
Lecture 8: Make Pattern Matching &
Conceptual Integrity

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 22, 2003 © University of Colorado, 2003 2

Pattern Matching, set-up
! Below is a fairly standard makefile.
! What should you do if you want to change your compiler to gcc

and add compiler flags such as -g?
program: main.o input.o output.o

g++ $^ -o $@
main.o: main.cpp defs.h

g++ -c $<
input.o: input.cpp defs.h

g++ -c $<
output.o: output.cpp defs.h

g++ -c $<

September 22, 2003 © University of Colorado, 2003 3

Pattern Matching, set-up, cont.
! Use Macros of course!

CXX = g++
CFLAGS = -c -g
program: main.o input.o output.o

$(CXX) $^ -o $@
main.o: main.cpp defs.h

$(CXX) $(CFLAGS) $<
input.o: input.cpp defs.h

$(CXX) $(CFLAGS) $<
output.o: output.cpp defs.h

$(CXX) $(CFLAGS) $<

September 22, 2003 © University of Colorado, 2003 4

Pattern Matching, example
! Did you notice how in all cases, our rules for

compiling each file were exactly the same, except for
the file name?
main.o: main.cpp defs.h

$(CXX) $(CFLAGS) $<
input.o: input.cpp defs.h

$(CXX) $(CFLAGS) $<
output.o: output.cpp defs.h

$(CXX) $(CFLAGS) $<
! Make has a mechanism for capturing these

similarities, called pattern matching

September 22, 2003 © University of Colorado, 2003 5

Pattern Matching
! We can capture similarities between rules based on

file suffixes

! Thus our rules in the previous examples that took
care of compiling files can be expressed as

%.o: %.cpp
$(CXX) $(CFLAGS) $<

! This is not exactly the same, why? Does it matter?

September 22, 2003 © University of Colorado, 2003 6

Pattern Matching in Make
! Make supports pattern matching through the

presence of the character “%” in rules

%.o: %.c
g++ -c $<

! If you type “make input.o” the rule becomes

input.o: input.c
g++ -c $<

! Note: automatic variables are required. Why?

September 22, 2003 © University of Colorado, 2003 7

Benefits of Pattern Matching

! Scalability
! The same rule can apply to thousands (or more) of files

! Compactness
! Small compact specifications are easier to understand and

debug

! These are similar to the benefits of
wildcards and regular expressions
! which should come as no surprise

September 22, 2003 © University of Colorado, 2003 8

More on Pattern Matching

! Pattern matching in make is not exactly like
wildcards in the shell
! Pattern matching rules do not try to match every

possible file name

! Instead, they only execute if there is a
dependency that needs to be created that
matches the rule

! Lets look at an example

September 22, 2003 © University of Colorado, 2003 9

Pattern Matching Example
program: program.o

g++ $^ -o $@

%.o: %.c

g++ -c $<

! If you type “make program”, make will look for
“program.o”. This matches the “%.o” rule, so make
will execute “program.o: program.c”

! You may have other .c files in the directory, but they
will not be made into .o files unless they are
specifically mentioned in the makefile

September 22, 2003 © University of Colorado, 2003 10

Pattern Matching Rules as Goals

! As a result, make cannot run a pattern
matching rule, unless it is explicitly told to
do so (via the command line) or in response
to a dependency of another rule

! Therefore, if the first rule in a makefile is a
pattern matching rule, make skips over it
and looks for the first non-pattern
matching rule
! (But only when you type “make” at the command

line with no other command line arguments)

September 22, 2003 © University of Colorado, 2003 11

Pattern Matching Rules as Goals

%.o: %.c

g++ -c $<

program: program.o

g++ $^ -o $@

! Typing “make” for the above makefile,
causes the program rule to be executed,
the pattern matching rule is ignored
(even though it comes first)

September 22, 2003 © University of Colorado, 2003 12

Pattern Matching Example, cont.

program: program.o
g++ $^ -o $@

%.o: %.c
g++ -c $<

! Continuing our example, if you typed “make input.o”
with this makefile, the pattern matching rule would be
used to create “input.o” from an “input.c”
! even though “input.o” is not explicitly mentioned in

the makefile, but only if “input.c” exists!

September 22, 2003 © University of Colorado, 2003 13

Suffix Rules

! A variation on pattern matching rules are
suffix rules. The following two rules are
equivalent
%.o: %.c

g++ -c $<
.c.o:

g++ -c $<
! Note the reversed order of the suffixes

September 22, 2003 © University of Colorado, 2003 14

Implicit Rules

! Make’s abstraction mechanisms...
! Pattern matching rules

! automatic variables

! macros

! ...make it possible to have a common set of
rules automatically defined by make
! These rules are called “implicit rules”

! Make’s implict rules are available in the “reference
materials” section of the class website

September 22, 2003 © University of Colorado, 2003 15

Implicit Rule Example

! If you create a makefile that contains just the
following rule:
program: program.o

$(CC) $(CFLAGS) $^ -o $@
! Make will act as if you had also included the

following rule
.c.o:

$(CC) $(CFLAGS) -c $<

September 22, 2003 © University of Colorado, 2003 16

Brooks’ Corner: Conceptual Integrity

! Brooks example => Cathedrals
! Many cathedrals consist of contrasting design ideas

! The Reims Cathedral was the result of eight generations of
builders repressing their own ideas and desires to build a
cathedral that embodies the key design elements of the
original architect!

! With respect to software
! Design by too many people results in conceptual disunity of

a system which makes the program hard to understand and
use.

September 22, 2003 © University of Colorado, 2003 17

Conceptual Integrity

! Brooks considers it the most important
consideration in system design
! Better to leave functionality out of a system

rather than break the conceptual integrity
of the design

! Questions
! How is conceptual integrity achieved?
! Does conceptual integrity give too much

power to system designers?

September 22, 2003 © University of Colorado, 2003 18

Function vs. Complexity

! The key test to a system’s design is the
ratio of functionality to conceptual
complexity
! Ease-of-use is enhanced only if a function

provides more power than it takes to learn
(and remember!) how to use the function

September 22, 2003 © University of Colorado, 2003 19

Function vs. Complexity, cont.
! Neither function or simplicity alone is good enough

! OS/360 had lots of functionality
! PDP-10 has lots of simplicity
! Both reached only half of the target!

! You must be able to specify your intentions with simplicity and
straightforwardness; if your elements are too simple, then
complex tasks will not be straightforward to specify!

! Brooks claims that adhering to the notion of
conceptual integrity can help you achieve the proper
balance
! Ease of use requires unity of design, e.g. conceptual

integrity

September 22, 2003 © University of Colorado, 2003 20

Architects as Aristocrats
! Conceptual Integrity requires that the design be the

product of one mind

! The architect (or surgeon) has ultimate authority (and
ultimate responsibility)!
! Does this imply too much power for the architects?

! In one sense, yes, but ease-of-use of a system comes from
conceptual integrity!

! In another sense, no, the architect sets the structure of the
system, developers can then be creative in how the system is
implemented!

! Indeed, some initial constraints can help focus the creativity since
the architect has taken care of the “key” design decisions.

