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Abstract

In this thesis, we explore a topic within cryptography called Message Au-
thentication Codes (MACs). A MAC is a collection of algorithms which allows
A to send a message to B in such a way that B can be certain (with very high
probability) that A did in fact originate the message.

Let’s say A wants to send a message (string) M to B using a MAC. First
A will run the “tag generation” algorithm on M to produce a string called the
“tag.” Then A sends M along with the tag to B and B runs the “verification”
algorithm to determine whether A was truly the author of M .

The dominant method we use for creating MACs follows an approach first
employed by Wegman and Carter [30]. For tag generation we first use a member
randomly chosen from a set of hash functions called a “Universal Hash Function
Family” to compress M into a smaller string, then we apply some cryptographic
primitive to this smaller string to produce the tag. The verification algorithm
repeats these steps on M and ensures that the tag generated matches the tag
sent.

We examine several known MACs using this paradigm, even when those
MACs were not originally designed in this way. This approach often leads to
simpler proofs of security for established algorithms. We then relate several new
algorithms in the same spirit. The first set of algorithms extends the well-known
CBC MAC to accept messages of varying lengths and still retain a high degree
of proven security. And in the final chapter we look at a new Universal Hash
Function Family called NH which leads to a MAC faster than any currently
known.
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Chapter 1

Introduction

It’s an exciting time to be alive. Computer technology has gone from an obscure toy

used by physicists to a commonplace tool in 40% of American homes in the year 1999. This

change has taken less than 50 years and has revolutionized (and continues to revolutionize)

the way we do business, find entertainment, and communicate with each other. Perhaps

the most dramatic force behind recent computerization is the Internet, which has created

a global community much faster than the world was ready for it. The economic gains to

be realized in this domain have pushed technology in related areas, such as networking,

multimedia processing, and security, as well as other domains.

We focus on security: this area is quite vast and encompasses many topics. In-

trusion detection, monitoring, and auditing are all areas under the heading of “computer

security.” But perhaps one of the most interesting areas is cryptography, which has a history

pre-dating the electronic computer by many centuries.
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1.1 What is Cryptography?

The mention of “Cryptography” evokes in many of us the notions of encryption and

decryption. Certainly spy novels and popular movies would have us believe this. However,

in recent decades cryptography has come to encompass a much larger array of problems than

simply providing private communication via ciphers. At least as important, for example,

is message authentication (ie, the ability to verify a message really does originate at a

particular source). Rivest defines cryptography as simply “communication in the presence

of adversaries” [26].

1.2 Modern Cryptography: A Flawed Science?

Originally, cryptography was done by very simple means: the Romans used simple

substitution ciphers for privacy, for example. As cryptanalysis (the science of defeating

cryptographic protocols) became more sophisticated, the cryptographic algorithms evolved

in an attempt to stay ahead. One could claim that today’s very sophisticated block ciphers,

such as DES [21] and IDEA [18] are the results of a long evolutionary chain from the

simplest ciphers of ancient times through polyalphabetic Vigenère ciphers, rotor machines

such as the Enigma of World War II, and various linear feedback shift register machines.

However, even with the relatively deep understanding we have achieved in mathematics

and theoretical computer science, no one has been able to prove much of anything about

the security of these primitives. Much of cryptography requires that there exist one-way

functions. Informally, a one-way function is a function which is “easy” to compute but

“hard” to invert. The goal of the ciphers listed above is to achieve this (strictly speaking,
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the objects above are not one-way functions but “pseudorandom permutations;” candidate

one-way functions can be derived from them via simple constructions).

We do not know if one-way functions exists. Some have said that this unanswered

question casts a pall on all of modern cryptography. This claim is incorrect for two reasons:

there is a similar unanswered question in complexity theory (does P = NP?) and this

field has made very significant contributions in spite of it. Also, not all techniques in

cryptography rely on the existence of one-way functions.

1.3 Provable Security

The modern approach to cryptography requires proofs of security. As just men-

tioned, we may not be able to prove security to the degree we would like. (If we can forgive

some informality, an example might be as follows: it would be pleasing to show that no

program exists for a 1000Mhz Pentium III with 1,000 MBytes of RAM and 100 GByte disk

which could factor the product of two randomly-chosen 1,000-bit primes in less than 100

years.) The approach adopted by modern researchers has been to follow a similar tack to

that used in complexity theory: we use reductions from primitives thought to be “secure” to

proposed protocols, and we show that “breaking” the protocol would imply “breaking” the

underlying primitive. For example, many cryptographic primitives are based on the belief

that factoring the product of two randomly-chosen large primes is intractable. Researchers

will then prove that breaking their cryptographic system is equivalent to this factoring

problem.
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1.4 A Sampling of Problems in Modern Cryptography

Encryption or “privacy” is certainly the best-known cryptographic problem. Typ-

ically this problem is stated as follows: Alice (A) wishes to communication with Bob (B)

over some communication medium which is subject to interception by some eavesdropper

Eve (E). We wish to supply A and B with an algorithm which allows them to communicate

in such a way that E can learn everything which passes between A and B and yet can

extract no useful information about the content of this communication (we allow for the

fact that E learns that something is being communicated (along with its length), though a

fair amount of research has been done on how to conceal this as well).

Another important problem in cryptography is “Message Authenticity.” In this

problem Alice and Bob are at it again, attempting to communicate, and Eve is no longer

passively eavesdropping but attempting to impersonate A. The goal is to provide Alice and

Bob with an algorithm such that when a message arrives from Alice, Bob can verify that

Alice did in fact originate the message.

Several other domains exist under the heading of “cryptography.” For example,

secret sharing (breaking a secret into many parts and parceling them out in such a way

that only authorized subsets of the parts can reconstruct the secret). Also, electronic cash,

electronic voting, and a host of other problems are claimed by cryptographic researchers.

A good survey is provided by Menezes, van Oorschot, and Vanstone [20].
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1.5 Contributions of this Thesis

Much of the first portion of this document is not original. Although the viewpoint

is often my own, the ideas in Chapters 1 through 4 are well-known. Some topics may

not have been written-up before (eg, the proof of Theorem 4.1.4), but are straightforward

exercises, included here for completeness and to give the reader a good base from which to

read the later chapters.

Chapter 2 introduces the notation and building blocks used later in the the-

sis. Chapter 3 introduces formal definitions for MACs and gives a few example MACs.

Chapter 4 defines the Carter-Wegman MAC, describing the important concept of a Uni-

versal Hash Family, giving many examples. Chapter 5 contains a new proof of Bernstein’s

“Protected Counter Sums” [5]. In Chapter 6 we begin presenting the new contributions.

Chapter 6 is an adapted version of the paper from CRYPTO 2000, “CBC MACs

for Arbitrary-Length Messages: The Three-Key Constructions” by Black and Rogaway.

The paper introduces a new problem (extending the domain of the CBC MAC to accept

messages of any length) and then goes on to show progressively more efficient solutions.

Our hope is that these algorithms will be used. The CBC MAC is already widely used, so

our hope is that these extensions, with their reassuring proofs of security, will be accepted

by the community.

Chapter 7 contains a discussion about a hash family called NH. This family is an

integral piece of a fast MACing algorithm “UMAC” which appeared in CRYPTO 1999 in

the paper “UMAC: Fast and Secure Message Authentication” by Black, Halevi, Krawczyk,

Krovetz, and Rogaway [6]. The family NH was largely developed by Black, Krovetz, and
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Rogaway, with Black doing the analytical work, Krovetz the experimental work, and Rog-

away driving the design of the project. UMAC is the fastest MAC algorithm yet known and

we are excited about both it and a forthcoming second version. Our hope is that those com-

munities who need MACing algorithms which run very fast will be willing to depart from

common practice (eg, CBC MAC) and adopt UMAC as their standard. Again, UMAC’s

security is rigorously proven.
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Chapter 2

Preliminaries

Before proceeding to the main topic of the thesis, Message Authentication, we

first introduce the notational conventions used throughout and then describe some of the

building blocks we will require later on as well.

2.1 Notation

There is a great deal of standard notation used in cryptography. Much of it is

standard from other fields (eg. from complexity theory or logic), but some is unique to this

field alone. We now briefly introduce this notation.

An integer with a superscript is just the exponentiation of that integer. A symbol

with a superscript means a repetition of that symbol, where the number of repetitions is

indicated by the exponent. It should be clear from context which meaning is intended. For

example 016 means the string of 16 zero bits, but 216 will often mean the quantity 65,536.

A set shown with a superscript is taken to mean the usual cartesian product. If
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the set is an alphabet (eg. {0, 1}), then taking the set to a power indicates the set of

strings generated over that alphabet by the superscript. For example, {0, 1}n means all

binary strings of length n. The set {0, 1}∗ represents all binary strings, including the empty

string. The set {0, 1}+ is all binary strings except the empty string (ie, strings which have

length at least 1). The notation {0, 1}<n denotes all binary strings of length at most n− 1.

