
Lecture 3: Unix Shell, Pattern
Matching, Regular Expressions

Kenneth M. Anderson

Software Methods and Tools

CSCI 3308 - Fall Semester, 2003

September 5, 2002 © University of Colorado, 2003 2

Today’s Lecture

! Review Lab 0’s info on the shell

! Discuss pattern matching

! Discuss regular expressions

September 5, 2002 © University of Colorado, 2003 3

Unix Architecture (simplified)
Processes (programs)

NetscapeShell ls

The Kernel
(Device Drivers, Virtual Memory, Files, etc.)

Disk Printer Keyboard

September 5, 2002 © University of Colorado, 2003 4

The Unix Shell
! A shell is a program that presents the user with an interpreted
programming environment; there are many many shells!

! It provides
! Variables and built-in commands
! The ability to execute external commands (e.g. programs)
! The ability to redirect input and output
! Shortcuts such as aliases and wildcards

! In this class we are going to be using tcsh
! Its an extended version of csh (The C Shell); the tcsh author added
the “t” after adding features from the TENEX and TOP-10s
operating systems to the vanilla C shell

! The purpose behind csh was to emulate the syntax and
operators of the C programming language

September 5, 2002 © University of Colorado, 2003 5

Variables
% set x = ken

% echo x
x

% echo $x
ken

% set y = (bananas apples kiwi)
! This creates a 1-based array
(first element indexed with a 1)

! An array is separated by
spaces (which can cause
problems) and surrounded by
parentheses

! What happens if you leave the
parentheses out?

! Certain constructs can take
advantage of an array

%echo $y[2]
apples
%foreach fruit ($y)
foreach? echo $fruit
foreach? end
bananas
apples
kiwi
%set y[2] = oranges
%echo $y
bananas apples kiwi

September 5, 2002 © University of Colorado, 2003 6

More on Spaces

! Arrays are often used to iterate over the
contents of directories in the file system

! Since the space character is used as a
delimiter for arrays, you need to watch
out for spaces that appear in file and
directory names
! See example next slide

September 5, 2002 © University of Colorado, 2003 7

Example Directory Structure

! Tenure Review/
! Tenure Talk
! Tenure Demo

%set z = (`find Tenure\ Review -type d -print`)

%echo $z

Tenure Review Tenure Review/Tenure Talk …

%echo $z[1]

Tenure

%echo $z[2]

Review

! This is not what we want!

September 5, 2002 © University of Colorado, 2003 8

How to fix?

! Use the shell “quoting” mechanism

! Already saw one example when I used the
string “Tenure\ Review” in the find command
! The backslash “escapes” the space and allows the
two words to be treated as a single directory name

! You will learn more about the quoting
mechanism in your labs; In addition, there is a
lot of inforamtion about the quoting
mechanism in your reference text book

September 5, 2002 © University of Colorado, 2003 9

Example Revisited
! Tenure Review/

! Tenure Talk

! Tenure Demo
%set z = (`”find Tenure\ Review -type d -print”`)

%echo $z

Tenure Review Tenure Review/Tenure Talk …

%echo $z[1]

Tenure Review

%echo $z[2]

Tenure Review/Tenure Talk

! Much better!

September 5, 2002 © University of Colorado, 2003 10

Math
! “set” treats the value as a string
% set x = (2 + 3)
% echo $x

2 + 3

% echo $x[2]
+

% Use “@” to do math;
! Note: the space between the “@” and the variable is REQUIRED

% @ x = (2 + 3)
% echo $x

5

! tcsh supports most of C’s expression operators (such as plus,
minus, multiply, divide, less than, greater than, equal, etc.)
+ - * / > < == >= <= && || ! ++ -- += -= *= /=

September 5, 2002 © University of Colorado, 2003 11

Input/Output Redirection

! tcsh can redirect input and output
! it can also redirect error output (not shown)

% date
Sun Aug 20 11:11:10 MDT 2000

% date > today

% more today
Sun Aug 20 11:11:14 MDT 2000

% rev < today
0002 TDM 41:11:11 02 guA nuS

September 5, 2002 © University of Colorado, 2003 12

Control Flow Constructs

! Conditional
if ($x > 3) then

echo true

else
echo false

endif

! Iteration
while !($done)

…

end

foreach directory (bin build lib)
mkdir $directory

end

September 5, 2002 © University of Colorado, 2003 13

Control Flow Constructs, cont.

