
Lecture 10: Unix Libraries

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 29, 2003 © University of Colorado, 2003 2

Reuse in a Unix Environment
! Two commonly reused software objects in Unix
environments
! source code

! object code

! Source code Reuse
! Pro: Can modify to suit new context

! Con: MUST modify to suit new context

! Object code Reuse
! Pro: No compilation required; just header file and lib

! Con: No ability to change functionality; Arch-specific

September 29, 2003 © University of Colorado, 2003 3

Libraries

! Unix Library
! a collection of object files, used for some purpose

! e.g. math libraries, graphics libraries, etc.

! Can be reused in other programs
! The rules of marshalling (covered in last lecture)
ensure that the compiler knows how to call the
object code contained in the library

! Remember that object code is architecture-specific

September 29, 2003 © University of Colorado, 2003 4

Creating a Library

! Compile .c files to create .o files

! Use the ar command to create a library from
the .o files
! The .o files are stored in the archive such that they
can be extracted at a later time

! This allows a linker to be smart about using the
object code in libraries

! e.g. only those functions used are placed in the linked
executable

September 29, 2003 © University of Colorado, 2003 5

Example
! main.c

#include “main.h”

main(){

subject();

verb();

}

! s1.c
int subject() {

printf(“Jane ”);

}

! s2.c
int subject(){

printf(“Ken ”);

}

! v1.c
int verb() {

printf(“codes.”);

}

! v2.c
int verb(){

printf(“debugs.”);

}

! main.h
int subject();

int verb();

September 29, 2003 © University of Colorado, 2003 6

Example, continued
! First, compile the support files

! g++ -c s1.c

! g++ -c s2.c

! g++ -c v1.c

! g++ -c v2.c

! Second, create two different libraries
! ar -r libWords1.a s1.o v1.o

! ar -r libWords2.a s2.o v2.o

! This creates two separate libraries
! libWords1.a and libWords2.a

September 29, 2003 © University of Colorado, 2003 7

Checking library contents

! ar -t libWords1.a
! s1.o

! v1.o

! ar -t libWords2.a
! s2.o

! v2.o

! strings libWords1.a
! …
! Jane
! codes.
! …

! strings libWords2.a
! …
! Ken
! debugs.
! ...

September 29, 2003 © University of Colorado, 2003 8

Example, continued

! Third, compile main
! g++ -c main.c

! Fourth, link executable
! g++ main.o -o main1 -lWords1

! g++ main.o -o main2 -lWords2

! Fifth, run programs
! main1 -> Jane codes.

! main2 -> Ken debugs.

September 29, 2003 © University of Colorado, 2003 9

More info on ar command

! ar is the ARchive command

! It is similar to tar: Tape Archive
! Both store multiple files as a single collection

! ar focuses on storing .o files to create libraries

! The similarity ends there
! the command flags and behavior of these
commands are sometimes quite different

September 29, 2003 © University of Colorado, 2003 10

ar command syntax
ar (d|q|r|t) archive [files…]
! r - Replace

! replace .o files in archive with specified files

! q - Quick append
! append specified files to archive

! d - Delete
! delete specified files from archive

! t - Table of Contents
! print table of contents of archive

! Note: This is just a sample of ar’s functionality; see
the ar man page for more details

September 29, 2003 © University of Colorado, 2003 11

Using Unix Libraries
! In order to use a Unix library, a compiler needs to
know the location of the library, the location of its
include file, and its name

! Unix compilers (g++, gcc, and cc) have command
flags that let you specify this information
! -I Directory for include files (uppercase i)
! -L Directory for Libraries
! -l Name of library (lowercase L)

September 29, 2003 © University of Colorado, 2003 12

More on include directories
! Any source file that wants to make use of a library,
must include its header file

! The -I flag specifies a directory name for this
purpose

! When a compiler encounters a “#include” statement,
it looks in the current directory and the directory
specified by the -I flag for the file

September 29, 2003 © University of Colorado, 2003 13

More on Library directories
! The -L option specifies a directory where Unix
libraries are stored

! When a linker needs to locate a library (in order to
link it into an executable), the linker will look in the
directory specified by the -L flag

! Note: you can have more than one -L and -I flags in
a single command

September 29, 2003 © University of Colorado, 2003 14

More on Library names

! The -l flag (lowercase L) specifies the name
of a Unix library

! The compiler assumes that all libraries begin
with “lib” and end in “.a”

! As such, you write “-lmath” rather than
“-llibmath.a”
! The latter would cause the compiler to look for a
file called liblibmath.a.a!

September 29, 2003 © University of Colorado, 2003 15

Note: Order is significant
! The order of -l flags is significant

g++ main.c -o main -lWords1 -lWords2

! produces
! “Jane codes.”

! The object code in Words2 is ignored because the
linker found matches for subject() and verb() in
Words1

! Swapping the libraries in the above command
produces
! “Ken debugs.”

September 29, 2003 © University of Colorado, 2003 16

Brooks’ Corner:
Why Did The Tower of Babel Fail?

! Communication, (the lack of it)
! This made it impossible to coordinate

! How do you communicate in large project teams?
! Informally (telephone, e-mail), meetings, workbook

! Workbook
! It is a structure placed on a project’s documents

! Why is it important? Technical prose lives a long time; best
to get it structured formally from the beginning; it also helps
with the distribution of information

September 29, 2003 © University of Colorado, 2003 17

More on the Workbook

! OS/360
! Each programmer should see all the material

! Each book was updated quickly (one-day)

! Problem
! The workbook grew to 5 feet thick!

! They switched to microfiche

! We need to take advantage of on-line artifacts,
information management techniques like open
hypermedia, information retrieval, and the WWW

September 29, 2003 © University of Colorado, 2003 18

Reducing communication paths

! Communication needs are reduced by
! division of labor

! specialization of function

! A tree structure often results from applying this
principle
! However this serves power structures better than
communication (since communication between siblings is
often needed)

! So communication structure is often a network

September 29, 2003 © University of Colorado, 2003 19

Organizational Structure
! Brooks outlines

! mission, producer, director, schedule, division of labor, and
interfaces between the parts

! The new items are the producer and the director
! producer: manages project and obtains resources

! director: manages technical details

! Microsoft’s program and product manager
! former is director, latter does more marketing than Brooks
specifies for producer but has some overlap