Superscripts may be combined, eg., ({0, 1}n)+ is the set of non-empty strings whose length

is a multiple of n.

A string with a subscript indicates a substring with indices determined by the

subscript. If the subscript is a single integer i, we take Si to mean the ith bit from the

left end of string S, counting the first bit as 1. If i is larger than the number of bits of S

we regard Si as undefined. If the subscript is a pair of integers i, j we take Si,j to be the

substring of S beginning at Si and containing all bits up to and including Sj. If j < i or i

or j is out of range we again regard Si,j as undefined.

Functions. The usual functional notation is used, but sometimes we omit an argument

because we don’t intend to name that argument. For example, F may be a function with

two inputs, but we may write F (·, ·) to indicate this rather than F (x, y) which may be

confusing if no variables x and y have been quantified. When convenient we may write

some of the arguments as a subscript such as writing F (K,x) as FK(x); we will note this

change as it occurs.

We may sometimes wish to pass a function to a function. We will usually use

normal functional notation, but sometimes we will prefer to write the passed function as

a superscript. For example, let D be an oracle Turing machine and let O(·) be an oracle
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which takes one input. We may write DO(·) = x as a boolean expression testing whether D

outputs x after running with oracle O. If we wish to capture the output of D we will write

x← DO(·) where x will be of the proper type to accept D’s output.

Operations on Strings. When working with strings we will denote concatenation with

a dot, so the concatenation of x and y will be written x . y. Sometimes if this is ungainly

or unclear we may instead write x ‖ y which means exactly the same thing.

The exclusive-or, or XOR, of two equal-length binary strings x and y is denoted

x ⊕ y. If we use this operator on integers i and j, the integers will always be the same

“size” (meaning i and j are taken from some set whose elements can be encoded by strings

of a fixed finite length; this length will be clear from context). The result is the integer

resulting from a bitwise XOR of the twos-complement representation of i and j.

To measure the size of a string we use vertical bars: |M | represents the number

of characters M contains from its underlying alphabet. If the alphabet is not specified we

will assume it to be {0, 1}.

Special Sets. We name two special sets. For sets a and b, Rand(a, b) indicates all

functions from set a to set b. If m and n are integers, we overload the above notation and

write Rand(m,n) to mean the set of all functions from {0, 1}m to {0, 1}n. The set Perm(a)

indicates all permutations from set a onto itself. If n is an integer, we overload this notation

again: Perm(n) represents all permutations from the set {0, 1}n onto itself.

Probabilistic Notation. To sample uniformly at random from a set A we write x
R← A

or simply x← A. For example, to let ρ be a random function from a = {0, 1}10 to b = {0, 1}
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we could write ρ
R← Rand(a, b).

When writing a probability we will either indicate the random choices as a sub-

script to the probability symbol, or mention them in the surrounding text. If the experiment

in the probability symbol is complex, we will sometimes describe it within the brackets, sep-

arating the preliminary steps with semicolons and then indicating the final boolean test with

a colon. For example,

Pr[c1 ← {heads, tails}; c2 ← {heads, tails}; c3 ← {heads, tails} : c1 = c2 = c3] = 1/4

indicates the experiment of flipping three coins and then determining whether they are all

the same.

2.2 Building Blocks

Cryptographic protocols are often built up from lower-level pieces. Oftentimes we

describe these pieces as theoretical objects and then prove the security of our protocol based

on the assumed security of these pieces (the so-called reductionist approach, cf. Section 1.3).

We now discuss two key tools which are useful in the design of algorithms discussed later

in this thesis.

2.2.1 Block Ciphers

Perhaps the best-known cryptographic primitive is the block cipher. Cryptogra-

phers like to use the alternate name “Finite Pseudorandom Permutation” (Finite PRP)

since it is more descriptive. A finite PRP is a family of permutations where a single per-

mutation from the family is selected by a finite string called the “key.” Syntactically, we
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Block Cipher
CiphertextPlaintext

Key

128

128 128

Figure 2.1: A Block Cipher. We can think of a block cipher as a black box: we chose a key
of some length (here 128 bits) and give it to the cipher. This produces a permutation on
strings of some length (here 128 bits).

define a finite PRP as follows:

Definition 2.2.1 Fix numbers κ and � > 0. A finite PRP or block cipher, with key

length κ and block length � is a function

F : {0, 1}κ × {0, 1}� → {0, 1}�

where F (K, ·) is a permutation for each K ∈ {0, 1}κ.

The security of a PRP is defined based on its “closeness” to a family of truly

random permutations. Since the number of permutations on {0, 1}� is quite large (2�!) any

PRP with a short key will have to select only some small subset of the possible permutations.

If this subset has some “regularity” about it that can be detected by a “distinguishing

algorithm,” we consider this an insecurity.

The approach we take is as follows: we consider an adversary which will assume

the role of this detecting algorithm. Think of her as a probabilistic oracle Turing machine.

We will hand this adversary an oracle either for some PRP or for some random permutation.

She will sample from the oracle for some fixed period of time and at the end she outputs
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a bit. This bit will indicate whether she believes the oracle to be a PRP oracle or a truly

random oracle. We quantify over all such adversaries, so if there is any exploitable weakness

in our PRP, an adversary which exploits this weakness will be considered.

If the adversary is unable to distinguish well between these two types of oracles, we

say that the PRP is secure. We now proceed to formally define the notions just discussed.

Definition 2.2.2 Let D be a PRP adversary and let F be a PRP with block length � and

key length κ. Define the advantage of D as follows:

Advprp
D (F ) = Pr[K ← {0, 1}κ : DFK(·) = 1]− Pr[π ← Perm� : Dπ(·) = 1].

We can interpret this definition as follows: the left-hand probability is the exper-

iment where we select a key of the appropriate length, then create an F -oracle with this

key. The adversary queries this oracle for some amount of time and she outputs a “1” bit

with some probability. Now in the right-hand probability the same adversary is given a

randomly-chosen permutation and she again queries her oracle and outputs “1” with some

probability. (We can interpret a “1” as meaning the adversary is guessing that her oracle

is a PRP.) The goal of the adversary is to create as large a difference between these two

probabilities as possible. We ignore the possibility that advantage can be negative since any

adversary which achieves a negative advantage can be replaced by another which achieves

the absolute value of the first (just alter the first adversary to output “0” instead of “1”,

and “1” instead of “0”).

We are now ready to define the concept of a secure block cipher.
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Definition 2.2.3 Fix some positive key length κ and block length �. Let F : {0, 1}κ ×

{0, 1}� be a block cipher. We say adversary D can (t, q, ε)-distinguish F from a random

permutation if D runs in at most t steps, makes at most q oracle queries and Advprp
D (F ) ≥

ε.

So a secure block cipher will have tiny ε even for large q and t for any adversary F .

As a trivial example, let’s consider the terrible block cipher X. Let κ = � = 64

and for all K ∈ {0, 1}κ and all M ∈ {0, 1}� define XK(M) = M ⊕ K. Clearly XK(·)

is a permutation for all K ∈ {0, 1}κ (indeed it’s an involution!). However, it should be

intuitively clear that X is not a very secure cipher; let’s attack it.

Let’s assume we are the adversary D and our oracle is either the PRP oracle XK(·)

or a randomly chosen permutation. If we were allowed only one query, we would not be

able to distinguish. But given two queries it’s quite easy to win. The simplest attack is to

ask for XK(064) = 0 ⊕K = K. Now if we are in the PRP case we have the key. Now we

might ask the query XK(164); if we get back K ⊕ 164 we should output a “1” bit indicating

we believe we have a PRP oracle. It’s very unlikely that a randomly chosen permutation π

would have the property that π(1) = π(0) ⊕ 1; in fact the probability of this is 1/(264 − 1).

So we have

Advprp
D (X) = 1− 1

264 − 1

which is very close to 1; a very insecure cipher.

Common practical block ciphers are DES [21], IDEA [18], and RC6 [25], among a

host of others. We refer the interested reader to the appropriate documents for a description

of how these ciphers work, but we again stress that no proofs of security are given for them,



14

and we do not know their exact security parameters. The trust we bestow on these primitives

stems principally from the lack of success attackers have had against them. So if we can

prove that breaking some higher-level protocol implies low security of these well-known

block ciphers, it does provide some assurance that our protocol is sound since no one has

been able to mount an effective attack on these ciphers, despite the attempts of scores of

clever people.

2.2.2 Pseudorandom Functions

Pseudorandom Functions (or PRFs) [12] are another extremely useful building

block used in cryptographic protocols. PRFs are a natural relaxation of PRPs: whereas

PRPs were required to be permutations, PRFs need only be functions. We focus on PRFs

with finite domain and range.

The syntax and definition of security are completely analogous to the above but

are given here for completeness.

