
Lecture 12: Version Control & RCS

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

October 6, 2003 © University of Colorado, 2003 2

Version Control

� Things change…
� new requirements lead to

� new or changed designs that lead to

� new or changed source code, etc.

� or bugs are discovered and must be fixed

� …software engineers need to keep
track of all these changes

October 6, 2003 © University of Colorado, 2003 3

Version Control, continued

� Versioning
� Keeping track of the changes to a file from one

editing session to the next

� Computer Science has developed algorithms that
can automatically detect the changes to a file

� especially text files

� One such algorithm is encapsulated in a Unix tool
called diff

October 6, 2003 © University of Colorado, 2003 4

DIFF Example
� world1.cc

int main() {

printf(“hello world”);

}

� world2.cc
int main() {

printf(“Hello World!”);

}

% diff world1.cc world2.cc

2c2

< printf("hello world");

> printf("Hello World!");

% diff world2.cc world1.cc

2c2

< printf("Hello World!");

> printf("hello world");

October 6, 2003 © University of Colorado, 2003 5

More on DIFF
� Command Line

� diff file1 file2
� “show me how to change file1 into file2”

� Output
� Displays the “ed” commands needed to change file1 into

file2
� “2c2” in the previous example meant change line 2 in file1 into

line 2 of file2

� See the diff and ed man pages for complete details

October 6, 2003 © University of Colorado, 2003 6

Version Control
� Tracks all changes associated with a file

� Why?
� Rollback: Changes are not always an improvement. Often,

you need to return to a prior version

� Experimentation: Lets software engineers explore “what if”
scenarios

� Internationalization: Different versions for different languages

� Historical Record: A customer reports a bug on version 1.1,
but you are at version 2.3. You need a way to recreate
version 1.1 to check out the bug

October 6, 2003 © University of Colorado, 2003 7

Tracking Changes
1

2

2.1

3

4

5

First draft of code, buggy

Fix some bugs, release version 1.0

Another
bug fix,
release as
version 1.1

Begin adding spellcheck feature

spellcheck feature complete,
may have bugs

changes merged, more bugs fixed,
release as version 2.0

October 6, 2003 © University of Colorado, 2003 8

Version Graphs
� All changes to a single file are tracked via a graph

� nodes are distinct versions

� edges denote that the target node was derived from the
source node

� There are three possible configurations
� Extension: a single version derived from a single version

� Split: multiple versions derived from a single one

� Merge: a single version derived from multiple versions;
merge typically done “by hand”

October 6, 2003 © University of Colorado, 2003 9

Version Control Files
� Version graphs are stored in version control files

� Space saving techniques are used

� Forward deltas
� The original version is stored, all subsequent versions

are stored as sets of changes or “deltas”

� Backward deltas
� The most recent version is stored, all previous versions

are stored as sets of changes

October 6, 2003 © University of Colorado, 2003 10

Version Control Systems

� Version Control Systems let you check
versions out of a version control file
� If I ask for version 2.2, and we are using a

forward delta system
� then it starts with the original file and applies all

of the deltas that lead to version 2.2 in the
version graph

October 6, 2003 © University of Colorado, 2003 11

RCS: Revision Control System

� The version control system for our class
is RCS.

� RCS is a backward delta system
� It stores the complete text for the most

recent version of the file

� And derives old versions by applying deltas
to the recent version

October 6, 2003 © University of Colorado, 2003 12

Check-In and Check-Out

� Commonly used RCS commands
� ci - check in

� Used to check changes into a version control
file; can also create an initial version control file

� co - check out
� Used to check out a specific version of a file

October 6, 2003 © University of Colorado, 2003 13

RCS Locks

� RCS has a notion of locks
� If you check out a file, with a lock, no other person

can check out that file for editing (they can still
read it, however)

� This prevents multiple people from changing the same
file at once

� This is a different strategy than one used by another
popular version control system, CVS

� CVS allows a file to be edited by multiple people, but then
potentially requires a “merge” step when checking a file
into the repository

