
Lecture 4: Software Tools;
Find/Grep

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 8, 2003 © University of Colorado, 2003 2

Today’s Lecture

! Review need for software tools
! Brooks, chapters 1 and 12

! Discuss two specific software tools
! find and grep

September 8, 2003 © University of Colorado, 2003 3

The Tar Pit
! Developing large systems is “sticky”

! Projects emerge from the tar pit with running systems
! But most missed goals, schedules, and budgets

! “No one thing seems to cause the difficulty--any particular paw
can be pulled away. But the accumulation of simultaneous and
interacting factors brings slower and slower motion.”

! CHAOS Report from Standish Group
! 34% of (reported) software development projects hit their
estimates in 2002 (up from 28% in 2001)

! e.g. many projects fail on some project management dimension

September 8, 2003 © University of Colorado, 2003 4

The Tar Pit, continued

! The analogy is meant to convey that
! It is hard to discern the nature of the problem(s)
facing software development

! Brooks begins by examining the basis of
software development
! e.g. system programming

September 8, 2003 © University of Colorado, 2003 5

Evolution of a Program

Program

Programming
Product

Programming
System

Programming
Systems
Product

x3

x3

x9

September 8, 2003 © University of Colorado, 2003 6

What makes programming fun?

! Sheer joy of creation

! Pleasure of creating something useful to
other people

! Creating (and solving) puzzles

! Life-Long Learning

! Working in a tractable medium
! e.g. Software is malleable

September 8, 2003 © University of Colorado, 2003 7

What’s not so fun about
programming?

! You have to be perfect!

! You are rarely in complete control of the
project

! Design is fun; debugging is just work

! Testing takes too long!

! The program may be obsolete when finished!

September 8, 2003 © University of Colorado, 2003 8

Software Tools
! Fred Brooks talks about the importance of software
tools in Chapter 12 of his book

! Many of the concepts discussed in chapter 12 are
“dated”
! in that modern programming environments provide a
standard set of tools that are used across many software
projects and development organizations

! However, there are still some lessons to be learned

September 8, 2003 © University of Colorado, 2003 9

Lessons Learned
! A balance must be struck between general-purpose
tools and customized tools for a project
! general-purpose tools are maintained by a separate
organization and are widely known

! so you don’t have to waste time maintaining such tools or
training your people to use them

! A custom tool, tailored for a specific project, can result in
higher productivity, since it can automate a repetitive task
that otherwise would need to be done manually

September 8, 2003 © University of Colorado, 2003 10

Lessons Learned, continued

! Maintenance of Program Libraries
! (This section foreshadowed configuration
management, which we will discuss later in the
semester)

! Each programmer has a separate workspace
! Finished components are placed in a system
integration library for testing

! Tested components are incorporated into the
“official” release

! This process should be automated by tools

September 8, 2003 © University of Colorado, 2003 11

Lessons Learned, continued
! High-Level Programming Languages and “Interactive
Programming” are listed as important tools
! The important lesson here is that tools we take for granted
today, were at one time “new” and “untested” techniques

! Back in the 60’s and 70’s
! most programming was done in assembly; lots of accidental
errors occur in these languages

! like remembering to save registers properly on a context switch

! most programming was “batch”
! create punch cards, submit to machine room, get results of run
back the next day! (Imagine debugging a program with a 24-hour
turn around time!!!)

! back in 1975, they already had preliminary data on how much
more productive interactive programming is on debugging (the
data ranged from 2x to 8x better, page 136)

September 8, 2003 © University of Colorado, 2003 12

Find and Grep
! Two very helpful tools to have in your tool chest

! Both help you “find” things in your Unix environment
! find is used to search for files in the filesystem that match
certain criteria

! why is this useful? it scales to large numbers of files

! consider having to search for a single file in a filesystem that
contains thousands of files

! find can search the filesystem much faster than you can!