Definition 2.2.4 Fix numbers κ, �, and L > 0. A finite PRF with key length κ, input

length �, and output length L is a function

F : {0, 1}κ × {0, 1}� → {0, 1}L.

Definition 2.2.5 Let D be an adversary and let F be a PRF with input length �, output

length L, and key length κ. Define the advantage of D as follows:

Advprf
D (F ) = Pr[K ← {0, 1}κ : DFK(·) = 1]− Pr[ρ← Rand(�, L) : Dρ(·) = 1].
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Definition 2.2.6 Fix some positive key length κ and input/output lengths �, L. Let

F : {0, 1}κ × {0, 1}� be a PRF. We say adversary D can (t, q, ε)-distinguish F from

a random function if D runs in at most t steps, makes at most q oracle queries and

Advprf
D (F ) ≥ ε.

Additional Language. If there does not exist an adversary which can (t, q, ε)-distinguish

a PRP or PRF from their truly-random counterparts, we say that the PRP or PRF is

(t, q, ε)-secure. It may sometimes be more convenient to use a functional form: we say a

construction is ε(t, q)-secure meaning for fixed t and q, no adversary can obtain an advantage

larger than ε(t, q), where ε(·, ·) is a function with signature Z× Z→ [0, 1].
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Chapter 3

Message Authentication Codes

Message Authentication Codes (or MACs) are used to ensure a message really did

originate from a given source (with exceedingly high probability). We include an introduc-

tion to the topic.

3.1 Introduction

Message authentication is used to provide authenticity: did a received message

actually originate with the purported sender?

Algorithms which provide message authentication allow for a party A to send a

message to a party B in such a way that if the message is modified in route to B then B

will almost certainly detect this.

The motivation here is obvious: take the setting in Arizona this year where

Democrats were allowed to vote in the primary over the internet. If authentication were not

provided, certain unethical parties might vote multiple times or might impersonate other
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Alice     Bob

Key
K

Key
K

Adversary

Figure 3.1: The Authentication Problem. User A wishes to send a message along some
communications link to user B, but an active adversary may insert information into the
channel. Our goal is to provide B with a method to determine which received messages
really came from A.

voters hoping to enhance the chances of one candidate over another. (It is interesting to

note that the Arizona authorities did not use any cryptographic algorithms, however.)

The starting point for our discussion is to describe a model which best captures the

setting for our problem. We will assume a two-party protocol with A and B as the parties.

We assume that A and B share some private string K called the “key.” This setting is

called the “private-key” setting because an identical key is shared by A and B in advance.

In the private-key setting, the tool which enables message authentication is called

a message authentication code. Here we will examine both the notion of message authenti-

cation codes and the question of how to achieve them.

3.2 The Model

Parties A and B share the key K and communicate across a channel on which is

present an active adversary. The adversary is able to eavesdrop freely and she can modify

data in transit or create new messages of her own. Clearly the ability for this adversary to

impersonate you would be quite serious: for example, if she could impersonate you to your

bank, she might withdraw all your money! (Grad students tend to worry about this less
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than others, I’m happy to say.)

Realize that we are not concerned about privacy here: we would be happy to let

the world see all the communications between A and B. We are concerned only that the

adversary cannot “forge” messages to others that make it appear as though we were the

original sender.

Our tool for supplying this security is the MAC. A message authentication scheme

includes a MAC generation algorithm which, on input of a message M and the key K,

generates a short tag, or MAC. Normally we think of this tag as being transmitted along

with the message M , as our way of authenticating M . A message authentication scheme

also includes a MAC verification algorithm which, on input of a message, a key, and a

(purported) tag, answers 0 or 1, with 1 indicating that the message M is deemed authentic,

and 0 indicating that it is not. We will denote these two algorithms by MAC and VF, writing

the key as a subscript. And finally we have a key generation algorithm which returns keys

(typically random strings) of the appropriate length. We denote this algorithm KGEN.

3.3 Definitions

A message authentication scheme is a 3-tupleM = (MAC,VF,KGEN) called the

“MAC generation” (or signing) algorithm, the “MAC verification” algorithm, and the “key

generator.”

MAC takes a four-tuple (keys, message, state, coins) to a two-tuple (tag, new-

state):

MAC : {0, 1}∗︸ ︷︷ ︸
key

×{0, 1}∗︸ ︷︷ ︸
Msg

×{0, 1}∗︸ ︷︷ ︸
state

×{0, 1}∞︸ ︷︷ ︸
coins

→ {0, 1}∗︸ ︷︷ ︸
tag

× {0, 1}∗︸ ︷︷ ︸
new state
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We say “coins” because one may think of flipping coins to get random bits. Really this just

means that the MAC algorithm may ingest some random bits as part of its computation

if the algorithm is probabilistic. The “state” input and “new state” output are used if the

MAC is stateful. We often write simply

t←MACK(M)

where K is the key, M is the message, t is the tag, and the state or coins (if needed) are

implicit. For stateful MACs, we reserve one special tag value REKEY which is output when

the MAC generation algorithm refuses to continue MACing with the same key.

The verification algorithm, VF, is a mapping from a three tuple (keys, messages,

purported-tag) to the binary decision, 1 or 0:

VF : {0, 1}∗︸ ︷︷ ︸
key

×{0, 1}∗︸ ︷︷ ︸
Msg

× {0, 1}∗︸ ︷︷ ︸
purported tag

→ {0, 1}︸ ︷︷ ︸
decision

The key generator KGEN is a mapping from coins to the key space.

KGEN : {0, 1}∞︸ ︷︷ ︸
coins

→ {0, 1}∗︸ ︷︷ ︸
key

Usually the key is just a randomly-chosen string of some designated length.

We demand of any MAC scheme M that if t← MACK(M) then VFK(M, t) = 1.

3.4 What Makes a MAC Good?

We now know what a MAC is syntactically, but of course not just any triple

(MAC,VF,KGEN) is a good MAC even if it does satisfy the rules above. For a MAC to be

considered “good” it must also be difficult for users to forge if they do not hold the key. (A

further desirable feature of a good MAC is that it be fast-to-compute; more on this later.)
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MACMsg

State

Key

Tag

Accept   or   Reject

  VFMsg Decision

Purported
   Tag

Key

Figure 3.2: The syntax of a MAC. The MAC generator MAC takes the message, Msg,
along with the Key and possibly some state and outputs a Tag. The MAC verifier VF,
takes the received message, Msg, along with the Key and the purported Tag and outputs
either Accept or Reject.

Let’s begin by defining our notion of forgery. Here we follow [13] which defined

“existential forgery by an adaptive adversary;” they conceived of this notion for a different

setting (that of digital signatures instead of MACs), but it was adopted by [3] for our case

as well.

Intuitively, we define forgery as follows: let some adversary have a MACK(·) oracle

i

MAC

K

K

Adversary

     x

MAC    (x  )i

Figure 3.3: Existential Forgery by an Adaptive Adversary. The adversary makes queries
(x1, · · · , xq) to the MAC oracle, receiving tags (MACK(x1), · · · ,MACK(xq)) in return. She
then must try and produce a new message with a valid tag; if she succeeds she has “forged.”
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and let her use this oracle to generate MAC tags for messages of her choice. Of course the key

K is concealed within the oracle and cannot be extracted unless she can divine information

simply by the tags she generates. When she is done with this phase she is required to

produce a new message (ie, a message which she did not give to her oracle) along with a

valid tag for this message. If she succeeds in this, she is said to have forged. A good MAC

has the property that even if the adversary MACs a large number of messages, she forges

only with very small probability.

The alert reader might notice that our definition of security allows for the re-

transmission of messages. That is, a MAC scheme might be secure against forgeries as

defined above and yet does not preclude a message-tag pair from being sent multiple times.

A setting where this might be bad is as follows: suppose Alice sends a note to the bank

saying “Transfer $10 from my account to Bob’s account” and authenticates this message

with tag t. If Bob were dishonest he might intercept this message and then repeat it to the

bank multiple times. This is called a replay attack and there are various remedies such as

including a timestamp or sequence number on all messages.

Another observation here is that our adversary may be too strong: in real life

it is perhaps infeasible for an adversary to acquire MAC tags for messages of her choice.

She may instead be limited to collecting tags for messages which are traveling across some

channel which she is monitoring. We prefer the definition of this stronger adversary for two

reasons:

• One can easily imagine some scenarios where the adversary might have this ability

(for example in certain entity authentication protocols one player issues a challenge
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to another in the form of a random string to be MACed).

• Any MAC which is secure against our active adversary is certainly secure against a

passive one. And since we can achieve efficient MACs secure against active adversaries,

we prefer this definition of security.

Let’s now give a formal definition for the above notion of security.