October 6, 2003 © University of Colorado, 2003 14

RCS Version Control File

� The version control file for RCS has a
suffix “,v”

� You can think of this file as a tar file
� A single file with multiple files stored within

� This time the contained files are just
different versions of the same file

� And all but one are stored as “deltas”

October 6, 2003 © University of Colorado, 2003 15

RCS Example

� Start with a file
rw- CommentBook

%ci CommentBook

initial revision: 1.1

r-- CommentBook,v

� To Retrieve original file
%co CommentBook
r-- CommentBook

r-- CommentBook,v

Note: the version
control file is created
in the same directory
as the original file
UNLESS there is a
directory called RCS

If RCS exists, the
version control file is
created in the RCS
directory

October 6, 2003 © University of Colorado, 2003 16

RCS Example, continued
� The checked out file is called “the working file”

� You can always retrieve a working file from the version
control file
r-- CommentBook

r-- CommentBook,v

%rm CommentBook

r-- CommentBook,v

%co CommentBook

r-- CommentBook

r-- CommentBook,v

October 6, 2003 © University of Colorado, 2003 17

RCS Example, continued
� A normal co command produces a read-only working file; to get

a writeable version, you must lock the working file
%co -l CommentBook

rw- CommentBook

r-- CommentBook,v

� After you have made changes, you can check them in to make a
new version
%ci CommentBook

new revision: 1.2

r-- CommentBook,v

October 6, 2003 © University of Colorado, 2003 18

Flags for CO
� -r# - Retreive revision number #

� -l - Retrieve a locked working file

� -u - Retrieve an unlocked working file

� -p - Print contents of file to stdout,
 do not retrieve a working file

� -f - force overwrite of working file

� -q - Quite mode; diagnostics not

 printed

� -I - Interactive Mode
� See man page for more info

October 6, 2003 © University of Colorado, 2003 19

Flags for CI
� -r# - Save as revision number #

� -l - Save and retrieve a new locked working

 file

� -u - Save and retrieve an unlocked working

 file

� -i - Initial check in, report error if

 a ,v file already exists

� -f - Force creation of new version

� -q - Quite mode

� -I - Interactive Mode

� See man page for more info

October 6, 2003 © University of Colorado, 2003 20

RCS Keywords
� RCS will look for certain keywords in a file and will

substitute values for them during check-in and check-
out
� Think of these keywords as Make Macros, where RCS

provides the definition for the Macro

� Keywords are delimited with two dollar signs
� Example:if $Author$ appears in a text file stored in RCS

� then when checked out, RCS replaces the above string with:

� $Author: kena $

� or more generically with $Author: <username> $

October 6, 2003 © University of Colorado, 2003 21

Example Keywords
� $Author$ - name of user who performed ci

� $Date$ - The date and time of a ci

� $Locker$ - name of the user who locked a revision

� Log - log message supplied during ci

� $Revision$ - revision number assigned during ci

� $Name$ - The name of a revision (if named)

� $RCSfile$ - The name of the RCS file without path info

� $Source$ - The full pathname of the RCS file

� $Header$ - See co man page for details

� Id - See co man page for details

October 6, 2003 © University of Colorado, 2003 22

RCS Version Numbering

1.1

1.2 1.1.1.1

1.3

1.4

1.1.1.2

1.1.1.3

1.1.2.2

1.1.2.3

1.1.2.1

1.1.2.1.1.2 1.1.2.1.2.2

1.1.2.1.1.1 1.1.2.1.2.1

An RCS version number
has a branch number and
a version number. The
version number is always
last

October 6, 2003 © University of Colorado, 2003 23

Other RCS Tools
� rcs - an admin tool; can perform tasks such as

breaking locks, change log messages, erase versions,
etc. See man page for details.

� rlog - display log messages for a particular file
(each time you check in a file, you are asked to enter
a log message describing the changes)

� rcsdiff - a diff command for rcs versions
� e.g. rcsdiff -r1.1 -r1.2 CommentBook will show the

differences between the specified versions without checking
those versions out