! multi-branch
switch ($char)

case a:
echo character is “a”

breaksw

default:
echo character is not
“a”

breaksw

endsw

! tcsh does not have a for loop
construct…e.g.,
for (x = 0; x < 5; x++)

…

end

! …use a while loop instead
@ x = 0

while ($x < 5)

…

@ x++

end

September 5, 2002 © University of Colorado, 2003 14

File Inquiry operations
! tcsh has file inquiry operators. They can be used in
expressions.
% set filename = ~/.cshrc

% echo $filename

/home/ken/.cshrc

% if (-e $filename) echo true
true

% @ x = (5 + -e $filename)

% echo x = $x
x = 6

September 5, 2002 © University of Colorado, 2003 15

Job control
! When you invoke a program, you are executing a “job”

! You can find out what jobs are running with the “jobs” command

! Typically, a job “suspends” the shell until it has finished running,
e.g. when you invoke the “ls” program, the shell waits until ls
generates its output
! You can run a job in the background with an ampersand “&”, e.g. “%
emacs &”

! You can suspend a running job using C-z (control-z)

! You can interrupt a running job using C-c

! A job can be brought into the foreground with “fg” and placed
into the background with “bg”

September 5, 2002 © University of Colorado, 2003 16

Wildcards
! The shell, and some other UNIX programs (such as find) make
use of wildcard characters. The name wildcard comes from card
games where a “wild” card can stand for any other card. We will
also call wildcard characters, metacharacters.
% ls

graph.c graph.h main.c stack.c stack.h

%ls *.c
graph.c main.c stack.c

! Note: ls does not do the wildcard search, the shell does. If you
do not want the shell to perform a wildcard search, then you
need to quote all metacharacters
%ls “*.c”
ls: *.c: No such file or directory

September 5, 2002 © University of Colorado, 2003 17

Wildcards and their meanings
! * - match 0 or more instances of any character
! ? - match a single instance of any character
! [123ab] - match a single instance of any character within the
brackets

! [0-9] - Shorthand for [0123456789]
! The range is based on the ASCII character set. So, [a-Z] does not
capture lowercase and uppercase letters. Use [a-zA-Z] instead

! [^0-9] - Match a single instance of any character except those
specified in the brackets

! {pattern1,pattern2, …} - Match one of the listed patterns

September 5, 2002 © University of Colorado, 2003 18

Wildcard Examples

! Consider a directory with the following files:
aa aba a123aa baa Abbb a3ab
% ls a*

aa aba a123aa a3ab

% ls a?
aa

% ls [ab][123][ab][ab]
a3ab

% ls *b[a-z]
aba Abbb

% ls {a?,*b}
Abbb a3ab aa

September 5, 2002 © University of Colorado, 2003 19

Pattern Matching
! Wildcards are one form of pattern matching. Another
form of pattern matching is based on a formalism
known as “regular expressions.”

! We need to make this distinction since some
programs, such as grep and awk, use regular
expression pattern matching rather than wildcard
pattern matching.

! Unfortunately, the syntax for each uses the same
characters but in different ways!
! Actually, the situation is worse (especially for newcomers).
Some metacharacters remain the same, but some are
different in rather significant ways!

September 5, 2002 © University of Colorado, 2003 20

Regular Expression Syntax
! . - match a single instance of any character except newline

! [123ab] - Match a single instance of any character within the
brackets

! [0-9] - Shorthand for [0123456789]

! [^0-9] - Match a single instance of any character except those
specified in the brackets

! pattern1 | pattern2 | … Match one of the listed patterns

! Question: if [a-z] means match a single instance of “a, b, c, d, …,
z”, how do I match a “-” in a range expression?

September 5, 2002 © University of Colorado, 2003 21

Regular Expression Syntax,
cont.
! ^ - Match the beginning of the line

! $ - Match the end of the line

! * - Match zero or more repetitions of the previous regular
expression

! + - Match one or more repetitions of the previous regular
expression (requires egrep)

! ? - Match zero or one repetitions of the previous regular
expression (requires egrep)

! \ - Remove the special meaning of the next character

September 5, 2002 © University of Colorado, 2003 22

Wildcard and RE Differences
! In regular expressions “*” means something very
different than it does in wildcards

! In wildcards a* matches a, aa, abc, a52b, …

! In regular expressions a* matches only a, aa, aaa,
aaaa, …

! This also applies to “+” and “?”. They do not stand for
any characters themselves, but rather modify the
previous regular expression.
! So, how do you search for an “*”?

! a* matches only “a*”

September 5, 2002 © University of Colorado, 2003 23

Regular Expression Strategies

! When using a regular expression to find a
desired search string, be aware of the
following three quantities

! Hits
! Lines you wanted to match

! Omissions
! Lines you didn’t match but wanted to match

! False Alarms
! Lines you matched but didn’t want to match

September 5, 2002 © University of Colorado, 2003 24

Looking for the word “book”
%cat example
This file tests for book in various places, such as
book at the beginning of a line or
at the end of a line book
as well as the plural books and
handbooks
%grep “ book ” example - matches only line 1
%grep “book” example - matches all lines

How would we match lines 1, 2, and 3?