Definition 3.4.1 Let M = (MAC,VF,KGEN) be a message authentication scheme. We

say that an adversary F (t, q, µ, ε)-breaks M if

Advmac
F

def= Pr [K ← KGEN; (m1,m2, · · · ,mq;m∗, t∗)← FMACK(·) :

VFK(m∗, t∗) = 1 and m∗ �∈ {m1,m2, · · · ,mq}]

≥ ε

where F runs in time at most t and makes at most q queries to its MACa(·) oracle, the

queries totaling at most µ bits. We say M is (t, q, µ, ε)-secure if no adversary (t, q, µ, ε)-

breaks it. If M is (t, q, µ, ε)-secure for all values of t, q, and µ, we say M is ε-secure.

3.5 A Perfect MAC

Before discussing some of the known MAC algorithms, let’s build our intuition by

examining a perfect MAC. (Of course our perfect MAC is not really practical or else we

would have no reason to continue further on this topic.)
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Our perfect MAC will accept any string from {0, 1}∗ and produce an �-bit tag t

as its output. Imagine an infinite-length table T with two columns; the left column has all

the elements of {0, 1}∗. The right column is filled with randomly-chosen �-bit strings. To

compute MACT (M) for any M ∈ {0, 1}∗ we simply look up M in our table and return the

corresponding quantity from the right-hand column.

Why is this MAC good? From our definition of security in Section 3.4, we think of

some adversary probing the table at will. Remember, she cannot see the entire table, only

specific rows she selects based on which messages she submits to her MACing oracle. After

choosing q rows to look at, she then must predict the value in the right column for some row

she has not yet viewed. But clearly she has learned absolutely nothing from her previous

work since we filled each right-hand column slot with independent random �-bit strings!

Her chance of correctly guessing this right-hand value is 1/2� even if she has unbounded

computational power.

Of course this scheme is completely impractical: the table we are using must be

shared by users A and B, and its large size makes this infeasible. Even if we were to limit

the length of messages we could MAC down to n bits there are still � · 2n bits which need

to be shared between A and B. This is prohibitively large for even modest values of n.

So our goal is to find a practical scheme which comes close to the random table

described above. The key to practicality is to devise a method of selecting a small proportion

of all possible random tables and then to encode these choices by a short string called a

“key.”

Remark on PRFs: One cryptographic primitive mentioned in Section 2.2 is strongly
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related to the notions we have been discussing here: the Pseudorandom Function (PRF).

PRFs are extraordinarily useful in cryptographic protocol design, and it can be easily shown

that any “good” PRF is a good MAC. However the security goal for PRFs is actually

stronger than for MACs, so the converse is not true.

3.6 Some Simple Examples

Our goal is a practical MAC. Let’s make a few stabs just to get a feel for what we

are trying to accomplish.

One attempt might be to simply encrypt the message M . In the past some (mis-

guided) people have thought that a correct encryption of M implied that M was also

authentic. A simple example of how wrong this thinking is runs as follows: suppose we use

a one-time pad to encrypt. This approach involves simply XORing M with |M | bits of key.

It is well-known that this method is perfectly secure for the purposes of protecting privacy,

but we can easily break this scheme if used as a MAC: let K be an infinite binary string

and let i indicate the index within K where bits Ki, Ki+1, and so forth have not yet been

used. Then the adversary makes one query to her MAC oracle, say t ← MACKi(0), and

then she knows a new message/tag pair:

Message : 1 Tag : t⊕ 1.

Another approach might be to take a secure block cipher, such as DES [21] and

simply compute MACK(M) = DESK(M). This works fine provided M is a 64-bit message,

but of course we need a method to deal with messages which are much longer. Since it is

not an unreasonable restriction to require messages to be a multiple of some constant, let’s
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assume the domain of our MAC is D = ({0, 1}64)+. Then to MAC any M ∈ D we will

break M in to 64-bit chunks: M = M1.M2. · · · .Mj where |Mi| = 64. And now define

MACK(M) = DESK


 j⊕

i=1

Mi


 .

But we may easily observe that this approach is flawed as well: the adversary

requests t ← MACK(M) for M = 064.164 and then announces the same t works for M =

164.064.

So something more clever is required. Many approaches which do work have been

proposed; we now take a look at these.

3.7 A Brief Survey of MAC Algorithms

Good MAC algorithms have been known since the mid-70’s. In February of 1977

Campbell [8] published a method where “each group of 64 message bits is passed through

the algorithm after being combined with the output of the previous pass.” The term “MAC”

first appeared around 1980 in the ANSI X9.9 standard [1].

We now proceed to discuss several of the more well-known algorithms for MACing.

We will provide a description of the algorithm, but will not discuss proofs of security as this

would take us too far afield and is not necessary for an understanding of the thrust of this

thesis. The cited references will direct the interested reader to the original paper if further

details are desired. Our motivation for a look at these methods now is to foment the idea

of what a good MAC looks like and to provide a base for extensions to these MACs later

in the thesis.
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Figure 3.4: The CBC MAC. We begin with a block cipher E with key K and block length
�. The message M ∈ ({0, 1}�)+ to be MACed is broken into blocks: M = M1. · · · .Mm with
|Mi| = �. Then each block is passed through EK(·) and XORed with the next block.

3.7.1 CBC MAC

The CBC MAC [10, 15] is one of the oldest ideas for a MAC, dating from the

mid-1970’s. The “CBC” stands for “Cipher Block Chaining” because each message block

is chained together with invocations of some block cipher. We now describe how it works.

Fix some positive block length � and some key length κ. Let E : {0, 1}κ×{0, 1}� →

{0, 1}� be a block cipher (see Section 2.2): it uses a key K to encipher an �-bit block X

into an �-bit ciphertext Y = EK(X). The message space for the CBC MAC is ({0, 1}�)+,

meaning binary strings whose lengths are a positive multiple of �. So let M = M1 · · ·Mm

be a string that we want to MAC, where |M1| = · · · = |Mm| = �. Then CBCEK
(M),

the CBC MAC of M under key K, is defined as Cm, where Ci = EK(Mi ⊕ Ci−1) for

i = 1, . . . ,m and C0 = 0�.

This MAC is probably the most widely used at the present time. The standards

describing it include ANSI X9.9, ISO 9797-1, and FIPS 113. CBC MAC was proven secure

for fixed length messages by Bellare, Kilian, and Rogaway [3].
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3.7.2 XOR MAC

The MACs known as XOR MACs were designed by Bellare, Guérin, and Rogaway

in 1995 [2]. We describe here the “randomized” XOR MAC, though the authors also describe

a counter-based scheme. They assume the existence of a PRF F with input size �, output

size L and key length κ bits. Let M be the message we wish to MAC. We divide M into

�/2-bit blocks: M = M1.M2. · · · .Mn where |Mi| = �/2. Let 〈i〉 denote an �/2 − 1 bit

encoding of the integer i. Assume K ∈ {0, 1}κ is the shared key. To compute the XOR

MAC of a message the sender chooses a random � − 1 bit string r and then computes the

tag (r, t) where

t = FK(0.r) ⊕ FK(1.〈1〉.M1) ⊕ FK(1.〈2〉.M2) ⊕ · · ·FK(1.〈n〉.Mn).

The sender then transmits M , t, and r. The verifier simply computes t′ from M and r (and

K) and ensures t = t′. One nice selling point of XOR MACs is that each of the invocations

of F can be computed in parallel. This is a nice feature if messages are long and F is

an expensive function. Another nice feature is that the MAC is incremental with respect

to substitutions: computing the tag for a related message (where, say, only one block is

different) requires only a constant amount of computation. [2]

3.7.3 Carter-Wegman MACs

In 1979 Carter and Wegman published the idea of a Universal Hash Family [9],

but no mention was made of MACs. Two years later the same authors published a second

paper with their idea on how to MAC using Universal Hash Families [30]. Their idea was

quite novel: instead of applying some cryptographic primitive to the message M to be
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tag

cryptography K

hashing h

Key = (h, K)

M

h(M)

Figure 3.5: Carter-Wegman MACs. The idea is to first apply some hash function h to
the message M , compressing the string to a much smaller length. Then we apply the
cryptography to a much smaller string.

MACed, they would first hash M down to a smaller size using a hash function which had

only a combinatorial property (rather than a cryptographic one). They then would apply

a cryptographic primitive–one-time pad encryption–to the smaller resulting string.

In 1983, Brassard [7] proposed using this approach within a complexity-theoretic

cryptographic context: whereas Wegman and Carter had encrypted the output using a one-

time pad (see Section 3.6), Brassard suggested using a block cipher (eg. DES) for producing

a MAC.

Although proposed in the early 1980’s, it was not realized that this style of MAC

provided an avenue for very efficient software-based MACs until 10 years later. We end

this brief discussion at this point and delve more fully into Carter-Wegman MACs in the

following chapter.
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3.8 A Sample MAC Attack

In Section 3.4 we learned the definition of forgery and in Section 3.6 we saw a

simple attack according to this definition. In this section we will give an attack, due to

Preneel and van Oorschot [23], which is effective against a strong MAC: the CBC MAC.

