
Lecture 6: Make Macros

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 15, 2003 © University of Colorado, 2003 2

Today’s Lecture

! Brief review of make

! Explore make macros in more detail
! Note: when you see “make macro” think “make
variables”

! Brooks’ Corner: The Mythical Man-Month

! but first…a quick look at Ant (a build
management tool for Java programs)

September 15, 2003 © University of Colorado, 2003 3

Unix Build Management

! In Unix environments, a common build
management tool is “make”
! Make provides very powerful capabilities via three
types of specification styles

! declarative

! imperative

! relational

! These styles are combined into one specification:
“the make file”

September 15, 2003 © University of Colorado, 2003 4

Make Specification Language
! Hybrid Declarative/Imperative/Relational

! Dependencies are Relational
! Make specifies dependencies between artifacts

! Rules are Declarative
! Make specifies rules for creating new artifacts

! Actions are Imperative
! Make specifies actions to carry out rules

September 15, 2003 © University of Colorado, 2003 5

Example “Makefile”
T1: T2 T3 T4
 A1 A2 A3

T2: T5 T6
 A4

T3: T5 T7
 A5 A6

Target

Actions

Dependencies

R
ul
es

Tab Character
(required)

{
{

{

If a dependency changes, a rule’s actions
are executed to (re)create a rule’s target

September 15, 2003 © University of Colorado, 2003 6

Make “Macros” - think “Variables”

! Make has variables known as “macros”
! They are similar to shell variables with a few differences

! Macros hold a string value

! Macros are defined using an equal sign
INSTALLDIR = /home/faculty/kena/tmp/

! And is used by preceding its name with a dollar sign
$(INSTALLDIR)/program : program

cp program $(INSTALLDIR)

! The parentheses are required, otherwise make assumes that a
macro name is just one letter long
! $INSTALLDIR is interpreted by make as $(I)NSTALLDIR

September 15, 2003 © University of Colorado, 2003 7

Macro Substitution
! Make variables perform strict textual replacement so
the following two rules are equivalent

! (Do not do this in practice!):

program: output.o

g++ output.o -o program

FOO = o

pr$(FOO)gram: $(FOO)utput.$(FOO)

g++ $(FOO)utput.$(FOO) -$(FOO) pr$(FOO)gram

September 15, 2003 © University of Colorado, 2003 8

Using a ‘$’ sign

! Since the dollar sign has special meaning…
! it indicates the use of a macro

! …you need to “escape” it with a 2nd dollar
sign, if you want it passed to the shell as part
of an action
! Note: make strips one of the dollar signs before
invoking a shell to process the action

! Example: ‘chapter$’ is passed to egrep below
TableOfContents: book.txt

egrep chapter$$ book.txt > TableOfContents

September 15, 2003 © University of Colorado, 2003 9

Increased Abstraction
! Macros increase the level of abstraction in a Makefile

program: main.o input.o output.o

g++ main.o input.o output.o -o program

! is equivalent to
EXECUTABLE = program

OBJECTS = main.o input.o output.o

$(EXECUTABLE): $(OBJECTS)

g++ $(OBJECTS) -o $(EXECUTABLE)

! They can also save keystrokes

September 15, 2003 © University of Colorado, 2003 10

Increased Abstraction, cont.

! Why is this increase in abstraction important?
! What benefit does abstraction typically provide?

! Definition of Abstraction
! Identify the important aspect of a phenomenon
and ignore the details

September 15, 2003 © University of Colorado, 2003 11

Increased Abstraction, cont.
! Allows the user of an abstraction to be independent
of the hidden details
! This allows the details to change without a user knowing
about it (or caring)

! In makefiles, abstraction lets rules be defined that
can be applied to many different situations
$(EXECUTABLE): $(OBJECTS)

g++ $(OBJECTS) -o $(EXECUTABLE)

! The above rule can be applied to almost any C++ or
C program

September 15, 2003 © University of Colorado, 2003 12

Definition and Use of Make Macros

! A shell script is executed from top to bottom. As such,
a shell variable cannot be used before it is defined.

! Makefiles, on the other hand, are not executed top to
bottom. Execution follows dependencies which can
be anywhere in the file
! As such, there is no concept of one rule coming before or
after another rule

! Therefore, all rules and macros are read entirely before the
make algorithm is executed

September 15, 2003 © University of Colorado, 2003 13

Definition and Use, continued
! Shell Variables

%echo $var

%set var = hello

! In response to the first
statement, the shell
complains “undefined
variable”

! Make Macros
all:

echo $(VAR)

VAR = hello

! Running make on the
above makefile
produces
echo hello

hello

September 15, 2003 © University of Colorado, 2003 14

Advanced Macro Use
BASEDIR = $(HOME)/csci3308

SRCDIR = $(BASEDIR)/src/function

ARCHDIR = $(BASEDIR)/arch/$(ARCH)

BUILDDIR = $(ARCHDIR)/build/function

BINDIR = $(ARCHDIR)/bin

MANDIR = $(ARCHDIR)/man

SOURCE = function.cpp

OBJECT = function.o

EXEC = function

$(BUILDDIR)/$(OBJECT): $(SRCDIR)/$(SOURCE)

g++ -c $(SRCDIR)/$(SOURCE) -o $(BUILDDIR)/$(OBJECT)

$(BINDIR)/$(EXEC): $(BUILDDIR)/$(OBJECT)

g++ $(BUILDDIR)/$(OBJECT) -o $(BINDIR)/$(EXEC)

September 15, 2003 © University of Colorado, 2003 15

Brooks’ Corner: The Mythical
Man-Month (Chapter 2)

! Cost does indeed vary as the product of the
number of workers and the number of months
! Progress does not!

! The unit of the man-month implies that workers
and months are interchangeable

! However, this is only true when a task can be partitioned
among many workers with no communication among
them!

September 15, 2003 © University of Colorado, 2003 16

The Man-Month, continued

! When a task is sequential, more effort has no
effect on the schedule
! “The bearing of a child takes nine months, no
matter how many women are assigned!”

! Many tasks in software engineering have
sequential constraints!

September 15, 2003 © University of Colorado, 2003 17

The Man-Month, continued
! Most tasks require communication among workers

! communication consists of
! training

! sharing information (intercommunication)

! Training affects effort at worst linearly

! Intercommunication adds n(n-1)/2 to effort
! if each worker must communicate with every other worker

September 15, 2003 © University of Colorado, 2003 18

Intercommunication Effort

! 2 workers

! 3

! 4

! 5

! 6

! 7

! 1 path

! 3 paths

! 6 paths

! 10 paths

! 15 paths

! 21 paths

September 15, 2003 © University of Colorado, 2003 19

Comparison Graphs

Months

Workers
no communication with communication

“Adding more people then lengthens, not shortens, the schedule!”
 -- (A paraphrase of) Brooks’ Law

September 15, 2003 © University of Colorado, 2003 20

Scheduling
! Brook’s rule of thumb

! 1/3 planning

! 1/6 coding

! 1/4 component test

! 1/4 system test

! More time devoted to
planning, half to testing!

! In looking at other projects,
Brooks found that few
planned for 50% testing, but
most spent 50% of their time
testing!
! Many of these projects were
on schedule until testing
began!

