
Lecture 18: Functional Testing

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

October 27, 2003 © University of Colorado, 2003 2

Brief Review
� Program Verification

� A program is correct if it meets its requirements specification

� Requirements Specs
� F(input) = output
� Functional Contract, should be as specific as possible

� Test Cases
� Input, Documentation, and Expected Output;
� Test Suite - a collection of test cases

� Test Run
� Run each test case and record pass/fail
� repeat until all tests pass

October 27, 2003 © University of Colorado, 2003 3

Major Problem

� How do you pick test cases?
� Two main approaches

� Functional Testing
� a.k.a. Black Box Testing

� Structural Testing
� a.k.a. White Box Testing

� Note: current testing research has moved beyond
these concepts…
� folding and sampling techniques are current

� …but they are used in this class as an introduction

October 27, 2003 © University of Colorado, 2003 4

Functional Testing

� In functional testing, we test the
functionality of the system without
regard to its implementation
� The system is, in a sense, a black box

� because we cannot look inside to see how it
computes its output

� We provide input and receive output



October 27, 2003 © University of Colorado, 2003 5

Functional Testing, continued

� Functional Testing is a strategy for helping a
software engineer pick test cases

� This is useful, since selecting test cases is a
tricky problem
� A test suite should be “complete”…

� with respect to the program’s specification
� but how many test cases do you need to be complete?

� A test suite should be precise
� no duplicate test cases
� if a test suite takes too long to run, then it will get run less

often (which increases the chance that a fault goes
undetected)

October 27, 2003 © University of Colorado, 2003 6

Functional Testing, continued
� Functional testing helps create test suites by

providing a criterion for selecting test cases:
� The requirements specification of a program lists functions

that the program must perform

� A test suite is complete when it tests every function

� For each function, determine “categories” of input that a
function should treat equivalently

� boundary conditions can be useful guides

� test both “typical” input and error conditions

� a test suite will need at least one test case for each category
associated with each function

October 27, 2003 © University of Colorado, 2003 7

Functional Testing: Step 1

� Identify functional categories in the
requirements specification that broadly
classifies functions the program must perform

� Example: A database of cars (for a car
dealer)
� Persistence of Information

� Generation of Reports

� Sorting

October 27, 2003 © University of Colorado, 2003 8

Functional Testing: Step 2
� Identify specification items in the spec that correspond to

functions the program must perform
� Each item should be assignable to one of your functional

categories
� Could be an iterative process, in which a specification item

identifies a new functional category

� Car Database Example:
� Generate a report listing all cars in inventory by their identification

number from smallest to largest (report generation, sorting)
� Generate a report listing all cars in inventory by the time a car has

been in inventory from longest to shortest (report generation,
sorting)

� Information on car sales must be stored for at least two years
(persistence of information)



October 27, 2003 © University of Colorado, 2003 9

Functional Testing: Step 3
� Identify functional equivalence classes for each

specification item (like the GCD example in lecture
16)

� Consider the first function of the car database
� List cars in inventory by identification number

� The functional classes might be
� Database has zero cars
� Database has one car
� Database has many cars
� Cars have only been entered into the database
� Cars have been entered and then deleted

October 27, 2003 © University of Colorado, 2003 10

Step 3, continued
� The functional classes might be… (continued)

� Cars have been entered, deleted, and then re-entered into
database

� Cars were entered in the order that they should be printed
� Cars were entered in the opposite order that they should be printed
� Cars were entered in a random order
� Database has two cars with the same identification number

� Discussion
� This is way more functional equivalence classes than normal, in

fact, when you find a item like this it might be good to split the
specification item like

� List cars in inventory by id
� Sort cars in inventory by id

October 27, 2003 © University of Colorado, 2003 11

Functional Testing: Step 4
� Determine inputs for each functional class

� e.g. pick test cases!

� Each class should have its boundaries tested along with
some “middle” case

� Identifying test cases
� Database has zero cars: one test case

� Database has one car: one test case

� Database has many cars: two test cases
� one with two cars (a boundary condition) and one with more

than two cars

� If a maximum had been specified we would test that too

October 27, 2003 © University of Colorado, 2003 12

Step 4, continued
� Identifying test cases

� Cars have only been entered into the database: one test
case

� Cars have been entered and then deleted: two test cases
� one extra car entered and then deleted and more than one

extra car entered and then deleted

� Cars have been entered, deleted, and re-entered: three test
cases

� one was deleted and re-entered

� more than one was deleted, and one was re-entered

� more than one was deleted and re-entered



October 27, 2003 © University of Colorado, 2003 13

Functional Testing: Step 5
� Determine the number of test cases for each function
� There are two ways to do this

� Add each of the test cases for each category together, or
� Look for orthogonal sets of categories that can be combined

and multiply their test cases
� We will be using the “addition” method for the testing

notebook
� Orthogonal here means categories that test distinctly

different things
� in our example, we have three categories that deal with the

number of cars, and three which deal with how they were
entered into the database

October 27, 2003 © University of Colorado, 2003 14

Method 1

� Adding test cases
� zero cars             :  1

� one car               :  1

� more than one car     :  2

� entered only          :  1

� deleted               :  2

� deleted and re-entered:  3

� Total                 : 10

October 27, 2003 © University of Colorado, 2003 15

Method 2
� Multiplying Test Cases

� (1 + 1 +2 ) * ( 1 + 2 + 3) = 4 * 6 = 24

� Think about it like this (12 of the 24 shown):
              entered       one             multiple            one deleted
                 only        deleted         deleted           one re-entered
zero

cars
one
car

two
cars

October 27, 2003 © University of Colorado, 2003 16

Functional Testing: Step 6
� Eliminate redundant test cases

� For example zero cars in the database will probably be a
functional equivalence class for several different spec. items;

� A single test will cover that functional class for all such items

� Prioritize test cases
� You may not have the time or budget to test them all

� As such, give critical test cases higher priority…

� …while test cases that test obscure or uncommon errors can
be given lower priority

� You now have your test suite!