Of course since the CBC MAC is strong, our attack will require substantial resources in

order to have a decent probability of success! However it will establish a lower bound on

the probability of forging. This attack is the most effective known against the CBC MAC.

To recapitulate the rules-of-the-game: we are given a MAC oracle for CBC MAC.

As mentioned in Section 3.7, CBC MAC is secure only for messages of some fixed length,

so this oracle will accept messages of length n blocks, where n is fixed. Let’s say the block-

length of the underlying cipher is � bits. We generate q messages, M1,M2, · · · ,Mq, each n�

bits long, and hand them to the oracle; we receive in response the �-bit tags t1, t2, · · · , tq

corresponding to our messages. Our job, as the attacker, is then to produce a new message

M∗ which was not previously asked, along with a tag t∗ such that t∗ is a valid tag for

M∗. In other words, if our oracle is CBCπ(·) for permutation π : {0, 1}� × {0, 1}�, then

we must produce an n�-bit string M ∗ �∈ {M1, · · · ,Mq} and an �-bit string t∗ such that

CBCπ(M∗) = t∗.

Now we give the attack. For simplicity we will assume n = 2 (ie, that all messages

are two blocks long). The attack can easily be generalized to longer messages (see the full

version of [3]). We also assume that q is substantially less than 2�.

The first step of our attack is to generate q−1 random �-bit strings r1, r2, · · · , rq−1.

Let 〈i〉 denote the �-bit standard two’s complement encoding of the integer i. Then we form
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the following list of messages to be used as queries to our oracle:

M1 = r1 ‖ 〈1〉

M2 = r2 ‖ 〈2〉

...

Mq−1 = rq−1 ‖ 〈q − 1〉

In response, we receive back the tags t1, t2, · · · , tq−1.

The next step is to check and see if there are any matches in the list of tags. In

other words, are there integers 1 ≤ i < j ≤ q − 1 with ti = tj? If not we give up and our

attack fails. But if there are, we produce a forgery; here is how it’s done: we ask one final

query (notice that we purposely saved one!). The final query is

Mq = ri ‖ 〈i〉 ⊕ 〈j〉 ⊕ 1�.

We obtain tag tq in response; we will let t∗ = tq. And now we give our forgery M∗ = rj ‖ 1�.

Of course we must now check two things: we must ensure that M∗ is a new message

not in {M1, · · · ,Mq}, and we must ensure that CBCπ(M∗) = t∗. To check the first condition

we note that the last � bits of M∗ are all 1’s. Since q is smaller than 2� − 1, we know that

this string (the two’s complement encoding of 2� − 1) was never the second block of any

message previously asked.

To check the second condition we look at the computation performed by the
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CBC MAC algorithm. We know

t∗ = tq = π(π(ri) ⊕ 〈i〉 ⊕ 〈j〉 ⊕ 1�) and π(π(ri) ⊕ 〈i〉) = π(π(rj) ⊕ 〈j〉).

We need to ensure that CBCπ(M∗) = t∗. Expanding this we find we must check if

π(π(rj) ⊕ 1�) = π(π(ri) ⊕ 〈i〉 ⊕ 〈j〉 ⊕ 1�).

Since π() is a permutation, this is true iff

π(rj) ⊕ 1� = π(ri) ⊕ 〈i〉 ⊕ 〈j〉 ⊕ 1�,

and cancelling the 1� terms and moving 〈j〉 to the left we see that the above is true iff

π(rj) ⊕ 〈j〉 = π(ri) ⊕ 〈i〉.

And reapplying π() on both sides yields the equality we know to be true from the start.

And so we have indeed forged.

It remains to compute the probability that this attack will succeed. We must

bound from below the chance that there will exist distinct i and j such that ti = tj. More

precisely we wish to bound from below, for all 1 ≤ i < j ≤ q the quantity

Pr
π←Perm(�)

[CBCπ(Mi) = CBCπ(Mj)].

But for any i, CBCπ(Mi) is simply π(π(ri) ⊕ 〈i〉). Looking more carefully at this, we notice

that since ri was a uniform randomly-selected string, π(ri) will be uniform and random as

well. The XOR with some other quantity uncorrelated to π(ri) will not change this fact, so

π(ri) ⊕ 〈i〉 is uniformly random as well. And the final application of π() again maintains

this feature, so for any i, CBCπ(Mi) is simply π(π(ri) ⊕ 〈i〉) is a uniform random �-bit

string.
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Therefore the probability we seek is simply the chance that the selection of q − 1

random �-bit strings will contain a repetition. The chance of this is computed by the

so-called “birthday bound.” A simple analysis (given in Appendix A) tells us that this

probability lies between 0.316(q − 1)(q − 2)/2� and 0.5(q − 1)(q − 2)/2�.

Interpreting the Result. The attack we gave said, roughly, that the probability of

success is at least 0.3q2/2�. And so if � = 64, we would need about 232, or about 4 billion,

queries in order to obtain a chance of at least 0.3 of obtaining a collision (and thus forging).

If q is much less than this, our bound quickly gives us no guarantees.

And remember, all of this assumes a model where the attacker has the ability to

submit queries of her own making, and then produce a new message which possibly has

no meaningful content as a forgery. This may not be a realistic model, but it certainly is

stronger than the more intuitive models where the attacker simply listens passively to a

communications link and then produces a message of her choosing as a forgery.
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Chapter 4

Carter-Wegman MACs

As we saw in Section 3.7, the Carter-Wegman MACs are those which use a function

from a Universal Hash Family to compress the message M to be MACed. The output of

this hash function is then processed cryptographically to produce the tag. In this chapter

we will explore Universal Hash Families and the various Carter-Wegman type constructions

along with their security.

4.1 Universal Hash Families

Universal Hash Families have many uses other than MACs. They can be used for

solving the Disjoint Set Problem, for typical data retrieval problems, for derandomization,

as well as many other uses. There are many different variants of Universal Hash Families,

and we now present a few of these as well as some more-general rules which are useful for

combining them.

In the following discussion and throughout the thesis will assume that the domain
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and range of our hash functions are finite sets of binary strings and that the range is smaller

than the domain.

Definition 4.1.1 [Carter and Wegman, 1979] Fix a domain D and range R. A finite

multiset of hash functions H = {h : D → R} is said to be Universal if for every x, y ∈ D

where x �= y, Prh∈H[h(x) = h(y)] = 1/|R|.

An equivalent name to “Universal” is “Universal-2;” the “2” reminds us that we

are concerned with pairs of distinct points.

The above is the simplest definition, and is the basis for all the variants we’ll discuss

next. But first we give an example of a Universal family. Probably the most well-known is

the “linear hash” where the elements are taken from some field.

Choose any prime p, which we will call the “hash table size.” Call the domain D

and fix an r such that any x ∈ D can be written as r +1 chunks: x = 〈x0, x1, . . . , xr〉 where

each chunk is less than p (a modest restriction). Define another set A which contains all

possible (r +1)-tuples with coordinates drawn from {0, . . . , p− 1}. We now define our hash

family H = {ha : a ∈ A} where a = 〈a0, a1, . . . , ar〉 and

ha(x) =
r∑

i=0

aixi mod p.

So we see that selecting an (r + 1)-tuple from A in effect selects a hash function from H.

For readers unfamiliar with Universal Hashing it can be quite disorienting to talk

about a probability over hash functions rather than over points of the domain. For example,

there is nothing in the definition that says that all hash functions in our family are good!

Notice in the linear hash just given that one hash function is selected by a = 〈0, 0, · · · , 0〉
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which hashes every point to 0. This terrible hash function always produces collisions no

matter what two initial points were chosen! But the fact is that only some small fraction of

hash functions will cause a collision on two distinct points (it just so happens here that this

bad hash function is always in this fraction). A stronger notion of universal hashing which

attempts to make h(a) and h(b) uniform and pairwise independent random variables (and

therefore must get rid of such bad hash functions as mentioned above) is called “Strongly

Universal Hashing.” We omit a discussion here since we have no need for it in this thesis.

The proof that the linear hash family is Universal is quite simple and we present

the proof here since many later proofs will be strongly reminiscent.

Theorem 4.1.2 The linear hash family H is Universal.

Proof: Select any two distinct domain elements x and y. We rewrite these as (r+1)-tuples

x = 〈x0, · · · , xr〉 and y = 〈y0, · · · , yr〉. We wish to show that the probability of a collision

under a randomly-chosen hash function from H is 1/p. For simplicity we write the random

choice of hash function as a rather than ha in the probability symbol. So we wish to prove

that

Pr
a

[x0a0 + x1a1 + · · · + xrar = y0a0 + y1a1 + · · ·+ yrar mod p] = 1/p.

Since x �= y there must be some i such that xi �= yi. Without loss of generality, assume

i = 0. Then we rewrite the above as

Pr
a

[a0(x0 − y0) = y1 − x1 + · · · + yr − xr mod p] = 1/p.

