
Lecture 7: Make Automatic Variables

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 19, 2003 © University of Colorado, 2003 2

Today’s Lecture

! Explore the topic of make’s automatic
variables in detail

! Brooks’ Corner: The Surgical Team

September 19, 2003 © University of Colorado, 2003 3

Automatic Variables

! Make has a special feature called automatic
variables

! Automatic variables can only be used within
the actions of a make rule
! The value of an automatic variable depends on
the target and dependencies of the rule in which it
occurs

September 19, 2003 © University of Colorado, 2003 4

Automatic Variables, cont.
! $@ - The target of the
rule.

! $< - The first
dependency.

! $^ - All of the
dependencies.

! $? - All of the
dependencies that are
newer than the target

! $* - The stem of a
pattern matching rule.
! e.g. If you are building
input.o from input.c the
stem is “input”

! This only works with
pattern matching rules
(the topic of Lecture 8)

September 19, 2003 © University of Colorado, 2003 5

Automatic Variables, cont.
! Below is a makefile that shows each rule with two actions: the
first is a standard action, the second is the same action using
automatic variables
program: input.o output.o

g++ input.o output.o -o program

g++ $^ -o $@

input.o: input.c defs.h

g++ -c input.c -o input.o

g++ -c $< -o $@

output.o: output.c defs.h

g++ -c output.c -o output.o

g++ -c $< -o $@

September 19, 2003 © University of Colorado, 2003 6

Use of $?

! The variable $? can be useful for
updating tar files
! for example, where only those files
that have changed need to be
replaced.

lab5.tar: README makefile lab5.cpp

tar rf lab5.tar $?

September 19, 2003 © University of Colorado, 2003 7

The View Path
! Make applies special meaning to another variable,
VPATH, also know as the view path.
! While VPATH is not an automatic variable, it does interact
with them (as we shall see shortly)

! VPATH consists of a list of directories, just like the
path variable of the shell
! If make cannot find a dependency in the current directory, it
looks in the view path.

! Note: just because a file is found in the view path does not
mean that the shell can find it when executing commands
(see next slide)

September 19, 2003 © University of Colorado, 2003 8

View Path Example
VPATH = $(HOME)/csci3308/src/lab05

lab05.o: lab05.c

g++ -c lab05.c -o lab05.o

% make
g++ -c lab05.c -o lab05.o

g++: lab05.c: No such file or directory

! Why does the action fail?
! Assume we invoked the command in a build directory

September 19, 2003 © University of Colorado, 2003 9

View Path Example, cont.
! To solve the problem, we can use automatic
variables
! When a file is found in the view path, automatic variables are
set to contain the full path of the file

! Therefore, our action line needs to make use of
automatic variables to reference files in an action
! The full path of the file will be passed to the shell, which will
then be able to find the file

September 19, 2003 © University of Colorado, 2003 10

View Path Example, continued
VPATH = $(HOME)/csci3308/src/lab05

lab05.o: lab05.c

g++ -c $< -o $@

% make
g++ -c /home/.../src/lab05/lab05.c -o lab05.o

! Here, the action references lab05.c correctly. Note:
lab05.o is created in the current directory, even
though the source code is located elsewhere (which
is similar to how we compiled gnuchess in lab 1)

September 19, 2003 © University of Colorado, 2003 11

Accessing File Information

! Using automatic variables, a file’s name and
directory can be extracted
VPATH = $(HOME)/csci3308/src/lab05

lab05.o: lab05.c
echo found file $(<F)

echo in directory $(<D)

% make

found file lab05.c

in directory /home/.../src/lab05

September 19, 2003 © University of Colorado, 2003 12

Brooks’ Corner: The Surgical
Team (Chapter 3)

! Or
! How should a development team be arranged?

! The problem
! Good programmers are much better than poor
programmers

! typically 10 times better in productivity

! typically 5 times better in terms of program elegance

! but we often do not have access to these “super
programmers”

September 19, 2003 © University of Colorado, 2003 13

The dilemma of team size
! Consider the following example

! 200-person project with 25 managers
! where the managers are also experienced software developers

! Previous slide argues for firing the 175 workers and use the
25 managers as the development team!

! However, this is still bigger than “the ideal” small team size of
10 people (general consensus)

! However, the original team of 200 was too small to tackle
very large systems

! OS/360 had over 1000 people working on it; consumed 5000
person-years of design, construction, and documentation!

September 19, 2003 © University of Colorado, 2003 14

Two needs to be reconciled

! For efficiency and conceptual integrity
! a small team is preferred

! To tackle large systems
! considerable resources are needed

! One solution
! Harlan Mill’s Surgical Team approach

! One person performs the work
! all others perform support tasks

! This is only one approach, there are many!

September 19, 2003 © University of Colorado, 2003 15

The Proposed Team
! The surgeon

! The chief programmer

! The co-pilot
! Like the surgeon but less
experienced

! The administrator
! Relieves the surgeon of
administrative tasks

! The editor
! Proof-edits
documentation

! Two secretaries
! Support admin and editor

! The program clerk
! Probably obsolete today

! The toolsmith
! Supports the work of the
surgeon

! The tester

! The language lawyer

September 19, 2003 © University of Colorado, 2003 16

How is this different?

! Normally, work is divided equally
! Now, only surgeon and copilot divide the work

! Normally, each person has equal say
! Now, the surgeon is the absolute authority

! Note communication paths are reduced
! Normally 10 people => 45 paths

! Surgical Team => at most 13 (See Fig. 3-1.)

September 19, 2003 © University of Colorado, 2003 17

How does this scale?

! Reconsider the 200 person team
! Communication paths => 19,900!

! Create 20, ten-person surgical teams

! Now, only 20 surgeons must work together
! 20 people => 190 paths

! Two orders of magnitude less!

! Key problem is ensuring conceptual integrity
of the design

September 19, 2003 © University of Colorado, 2003 18

The Modern Surgical Team

! The surgical team, as conceived by Mills and
described by Brooks, is not widely used today

! On Internet time, the chief programmer
approach is impractical

! Now, it is more important that there be one to
three designers, or software architects, that
guide the design of the system
! with many people implementing the system
! This is true of the Microsoft approach

! The program manager is responsible for the feature set

