
Lecture 9: Software Re-Use

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 26, 2003 © University of Colorado, 2003 2

Today’s Lecture

! Software Reuse
! Types of Reuse
! Pros and Cons

! Introduction to Unix Libraries
! Brooks’ Corner: Second System Effect
! But first…

! Conceptual Integrity and System Architects at Bell
Labs

! Architects are not associated with development groups;
they must “pitch” their designs to groups and get them
“adopted”

September 26, 2003 © University of Colorado, 2003 3

Software Reuse

! Software Reuse involves
! the use of some previously constructed
software artifact

! source code, library, component

! requirements and design documents
! e.g. design patterns

! in a new context or development project

September 26, 2003 © University of Colorado, 2003 4

Types of Software Reuse

! In re-using code, we have several levels of
granularity
! single lines of code

! functions/procedures

! modules

! components

! packages

! subsystems

! entire programs

September 26, 2003 © University of Colorado, 2003 5

Other Types of Software Reuse

! Reuse can also include
! Requirements Documents

! Design Documents

! Design Patterns

! Software Architectures
! a set of connected components at a high level of
abstraction

! This type of reuse can be more
powerful…why?

September 26, 2003 © University of Colorado, 2003 6

No Silver Bullet, revisited
! Producing requirements and design information is hard

! We struggle with the essential difficulties of software when
we create these documents

! Coding is relatively easy, in comparison
! Typical projects spend 25% of their time coding, 75% on
requirements, design, and debugging

! In fact, Brooks estimates that most projects spend at least 50%
of their time debugging!

! Reuse can help to address these problems
! Reused reqs./design/code require less debugging

September 26, 2003 © University of Colorado, 2003 7

Pros of Software Reuse
! Efficiency

! Reduces time spent designing or coding

! Standardization
! Reuse of UI widgets in MacOS and Win32 leads to common
“look-and-feel” between applications

! Debugging
! Reused design/code is often tested design/code

! Profit!
! Reuse can lead to a market for component software

! real-world examples: ActiveX components, Hypercard stacks,
Java packages, even software tools, such as xerces and xalan
from xml.apache.org (they are often included in other software
systems)

September 26, 2003 © University of Colorado, 2003 8

Cons of Software Reuse
! Mismatch

! Reused Reqs. and/or Design may not completely match your
situation

! Requires time/effort to convert

! Non-functional characteristics of code may not match your
situation

! Consider a database that can scale to 10,000s of items, but
you need it to scale to 100,000s of items

! Expense
! Some components may be too expensive for your project’s
budget. For instance, SGML (a precursor to HTML and XML)
tools sell for 5000 dollars a license!

September 26, 2003 © University of Colorado, 2003 9

One example of code reuse
! Generic functions
multiply (float A[I][J], float B[J][K])

for i = 0 to I do

for k = 0 to K do

sum = 0

for j = 0 to J do

sum += A[i][j] * B[j][k]

endfor

endfor

endfor

! In fact, math libraries are an example of a successfully reused
software component

September 26, 2003 © University of Colorado, 2003 10

Reuse in a Unix Environment

! Two commonly reused software objects in
Unix environments
! source code

! object code

! Source code is translated to object code via a
compiler

! Object code consists of machine instructions
with place holders

September 26, 2003 © University of Colorado, 2003 11

Object Code Example
MOV register4, (some memory location)

SUM register4, register3

CMP register3, #7

JMP (some program address)

! .o files contain object code

! Place holders are removed and replaced with specific
values when object code is linked into a program
executable

September 26, 2003 © University of Colorado, 2003 12

Libraries

! Unix Libraries are one technique for
reusing object code

! Libraries depend on marshalling
! a uniform method of packing and
unpacking parameters

September 26, 2003 © University of Colorado, 2003 13

Marshalling example

! When a program calls a function, its
parameters are pushed onto the
program stack
function foo(int x, float y, char z) {

…

}

foo(5, 7.2, ‘c’)

September 26, 2003 © University of Colorado, 2003 14

Marshalling example,
continued

SP
z: 1 byte
y: 4 bytes

x: 2 bytes

‘c’

5
7.2

When linking the object code, the linker substitutes
(SP-1) for z, (SP-5) for y, and (SP-7) for x. This
works as long as both the calling program and the
called function follow the same rules. This is what
marshalling specifies and it allows libraries to be
reused on Unix systems.

September 26, 2003 © University of Colorado, 2003 15

Marshalling, continued
! In order to use a library, a developer needs

! a header file (.h) that indicates the parameters of each
function contained in the library

! the object code of the library

! A compiler can then link the object code of the library
into a developer’s program using the rules of
marshalling…

! …and a developer’s program can then use the
functions contained in that library

September 26, 2003 © University of Colorado, 2003 16

Next Lecture

! We will learn how to create libraries with the
ar (“archive”) command

! We will learn about command flags of the C
and C++ compilers that allow libraries to be
re-used in new programs

September 26, 2003 © University of Colorado, 2003 17

Brooks’ Corner: The Second-System Effect

! An engineer is careful in designing a system
the first time
! He or she realizes that they are working in
uncharted territory

! Extraneous features get delayed until…

! The Second System!
! Now, you’ve got some experience and you want to
throw everything into the design!

September 26, 2003 © University of Colorado, 2003 18

Symptoms of Second-System Effect

! Functional Embellishment
! to an unnecessary degree

! Optimizations to obsolete functionality
! OS/360 linker had sophisticated program overlay
functionality

! The problem: the application architecture no longer
depended on overlays!

! Side-effect: linker is slower than it otherwise would have been;
slower than the compilers whose usage it was meant to reduce!

September 26, 2003 © University of Colorado, 2003 19

How to avoid it?

! Must employ extra self-discipline
! avoid functional ornamentation
! be aware of changes in assumptions
! strive for conceptual integrity

! How do manager’s avoid it?
! Insist on a senior architect with more than two
systems under his or her belt

! If this is not possible, then help your architect avoid the
second system effect: e.g. question unnecessary
features, review assumptions, etc.