Let’s rewrite (y1−x1 + · · ·+ yr−xr) as s. Now since (x0− y0) �= 0 and p is prime, we know

(x0 − y0) has an inverse, so we must simply prove that
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Pr
a

[a0 = s(x0 − y0)−1 mod p] = 1/p.

Note that s(x0−y0)−1 is a uniquely defined field element. And what is the probability that

a randomly chosen a ∈ A will have its first component equal to s(x0 − y0)−1? Exactly 1/p

of course.

The linear hash is quite fast on most modern processors, but in the search for

efficiency researchers have discovered that even faster methods are possible if we relax

slightly the requirement that the collision probability be 1/|R|. This led to the notion

of Almost Universal Hash Families in which we allow the collision probability to be some

ε ≥ 1/|R|.

Definition 4.1.3 Let ε ∈ R+ be a positive number. Fix a domain D and range R. A finite

multiset of hash functions H = {h : D → R} is said to be ε-Almost Universal (ε-AU) if

for every x, y ∈ D where x �= y, Prh∈H[h(x) = h(y)] ≤ ε.

We will see several examples of ε-AU hash families in the next section.

It is interesting to note that in a sense a Universal hash family is ideal: one could

not hope to get a lower collision rate than 1/|R|. This is not immediately obvious (though

perhaps intuitive). Let’s prove this fact, which may give further insight as to how universal

hashing works.

Proposition 4.1.4 Fix a finite domain D and range R with |D| > |R|. IfH = {h : D → R}

is ε-AU, then ε ≥ 1/|R|.
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Range Elements
Domain Elements 0 1 2 3 4 5

a 19 19 19 26 18 19
b 19 19 19 17 28 18
c 17 30 18 19 17 19
d 27 17 19 19 19 19
e 19 19 25 19 19 19
f 18 17 18 17 12 38
g 25 19 19 19 19 19
...

...

Figure 4.1: A Example W Matrix with 120 hash functions. The (i, j)-th cell contains the
number of hash functions h which have h(i) = j. For example there are 18 hash functions
h with h(c) = 2. Since each row must sum to 120 and there are more rows than columns,
we must have some column with two entries larger than 120/6 = 20. Here that column is
column 0.

Proof: Define a weighting function w : D × R → Z. For any x ∈ D and y ∈ R we

define w(x, y) as the number of hash functions h ∈ H which cause h(x) = y. Now define

a weighting matrix, W where W (x, y) = w(x, y). This matrix will have |D| rows and |R|

columns. (See Figure 4.1 for an example.) Note that the rows of W must sum to |H| by

definition of w(·, ·). Therefore each row must have some entry which is at least m = |H|/|R|.

Since |D| > |R| we know W has more rows than columns, so by the pigeonhole principle

there must be some column j which has two entries at least m. Call these entries (s, j) and

(t, j). Since w(s, j) ≥ m and w(t, j) ≥ m, we simply fix the distinct domain points s and

t and ask what is the probability that these collide under a randomly chosen h ∈ H? But

we know that Prh[h(s) = j] ≥ m/|H| and Prh[h(t) = j] ≥ m/|H| and so we must have that

Prh[h(s) = h(t)] ≥ m/|H|. But m/|H| = 1/|R| and we’re done.

Next we state a useful proposition which allows us to combine ε-AU hash families

by appending their outputs. We will see several examples of ε-AU hash families in the next
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section.

Proposition 4.1.5 If we have domain D and ranges R1, R2, and let H1 = {h : D → R1}

be an ε1-AU hash family and let H2 = {h : D → R2} be an ε2-AU hash family, then we

define H1.H2 = {h : D → R1 × R2} where each h ∈ H1.H2 is an ordered pair (h1, h2) and

for any x ∈ D we have (h1, h2)(x) = (h1(x), h2(x)). Then H1.H2 is ε1ε2-AU.

The proof is quite trivial but is included for completeness.

Proof: Take two distinct points x, y ∈ D. Then the probability over all (h1, h2) ∈

H1.H2 that (h1, h2)(x) = (h1, h2)(y) is the same as the probability that (h1(x), h2(x)) =

(h1(y), h2(y)). For this we need both h1(x) = h1(y) and h2(x) = h2(y). The probability of

the first condition is ε1 and of the second ε2, so the probability of both occurring is ε1ε2.

We conclude with yet another universal hash family variant: the Almost XOR

Universal hash family.

Definition 4.1.6 Let ε ∈ R+ be a positive number. Fix a domain D and range R. A finite

multiset of hash functions H = {h : D → R} is said to be ε-Almost XOR Universal

(ε-AXU) if for every x, y ∈ D where x �= y, and every c ∈ R, Prh∈H[h(x)⊕h(y) = c] ≤ ε.

4.2 Some Examples of Fast-To-Compute Hash Families

Although the Wegman-Carter MAC was proposed in 1981, it was quite some time

before cryptographers pursued their approach to invent fast MACs. The work by Krawczyk

in 1994 [17] was the first in a series of efforts in this direction. Krawczyk described the
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“Division Hash”, a method akin to CRC computations which he demonstrated to be ε-AU

for small epsilon. He also described a matrix-multiplication method called “LFSR-Based

Toeplitz Hash.” Both of these methods focus on exploiting a Linear Feedback Shift Register

(LFSR) to allow efficient hardware implementations. We briefly discuss these now.

Division Hash.

We fix positive integers n and �. A message M is broken into n chunks of �-bits

each. We then view M as a polynomial m(x) with degree at most n� over GF(2). Define

the key set as P = {p(x) : p(x) has degree � and is irreducible over GF(2)}. (There are

efficient methods to sample uniformly from P .) The family of hash functions is H = {h :

{0, 1}≤n� → {0, 1}�} where a member is selected by the choice of p(x) ∈ P ; we compute

h(x) for any message m(x) as follows:

h(x) = m(x) · x� mod p(x).

Krawczyk shows this family is ε-AU for ε ≈ n�/2�.

Krawczyk argues that this hash family can be efficiently implemented in hardware

since polynomial division over GF(2) can be realized with an LFSR. He also claims that

efficient software implementation is possible using some tables with precomputed values

based on p(x).

LFSR-Based Toeplitz Hash.

First we review another example of a Universal hash family from Carter and Weg-

man’s original paper [9]. Fix parameters m and n. Let A be a random m × n binary

matrix. Now we construction the family H = {h : {0, 1}m → {0, 1}n} where a member of
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the family is specified by the choice of A. We compute h(M) by treating the m-bit message

M as a binary vector and computing h(M) = AM . That this family is Universal is a direct

consequence of Theorem 4.1.2 and Proposition 4.1.5.

Krawczyk then notes that we can use a Toeplitz matrix in place of the random

matrix A. A Toeplitz matrix has the property that each row is “shifted” once to the right

as we read the matrix from top to bottom; the vacated entry in the leftmost column after

the shift is filled with a new random value. Formally if k− i = l− j for any 1 ≤ i, k ≤ n and

1 ≤ j, l ≤ m, then A(i, j) = A(k, l). It turns out that the family remains Universal even

with this strong restriction on the matrix A. Krawczyk then further restricts the columns

of A to be of states of an LFSR with a starting state representing the coefficients of a

randomly-chosen irreducible polynomial of degree n over GF(2). By using this restricted

class of matrices and by using a simple feedback protocol for the LFSR, he produces an ε-AU

family with ε = m/2n−1, which is only slightly worse than the optimal ε = 1/2n achieved

by the Carter-Wegman scheme. Again hardware implementations are very efficient.

Bucket Hashing.

In 1995, Rogaway published his bucket hashing scheme [27]. This marked the first

time researchers were trying to create software-efficient hash families to be used in MACs.

Both this paper and Shoup’s paper (mentioned next) focussed on not only providing fast

hash families, but actually began publishing timing results on various platforms. We now

describe Rogaway’s bucket hash family.

We fix three positive integers: a word-size w, a block size n and a security param-

eter N (we will call N the “number of buckets”). To hash a message M we first break M
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into n words of w bits each. So M = M1.M2. · · · .Mn with each |Mi| = w. Then we imagine

N “buckets” (which are simply variables of w bits) into which we will XOR the words of

M . For concreteness, we might have w = 32, n = 1024, and N = 140. For each word Mi of

M we XOR Mi into three randomly chosen buckets. Finally we concatenate all the bucket

contents as the output of the hash function. The only restriction on the buckets for any Mi

is that they cannot be the same three buckets as were used for any Mj with i �= j. Let’s

state all of this more formally.

