Lecture 8: Make Pattern Matching &
* Conceptual Integrity

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2003

iPattern Matching, set-up

= Below is a fairly standard makefile.

= What should you do if you want to change your compiler to gcc
and add compiler flags such as -g?
program: main.o input.o output.o
g++ $" -0 $@
main.o: main.cpp defs.h
g++ -c $<
input.o: input.cpp defs.h
g++ -c $<
output.o: output.cpp defs.h
g++ -c $<

September 22, 2003 © University of Colorado, 2003 2

iPattern Matching, set-up, cont.

= Use Macros of course!

CXX = g++

CFLAGS =-c -g

program: main.o input.o output.o
$(CXX) $" -0 $@

main.o: main.cpp defs.h
$(CXX) $(CFLAGS) $<

input.o: input.cpp defs.h
$(CXX) $(CFLAGS) $<

output.o: output.cpp defs.h
$(CXX) $(CFLAGS) $<

September 22, 2003 © University of Colorado, 2003

iPattern Matching, example

= Did you notice how in all cases, our rules for
compiling each file were exactly the same, except for
the file name?
main.o: main.cpp defs.h
$(CXX) $(CFLAGS) $<
input.o: input.cpp defs.h
$(CXX) $(CFLAGS) $<
output.o: output.cpp defs.h
$(CXX) $(CFLAGS) $<
= Make has a mechanism for capturing these
similarities, called pattern matching

September 22, 2003 © University of Colorado, 2003 4

i Pattern Matching

= We can capture similarities between rules based on
file suffixes

= Thus our rules in the previous examples that took
care of compiling files can be expressed as

%.0: Y%.cpp
$(CXX) $(CFLAGS) $<

= This is not exactly the same, why? Does it matter?

September 22, 2003 © University of Colorado, 2003 5

iPattern Matching in Make

= Make supports pattern matching through the
presence of the character “%” in rules

%.0: %.C
g++ -c $<

= If you type “make input.o” the rule becomes

input.o: input.c
g++ -c $<

= Note: automatic variables are required. Why?

September 22, 2003 © University of Colorado, 2003 6

i Benefits of Pattern Matching

= Scalability

= The same rule can apply to thousands (or more) of files

= Compactness

= Small compact specifications are easier to understand and
debug

= These are similar to the benefits of
wildcards and regular expressions

= Which should come as no surprise

September 22, 2003 © University of Colorado, 2003 7

i More on Pattern Matching

= Pattern matching in make is not exactly like
wildcards in the shell

= Pattern matching rules do not try to match every
possible file name

= Instead, they only execute if there is a
dependency that needs to be created that
matches the rule

= Lets look at an example

September 22, 2003 © University of Colorado, 2003 8

iPattern Matching Example

program: program.o
g++ $" -o $e@

.0: %.C
g++ -c $<

= If you type “make program”, make will look for

“program.o”. This matches the “%.0” rule, so make
will execute “program.o: program.c”

= You may have other .c files in the directory, but they
will not be made into .o files unless they are
specifically mentioned in the makefile

oo

September 22, 2003 © University of Colorado, 2003 9

i Pattern Matching Rules as Goals

= As a result, make cannot run a pattern
matching rule, unless it is explicitly told to
do so (via the command line) or in response
to a dependency of another rule

= Therefore, if the first rule in a makefile is a
pattern matching rule, make skips over it
and looks for the first non-pattern
matching rule

= (But only when you type “make” at the command
line with no other command line arguments)

September 22, 2003 © University of Colorado, 2003 10

i Pattern Matching Rules as Goals

%.0: %.C

g++ -c $<
program: program.o

g++ $" -o $e@

= Typing “make” for the above makefile,

causes the program rule to be executed,
the pattern matching rule is ignored
(even though it comes first)

September 22, 2003 © University of Colorado, 2003 11

iPattern Matching Example, cont.

program: program.o
g++ $" -0 $@
%.0: %.C
g++ -C $<

= Continuing our example, if you typed “make input.o”
with this makefile, the pattern matching rule would be
used to create “input.0” from an “input.c”
= even though “input.o” is not explicitly mentioned in
the makefile, but only if “input.c” exists!

September 22, 2003 © University of Colorado, 2003 12

Suffix Rules

= A variation on pattern matching rules are
suffix rules. The following two rules are
equivalent
%.0: %.C
g++ -Cc $<
.C.O:
g++ -Cc $<
= Note the reversed order of the suffixes

September 22, 2003 © University of Colorado, 2003 13

Implicit Rules

= Make’s abstraction mechanisms...
= Pattern matching rules
= automatic variables
= Macros
= ...make it possible to have a common set of
rules automatically defined by make
= These rules are called “implicit rules”

= Make’s implict rules are available in the “reference
materials” section of the class website

September 22, 2003 © University of Colorado, 2003 14

Implicit Rule Example

= If you create a makefile that contains just the
following rule:
program: program.o
$(CC) $(CFLAGS) $* -0 $@
= Make will act as if you had also included the
following rule
.C.O:
$(CC) $(CFLAGS) -c $<

September 22, 2003 © University of Colorado, 2003 15

Brooks’ Corner: Conceptual Integrity

= Brooks example => Cathedrals
= Many cathedrals consist of contrasting design ideas

= The Reims Cathedral was the result of eight generations of
builders repressing their own ideas and desires to build a
cathedral that embodies the key design elements of the
original architect!

= With respect to software

= Design by too many people results in conceptual disunity of
a system which makes the program hard to understand and
use.

September 22, 2003 © University of Colorado, 2003 16

i Conceptual Integrity

= Brooks considers it the most important
consideration in system design
= Better to leave functionality out of a system
rather than break the conceptual integrity
of the design
= Questions
=« How is conceptual integrity achieved?

= Does conceptual integrity give too much
power to system designers?

September 22, 2003 © University of Colorado, 2003 17

i Function vs. Complexity

= The key test to a system’s design is the
ratio of functionality to conceptual
complexity
= Ease-of-use is enhanced only if a function

provides more power than it takes to learn
(and remember!) how to use the function

September 22, 2003 © University of Colorado, 2003 18

i Function vs. Complexity, cont.

= Neither function or simplicity alone is good enough
= 0OS/360 had lots of functionality
= PDP-10 has lots of simplicity
= Both reached only half of the target!

= You must be able to specify your intentions with simplicity and
straightforwardness; if your elements are too simple, then
complex tasks will not be straightforward to specify!

= Brooks claims that adhering to the notion of
conceptual integrity can help you achieve the proper
balance

= Ease of use requires unity of design, e.g. conceptual
integrity

September 22, 2003 © University of Colorado, 2003 19

iArchitects as Aristocrats

= Conceptual Integrity requires that the design be the
product of one mind

= The architect (or surgeon) has ultimate authority (and
ultimate responsibility)!

= Does this imply too much power for the architects?
= In one sense, yes, but ease-of-use of a system comes from
conceptual integrity!
= In another sense, no, the architect sets the structure of the
system, developers can then be creative in how the system is
implemented!

Indeed, some initial constraints can help focus the creativity since
the architect has taken care of the “key” design decisions.

September 22, 2003 © University of Colorado, 2003 20

