
Lecture 17: Requirements Specifications

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

October 24, 2003 © University of Colorado, 2003 2

Requirements Specifications
� Why do we need them?

� A specification is a clear statement of intent
� Clear intentions are more easily translated into “sharp”

milestones (Brooks, pg. 154-155) that are easy to track and
evaluate

� A specification should be as specific and detailed as possible

� A specification is a contract between a customer and a
supplier

� desktop software: suffers from not having a clear contract
specified before the software is developed

October 24, 2003 © University of Colorado, 2003 3

Specifications: The Good, the Bad, and the Ugly

� Specifications cover many topics
� The Good

� specified conditions of correct operation
� When the user closes a document window, the associated data

file is saved and closed

� The Bad
� specified error conditions

� If the file system reports an error during a save operation, the file’s
associated document window is not closed and the user is notified
of the error

� The Ugly
� unspecified Conditions (!!)

October 24, 2003 © University of Colorado, 2003 4

Specifying Input
� Users are unpredictable!

� Do not specify specific input that a program may receive

� Instead, specify a function from input to output
� F(input) = output

� Example
� Upon input of an integer from 1 to 100 inclusive, the program will

determine if its input is prime and report its results to the user
� Any input other than an integer from 1 to 100 inclusive, including

integers outside the range of 1 to 100, non-whole numbers, and non-
numeric input will result in an error message

October 24, 2003 © University of Colorado, 2003 5

Discussion

� The example is very specific
� It defines its legal inputs carefully and specifies

illegal inputs explicitly

� It defines “what” the program should do, not “how”
the program should do it

� Given these requirements you can create several
alternative designs that satisfy them

� For instance, a system that uses speech input and output
is perfectly acceptable, as is a system with a graphical
user interface or a command line interface

October 24, 2003 © University of Colorado, 2003 6

Specifying “What” not “How”
� A requirements specification specifies the behavior of an

application
� not its implementation

� Specifying Implementation
� The program must have a linked list to hold pending alarms. Each

alarm in the list is a structure containing the date, hour, and minute
the alarm should sound. The list should be sorted according to
time.

� Specifying requirements
� The program shall provide an alarm clock feature. A user can

specify multiple alarms. Each alarm rings the computer’s bell when
it is activated.

October 24, 2003 © University of Colorado, 2003 7

More on specifying behavior

� A requirements specification is the first
document created for a program
� Specifying a program’s behavior allows for

maximum flexibility during design and
implementation

� It answers the question: “Why am I writing this
program?”

� Specifying implementation first, on the other hand
is the opposite of brainstorming

� It constrains the design inappropriately

October 24, 2003 © University of Colorado, 2003 8

Formal and Informal Specs.

� Specifications can be informal
� natural language based

� no matter how hard you try, natural language
specifications will always have some degree of ambiguity

� or formal
� based on a mathematical model

� typically requires training to use and apply
correctly

October 24, 2003 © University of Colorado, 2003 9

Example Informal
Specification
� The meaning of integer division, div(a, b), is the

same as floating point division with the
fractional part rounded off towards zero.

� The meaning of modulo, mod(a, b), is the value
of the fractional part that would be rounded
off by div(a, b).

October 24, 2003 © University of Colorado, 2003 10

Example Formal Specification

� div(a, b) = integer q, such that
� 0 ≤ (a - b * q) < |b| if a > 0

� 0 ≥ (a -b * q) > -|b| if a < 0

� 0 if a = 0

� mod(a, b) = a - (div(a,b) * b)

October 24, 2003 © University of Colorado, 2003 11

More on Formal Specifications
� Being based on a mathematical model means

� every symbol is well defined
� syntax

� how is a symbol combined with other symbols

� semantics
� what is the symbol’s meaning, how does it behave

� Formal specs often reuse information
� In our previous slide, we did not define the greater than, less

than, and equals symbols;

October 24, 2003 © University of Colorado, 2003 12

Trade-offs between formal
and informal specs
� Formal specs are not always better than informal specs

� In early stages of a development project, you may not know or
understand enough to create a formal spec

� an informal spec can serve as a starting point

� Formal specs are often difficult to understand
� This can discourage people from using them

� An informal spec can be used to annotate and explain a formal spec

� Formal specs are typically expensive to create
� They require specially trained workers

� Not all parts of a project need to be formally specified: use formal specs
where its absolutely critical that a program behaves as specified; such
as flight control software

October 24, 2003 © University of Colorado, 2003 13

Brooks’ Corner: The Whole
and the Parts

� How does one build a successful
program?
� Focus on the specifications and test them!

� Testing should be preformed by an external
group

� Top-down Design
� Design as a set of refinement steps
� Use of abstraction at each level
� Modular decomposition

October 24, 2003 © University of Colorado, 2003 14

The Whole and the Parts,
continued

� Other techniques
� Structured Programming
� Component Debugging
� System Debugging

� Use debugged components (reuse)
� Build scaffolding (stubs, test data)
� Control Changes
� Add one component at a time, and quantize

updates