Definition 4.2.1 Fix word-size w, block size n and security parameter N . We define the

bucket hash family as H = {h : {0, 1}nw → {0, 1}Nw} as follows. Let H be a randomly

chosen n-vector with distinct coordinates, each coordinate being a 3-element set of w-bit

words. We denote the ith coordinate of H as Hi = {hi1 hi2 hi3}. For any M ∈ {0, 1}nw , let

M = M1.M2. · · · .Mn with each |Mi| = w then run the following algorithm:

bucket hash(M)
for i← 1 to N do Yi ← 0w

for i← 1 to n do
Yhi1
← Yhi1

⊕Mi

Yhi2
← Yhi2

⊕Mi

Yhi3
← Yhi3

⊕Mi

return Y1.Y2. · · · .YN

The bucket hash family is very fast in software. Rogaway reports 6 instructions

per word on a Silicon Graphics machine. This is about 1.5 instructions per byte, easily the

fastest hash family ever invented at its time of publication. However, as Rogaway points
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out, bucket hashing has several drawbacks.

The timings reported above were measured for compressing a 1024-word message

down to 140 words, providing a collision rate of < 2−30. While this 7–to–1 compression

ratio is sufficient to reduce the crytographic work to a point where a Carter-Wegman MAC

will be fast, one certainly might hope for better compression. Also, since many messages

could potentially be much shorter (as internet packets tend to be, for example), 1024 words

might be viewed as atypically long. And finally, in order to get lower collision rates one

needs many more buckets. For example to get to ε ≈ 2−40 we need almost 400 buckets,

resulting in quite long hash outputs.

Division Hash Variants.

In 1996 Shoup [28] published a few variants of the Division Hash family. Shoup

published timing results on a Sparc-10 achieving speeds as fast as 7 instructions per byte

once the preprocessing was done. Although not nearly as fast as bucket hashing, Shoup’s

families had shorter outputs and were therefore possibly more practical.

More than anything else, the mid-1990’s marked the first time researchers were

focussing on both producing efficient MACs with proven security and providing detailed

experimental data to show that their algorithms really were fast on today’s commodity

processors.

Multilinear Modular Hashing.

In 1997, Halevi and Krawczyk introduced their Multilinear Modular Hash family

(MMH) [14]. Their approach was to return to the simple linear hash (see Section 4.1), but

instead of taking a sum mod p, they used a different series of moduli, giving up some small
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constant in the collision probability yet enhancing performance.

The MMH family is H = {h : ({0, 1}32)n → {0, 1}32} where a member of this set

is selected by some n-vector x with coordinates in {0, 1}32. For any message M taken as

an n-vector with coordinates in {0, 1}32 we compute hx(M) as

[[[
n∑

i=1

Mixi

]
mod 264

]
mod (232 + 15)

]
mod 232

where xi denotes the i-th coordinate of x and Mi the i-th coordinate of M . The authors

prove that the MMH family is ε-AU for ε = 1.5/230.

The significance of the MMH paper was manifold. First, it carried on the search for

fast universal hash families giving both proofs of security and detailed experimental results.

Second, it redirected attention back to the linear hash as a method for achieving extreme

speed without much complexity. The specific innovation of MMH was the choice of moduli.

The inner modulus by 264 is implemented by simply using 64-bit registers to accumulate the

sums while ignoring carries; the outer modulus by 232 is also trivially implemented: merely

ignore any bits beyond the least-significant 32. The middle modulus by p = 232 + 15, a

prime, is also efficiently implemented, but using a trick: first view any 64-bit number x

as two 32-bit numbers a and b such that x = a232 + b; now notice that 232 = −15 in the

field Zp, so x mod p is the same as b− 15a. This means the middle modulus can computed

without any divisions.

Halevi and Krawczyk report speeds of 820 Mbit/sec on a 150 Mhz PowerPC 604

and 1080 Mbit/sec on a 200 Mhz Pentium-Pro. They also give timings for a lower-collision

variant of MMH (ε = 2.25/260) which has about 60% of the throughput stated above. They

do not report instructions/byte or cycles/byte, but later testing by Ted Krovetz yielded
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algorithms running at about 1.5-3 cycles/byte on a Pentium II.

Also mentioned in this paper is a family called NMH which is the natural adap-

tation of the authors’ methods to a family created by Mark Wegman. NMH stands for

“Nonlinear Modular Hashing,” and is defined as H = {g : ({0, 1}32)n → {0, 1}32} where a

member of this set is selected by some n-vector x with coordinates in {0, 1}32. We assume

here that n is even. For any message M taken as an n-vector with coordinates in {0, 1}32

we compute gx(M) as





n/2∑

i=1

(M2i−1 + x2i−1 mod 232)(M2i + x2i mod 232)


 mod 264


 mod (232 + 15)


 mod 232

where again xi denotes the i-th coordinate of x and Mi the i-th coordinate of M . The

authors state that good bounds can be achieved for this family but do not provide any

further details. An interesting feature of NMH, as compared to MMH, is that only half the

total number of multiplications are needed. Since multiplications are more expensive than

additions on most processors, NMH is often faster in practice.

4.3 From Hash to MAC

We have reviewed several fast hash families, but our overarching goal is to produce

a MAC. In the Carter-Wegman MAC, the hash function does most of the work and consumes

most of the time; therefore all of the papers summarized above presented a fast universal

hash family but did not provide an actual MAC, assuming that this part of the project

was either easy, uninteresting, or simply outside of the paper’s scope (in fairness, [27] does

provide a “toy” MAC, but admits there is much work left to be done to realize a fully-

specified MAC).
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In their original paper, Wegman and Carter [30] used perfect encryption to produce

their MAC. Subsequently Brassard [7] suggested using a block cipher. We now review these

methods and several other variants of these methods for producing a MAC given a universal

hash family.

Perfect Encryption

Following the general approach of the original Wegman-Carter MAC, assume we

have some ε-AXU hash family H = {h : D → {0, 1}b (see Definition 4.1.6), and we also have

some infinite random bit string P = P1.P2. · · · with |Pi| = b. We choose a random h ∈ H.

The shared key between signer and verifier is (h, P ). We describe the scheme WC[H]. The

signer has a counter, cnt, which is an integer variable, initially 0. To sign message M , the

signer sends (cnt, Pcnt ⊕ h(M)). To verify a received message M with tag (i, s), the verifier

computes Pi ⊕ h(M) and ensures it equals s. We now state and prove a theorem on the

security of this scheme.

Theorem 4.3.1 Let H be ε-AXU. Then WC[H] is ε-secure.

Proof: Recall from Section 3.4 our definition of ε-secure: we choose a random h from H

and random infinite bit string P = P1.P2. · · · with |Pi| = b. We instantiate the MAC oracle

MAC(h,P )(·) which MACs according to our scheme WC[H]. We must show that there cannot

exist an adversary E which makes q queries Q = (M1,M2, · · · ,Mq) of MAC, in sequence,

receiving tags T = (t1, t2, · · · , tq) and then outputs a new message M∗ �∈ Q along with a

tag t∗ and counter value i∗ such that P ∗i ⊕ h(M∗) = t∗ with probability more than ε.

We compute the probability that E forges after making q queries. Since E outputs a counter
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value i∗, there are two possibilities: either i∗ ≤ q or i∗ > q. We consider the latter first. If

i∗ > q then Pi∗ is a uniformly-distributed random bit string uncorrelated to any value yet

seen, we know P ∗i ⊕ h(M∗) = t∗ is also uniformly distributed and independent of what has

been seen. So E’s ability to guess t∗ is exactly 1/2b.

Now consider the case that i∗ ≤ q. In other words, E has chosen a counter value which has

been used in the computation of a tag ti∗ for a message Mi∗ . She has both of these values.

Now she must produce M ∗ �= Mi∗ and t∗ such that t∗ = h(M∗) ⊕ Pi∗ . But this requires

that h(M∗) ⊕ t∗ = h(Mi∗) ⊕ ti∗ , or that h(M∗) ⊕ h(Mi∗) = t∗ ⊕ ti∗ . But H is ε-AXU so

the chance of this 0 is at most ε.

Theorem 4.1.4 tells us that ε ≥ 1/2b, so in either case E’s chance of forging is at most ε.

The preceding is an “information theoretic” result. In other words, the adversary

E could have unbounded computing power and still she could not succeed in producing a

forgery with probability exceeding ε. But this MAC is obviously impractical since assuming

that the sender and verifier share some random infinite-length string is unrealistic. To make

this scheme practical, we might settle for pseudorandom bits instead of truly random bits,

and use a PRF (see Section 2.2) as a source for these pseudorandom bits. Since a PRF is

keyed, the key will provide us with a compact description of the bit stream. To generate

our pseudorandom bits given this key, we will simply feed a counter to the PRF as input.

Of course we must take care not to allow counter values to repeat or our pseudorandom

bits will suddenly become very predictable! We now describe our scheme more formally.

