software Architecture
= In particular “architecture patterns”

November 3, 2003 © University of Colorado, 2003 16

