
Lecture 5: Build Management

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 12, 2003 © University of Colorado, 2003 2

Today’s Lecture

! Discuss Build Management

! Introduce make

September 12, 2003 © University of Colorado, 2003 3

Build Management
! During the implementation phase, the process for constructing a
system should be engineered
! What are the steps to build a system?

! e.g. what subsystems need to be built before the system can be built?,
what libraries are needed?, what resources are required?, etc.

! Who is authorized to build a system?
! Small projects: individual programmers

! Large projects: build managers and/or configuration managers

! When are system builds performed?
! e.g. perhaps a system is so large that it can only be built at night when
there are enough resources available…

September 12, 2003 © University of Colorado, 2003 4

Build Management, in the small

! Most modern programming environments
have build management capabilities built into
them
! For instance, a Java development environment typically has
the notion of a “project” and it can compile all project files in
the correct order (and it only compiles files dependent on a
change)

! These capabilities free developers from
accidental difficulties
! having to remember the correct compilation order
! correctly identifying all files dependent on a change

September 12, 2003 © University of Colorado, 2003 5

Unix Build Management

! In Unix environments, a common build
management tool is “make”
! Make provides very powerful capabilities via three
types of specification styles

! declarative

! imperative

! relational

! These styles are combined into one specification
! “the make file”

September 12, 2003 © University of Colorado, 2003 6

Specification/Modeling Styles
! Operational (or Imperative)

! Described according to desired actions

! Usually given in terms of an execution model

! Descriptive (or Declarative)
! Described according to desired properties

! Usually given in terms of axioms or algebras

! Structural (or Relational)
! Described according to desired relationships

! Usually given in terms of graphs
! e.g. entity-relationship diagrams

September 12, 2003 © University of Colorado, 2003 7

Make Specification Language
! Hybrid Declarative/Imperative/Relational

! Dependencies are Relational
! Make specifies dependencies between artifacts

! Rules are Declarative
! Make specifies rules for creating new artifacts

! Actions are Imperative
! Make specifies actions to carry out rules

September 12, 2003 © University of Colorado, 2003 8

Example “Makefile”
T1: T2 T3 T4
 A1 A2 A3

T2: T5 T6
 A4

T3: T5 T7
 A5 A6

Target

Actions

Dependencies

Ru
le
s

Tab Character
(required)

{
{

{

If a dependency changes, a rule’s actions
are executed to (re)create a rule’s target

September 12, 2003 © University of Colorado, 2003 9

More on Make

! Make is well-integrated into a Unix/C
environment
! Primitive Components are Files

! Actions are “shell commands”

! Rules are placed in a file and denote the
“specification”

! Rules make explicit the dependencies of the system and
what to do about them

! Note: make is not just for source code!

September 12, 2003 © University of Colorado, 2003 10

Make, in more detail
! Make can automatically compile source code to
produce an application’s executable
! You could write a shell script to do this…

#!/usr/bin/tcsh

g++ -c main.cpp

g++ -c input.cpp

g++ -c output.cpp

g++ main.o input.o output.o -o program

! …however, a shell script will compile every file each time it is
run

! Make is much “smarter”

September 12, 2003 © University of Colorado, 2003 11

A second example make file

program: main.o input.o output.o
g++ main.o input.o output.o -o program

main.o: main.cpp defs.h
g++ -c main.cpp

input.o: input.cpp defs.h
g++ -c input.cpp

output.o: output.cpp defs.h
g++ -c output.cpp

September 12, 2003 © University of Colorado, 2003 12

More on Actions

target: dependencies
actions

! As we’ve said before, target and dependencies are generally
files.

! If any dependency is modified more recently than its target then
make performs the associated actions.

! An action can be any shell command, one per line. Each action
must begin with a tab.

! Typically, actions create the target file from the dependency
files.

September 12, 2003 © University of Colorado, 2003 13

Examples
! Given the following directory (higher number == newer)

! main.cpp: 1, main.o: 4,
! input.cpp: 2, defs.h: 3

Example 1 Makefile
main.o: main.cpp defs.h

g++ -c main.cpp
Output of Example 1

make: `main.o' is up to date.

Example 2 Makefile
input.o: input.cpp defs.h

g++ -c input.cpp
Output of Example 2

g++ -c input.cpp

Example 3 Makefile
output.o: output.cpp defs.h

g++ -c output.cpp
Output of Example 3

make: Fatal error: Don't know
how to make target `output.cpp'

What would happen if you
typed “make” again after
example 2?

September 12, 2003 © University of Colorado, 2003 14

program

main.o input.o output.o

main.cpp input.cpp output.cpp defs.h

Make dependency graph
A makefile can be modeled as a dependency graph.
The make algorithm performs a traversal over the graph.
Each node is checked after all of its children, and the actions
are run if any child has a timestamp greater than its parent

September 12, 2003 © University of Colorado, 2003 15

make command line

! % make
! make will look for a file called “makefile” or
“Makefile”

! make looks inside the file for its first target
! the first target is made the goal for this execution

! Different goals can be specified by
listing them on the command line and a
specific make file can be specified with
the -f option
! make main.o -f program.makefile

September 12, 2003 © University of Colorado, 2003 16

More on Actions
! Actions do not have to invoke a compiler

! they can be any shell command

! Additionally, targets do not have to be files
clean:

rm *.o

! Targets like “clean” with no dependencies and no files created in
response to their actions are called “phony targets”
! The actions of a phony target always execute, if the phony target
becomes the current goal

! any target that depends on a phony target will always have its
actions executed

! why?

September 12, 2003 © University of Colorado, 2003 17

More on phony targets
! Phony targets can be useful for deployment

install: ~/csci3308/arch/sun4/bin/program

~/csci3308/arch/sun4/bin/program: program
cp program ~/csci3308/arch/x86/bin

! If you type “make install”, make checks to see if the
file “program” in the current directory is newer than
the one in the install directory. If it is, make copies
(or installs) the new version into the install
directory

September 12, 2003 © University of Colorado, 2003 18

Make “Macros”
! Make has variables known as “macros”

! They work similar to environment variables

! Some shell variables are available
! Such as $(HOME) and $(ARCH)

! We can thus rewrite the previous example
INSTALLDIR = ~/csci3308/arch/$(ARCH)/bin

install: $(INSTALLDIR)/program

$(INSTALLDIR)/program: program
cp program $(INSTALLDIR)

September 12, 2003 © University of Colorado, 2003 19

Action/Target mismatch
! Actions do not have to create their target

! when this occurs, you have a mismatch

main.o: main.c
lpr -Pakira ~/.cshrc

! What happens when you type “make”?
! Assume main.c is newer than main.o

! What happens if you type “make” again?

! You typically do not want to do this; but make has no
way to prevent the creation of this type of rule

September 12, 2003 © University of Colorado, 2003 20

Next Week

! More (much more) on Make
! We’ll also take a look at another type of
build system, called ant, that is designed to
build and deploy Java programs

! Lab 3 also provides more detail on
make