! grep is used to search for text strings within text files
! why is this useful? same answer: it scales to large numbers of files

! consider having to change the name of a procedure in a
program with hundreds of source code files

! grep can find each use of the procedure in seconds

September 8, 2003 © University of Colorado, 2003 13

Find

! “Find” searches recursively through
directories testing each file against a set of
operators

! These operators can compare properties
such as a file’s name, size, or Unix file
permissions against a given query

September 8, 2003 © University of Colorado, 2003 14

Examples of the find
command
% find ~ -name “*.c” -print

! This command searches for files that end in “.c” starting in
your home directory and looking recursively in all of its
subdirectories

! the -name operator uses shell wildcard syntax for pattern
matching. However, the matching is not done by the shell,.
Therefore, you must use quoting to prevent the shell from
evaluating any special characters

September 8, 2003 © University of Colorado, 2003 15

Examples of the find
command
% find ~ -size 1000c -perm 700 -print

! This command searches for files that have a file permission
set to “700” and a size of 1000 characters

! % find ~ -type f -newer ~/.cshrc -print
! Find all files (but not directories, symbolic links, etc) that
have a timestamp that is newer than the user’s .cshrc file

September 8, 2003 © University of Colorado, 2003 16

Find operators
! See the “find” man page for a complete list of
operators

! Find operators are similar to expressions in an if-
then-else statement.
! Each operator returns true or false.

! Find evaluates each operator one at a time.

! If the operator returns true it goes on to the next operator.

! If the operator returns false, find gives up on this file, and
goes on to the next file

September 8, 2003 © University of Colorado, 2003 17

Example
./program1 -rwx------ steinker ta

./program2 -rwx------ steinker csci3308

% find . -name "program*" -group ta -print

This prints the file name “./program1”

How would the output change if the command is modified as
follows?

%find . -name “program*” -print -group ta -print

Incidentally, -print is an operator that prints the name of the file to
stdout and always returns true

September 8, 2003 © University of Colorado, 2003 18

More complicated expressions
! You can create more complicated boolean
expressions from operators
! op1 -a op2

! True if op1 and op2 are true

! op1 -o op2
! True if op1 or op2 are true

! !op1
! True if op1 is false

! (op1) Parentheses can be useful for grouping. The
parentheses must be quoted to prevent the shell from
evaluating them

September 8, 2003 © University of Colorado, 2003 19

Example
% find . ! \(-user steinker -o -group ta \) -a -name program1 -print

! Find all files with the name “program1” that are not owned by the
user “steinker” or the group “ta”

! A parenthesis must be quoted to prevent the shell from
evaluating it. However, each operator must be a separate
command line argument or find will not recognize them.
% find . ! “(-user steinker -o -group ta)” -a -name …

! this will not work, since the shell will pass “(-user steinker -o -group
ta)” as a single command line argument

% find . ! “(“ -user steinker -o group ta “)” …

! this will work, as will the first version above

September 8, 2003 © University of Colorado, 2003 20

User defined operators

! Find allows you to create your own operators
! -exec prog1 {} \;

! executes an external program

! must be terminated with an escaped semicolon

! may optionally pass the name of the current file

! -ok
! Like exec except the generated command is written to
standard out, the user is then prompted; the command is
executed if the user inputs “y”

September 8, 2003 © University of Colorado, 2003 21

Examples
% find ~/csci3308/src -name "*.c” -exec lpr -Pakira {} \;

! find all files that end in “.c” and prints them on the printer
akira

% find ~ -exec test_script {} \; -print
! list all files for which test_script returns “0” as its exit code

% find ~ -name "*.bak" -ok rm {} \;
! find all files that end in “.bak”, then prints a string like

! rm /home/faculty/kena/tmp/prog1.bak

! if the user answers “y”, the file is removed

! any other answer and the file is not removed

September 8, 2003 © University of Colorado, 2003 22

Grep

! Grep searches through the contents of
a file to find lines that match a specified
regular expression
! grep architecture /usr/dict/words

! As with the find command, patterns with
metacharacters must be quoted to
protect them from being evaluated by
the shell

September 8, 2003 © University of Colorado, 2003 23

Grep, continued

! Grep checks the pattern against each line in
the file. If any part of the line matches the
pattern, the whole line is printed.

! % grep architect /usr/dict/words
! architect

! architectonic

! architectural

! architecture

September 8, 2003 © University of Colorado, 2003 24

Grep, continued
! To match against the entire line use the ^, begin line, and $, end
line, metacharacters in your pattern. You can also use the -x
option.

! % grep ‘^architect$’ /usr/dict/words
! architect

! % grep -x architect /usr/dict/words
! architect

! Note: the above commands work with the linux version of grep,
egrep may be required on other Unix platforms

! Grep has many options for things like displaying lines that do
not match, listing only the number of lines that match instead of
the lines themselves, etc. For more information see the grep
man page.