Let F : {0, 1}κ×{0, 1}� → {0, 1}L be a (t, q, δ)-secure PRF. Let H = {h : {0, 1}∗ →
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{0, 1}L} be a family of hash functions. We define the scheme WC[H, F ] as follows: the

shared secret key is some randomly-chosen string a ∈ {0, 1}κ (the PRF key), and some

randomly-chosen hash function h ∈ H. The MAC generation algorithm is stateful; it main-

tains a counter cnt which starts at -1. To authenticate a message M , the MAC generation

algorithm first increments cnt and ensures cnt < 2L − 1. If this test fails, we refuse to

MAC and instead return REKEY indicating that the signer needs to re-key. Otherwise we

generate the MAC tag (cnt, Fa(cnt) ⊕ h(M)). To verify a received message M with tag

(i, s), the verifier computes Fa(i) ⊕ h(M) and ensures it equals s. We now, following [3],

state and prove a theorem on the security of this scheme. (See Section 3.4 for the definition

of security for a MAC.)

We now discuss the complexity-theoretic version of the WC[H, F ] construction.

In order to do so, we must introduce a computational framework. It is standard to assume

our computations are performed on a Turing machine, with each step accounting for one

unit of time. The description of the machine will be some polynomial in t, the total running

time.

Theorem 4.3.2 Let H be ε-AXU and let Init denote the time required to select a random

h ∈ H. Let Hash(q) denote the time required to hash q strings. Let F : {0, 1}κ×{0, 1}� →

{0, 1}L be a ε′(t, q)-secure PRF. Let E be an adversary running in time at most t, making

at most q queries, the length of these queries totalling at most µ bits. Then E forges with

probability at most ε + ε′(t + Init + Hash(q + 1) + O(q), q + 1).

Proof: To simplify notation, we will denote by δ the quantity ε′(t+O(q)+Init+Hash(q+

1), q + 1). To begin our proof, we will assume we have an adversary E which attacks our
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MAC in time at most t, making at most q queries totalling at most µ bits; we will not

make any assumption about the best advantage achievable by E. We will then build a new

adversary D which attacks our PRF F using E as a subroutine. Analyzing the advantage

of D will then yield our desired bound on E’s advantage.

We now describe adversary D. Recall the setting such an adversary runs in: D is presented

with an oracle O which is either the pseudorandom oracle F (·) or a truly-random oracle

ρ(·). After some amount of computation, including subroutine calls to E and various calls

to this oracle, D outputs either a “1” meaning D believe the oracle is pseudorandom, or

“0” meaning D believes the oracle is truly-random.

D runs as follows:

1. Initially, D chooses a random h ∈ H.

2. We set a counter cnt to -1.

3. Next D runs our MAC adversary E then waits.

4. Eventually E makes a signing query, asking for the MAC of some message M1. For

this and all messages Mi which E wishes to MAC, we increment cnt and return the

string O(cnt) ⊕ h(Mi).

5. After at most q of these oracle queries, E will output some message M∗ along with a

tag (i, s). This is E’s attempt at a forgery.

6. We check if M∗ is new and if s = O(i) ⊕ h(M∗); if yes, we output “1”, else we output

“0.”
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Before continuing, let’s count up the resources used by adversary D. In step 1 we use Init to

choose a hash function. Then running E costs us time at most t since E runs in time at most

t. Of course E is requesting MAC tags at most q times and this causes us to hash at most

q+1 times (steps 4 and 6) with a total cost of Hash(q+1). The cost of step 4 is O(q) since it

is run at most q times. So our total time is t+Init+Hash(q+1)+O(q). How many oracle

queries does D make? At most q in step 4 and one more in step 6, so at most q+1. Therefore

the maximal advantage obtainable by adversary D is ε′(t+Init+Hash(q+1)+O(q), q+1)

which is δ.

Now we return to the problem of computing the forgery probability of adversary E, the

MAC adversary. We approach this by writing down the formula for advantage of D:

Pr[K ← {0, 1}κ : DFK(·) = 1]− Pr[ρ← Rand(�, L) : Dρ(·) = 1] = δ.

To evaluate each of these two probabilities, we first need to understand the operation of

D. Clearly D is simulating the MAC’s operation, since it chooses a hash function and then

builds a MAC tag with its oracle. It then guesses that O is pseudorandom if its E adversary

forges. So if O is pseudorandom (ie, the 1 probability above) is exactly the same as the

probability that E will output a correct forgery. On the other hand, if O is truly-random

(the 1 probability above), D will output 1 if E successfully forges, and here we know from

Theorem 4.3.1 that this occurs with probability at most ε. With these facts in mind, we

can rewrite the above as

Pr[E forges under WC(H, F )]− Pr[E forges under WC(H)] = δ

or

Pr[E forges under WC(H, F )] ≤ ε + δ



50

which completes the proof.

Applying a PRF to the Hash Output. Another approach to building a MAC in the

Carter-Wegman style is to apply a PRF directly to the output of a universal hash family.

Since, in practice, we have PRFs which accept arbitrarily long inputs, this approach is

sometimes more flexible since our hash families will sometimes be compression functions

rather than true hash functions (a “hash function” is usually a function with a fixed-size

output). Another advantage of this particular scheme is that it is stateless (ie, there are no

counters the signer must keep track of).

This time we need only require our hash family be ε-AU (instead of ε-AXU in the

foregoing scheme). The shared key between signer and verifier is (h, ρ) where h ∈ H = {h :

D → {0, 1}�} and ρ is a randomly-chosen function from R = Rand(�, L). We describe the

scheme FH[H,R]. We first choose a random h ∈ H. We fix some number q > 0; we agree

to MAC at most q messages and then the scheme refuses to MAC any further, outputting

REKEY until new keys are chosen. To sign message M , the signer first ensures we’ve signed

fewer than q messages and if so sends ρ(h(M)). To verify a received message M with tag s,

the verifier computes ρ(h(M)) and ensures it equals s. We now state and prove a theorem

on the security of this scheme.

Theorem 4.3.3 Let H be ε-AU and let R = Rand(�, L). Fix some number q > 0, the limit

on the number of messages we will MAC. Then FH[H,R] is εq(q + 1)/2-secure.

Proof: Suppose that an adversary E makes q queries Q = (M1,M2, · · · ,Mq) of the MAC

oracle, receiving tags T = (t1, t2, · · · , tq) and then outputs, with some probability, a new
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message M∗ �∈ Q along with a tag t∗ such that ρ(h(M∗)) = t∗ where h
R← H and ρ

R← R.

We compute the probability that E forges. We begin by examining the hash values produced

from E’s queries and her attempted forgery; consider the multiset

H = {h(M1), h(M2), · · · , h(Mq), h(M∗)}.

Now we condition on the event that all the members of H are distinct; if there are duplicates

in H we say there has been a “collision in the hash function.”

First consider the case where there has been no collision in the hash function. Since h(M∗)

is distinct from all other members of H, computing ρ(h(M∗)) will involve computing ρ() at

a domain point which has never been sampled before by E. Therefore the probability that

ρ(h(M∗)) = t∗ is exactly 1/2L.

Next consider the chance that there was a collision in the hash function. We don’t know

necessarily how E might use this to her advantage, but certainly some information about

the hash function is being given away here. So we will count any collision in the hash

function as a bad event (depending on the PRF used, there is often an attack which can

exploit collisions in the hash function as we did in Section 3.8). We now compute the

probability that a collision occurs in the hash function.

Let Ci be the event that a collision occurs for the first time on the i-th query. We know

Pr[C1] = 0. In general, Pr[Ci] ≤ (i− 1)ε since there are i− 1 distinct values to collide with

and at most an ε chance of hitting any of them. Therefore our bound is

Pr[collision in hash function] ≤
q+1∑
i=1

Ci ≤
q+1∑
i=1

(i− 1)ε = ε
q∑

i=0

i = εq(q + 1)/2.
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Since εq(q+1)/2 > ε ≥ 1/2L, in either case above E’s chance of forging is at most εq(q+1)/2.

We can once again pass from the information-theoretic case above (where we had

access to a truly-random function) to the complexity-theoretic case (where we replace such a

truly-random function with a PRF). However, it is quite analogous to the previous case and

our bound, once again, involves simply adding the term ε′(t+Init+Hash(q+1)+O(q), q+1).

We state the full theorem here, but omit the proof.

Theorem 4.3.4 Let H be ε-AU and let Init denote the time required to select a random

h ∈ H. Let Hash(q) denote the time required to hash q strings. Let F : {0, 1}κ×{0, 1}� →

{0, 1}L be a ε′(t, q)-secure PRF. Let E be a FH[H, F ] MAC adversary running in time at

most t, making at most q queries, the length of these queries totalling at most µ bits. Then

E forges with probability at most εq(q + 1)/2 + ε′(t + Init + Hash(q + 1) + O(q), q + 1).

We obviously have worsened our bound quite a bit by going from the first con-

struction where we had an information-theoretic bound of ε to the latter construction where

our bound rose to εq(q + 1)/2. The problem was that we were vulnerable to any collision

in the hash functions. The next construction fixes this problem.

PRF applied to a Counter and the Hash Output. We can ensure that the input

to our PRF is distinct every time by employing a counter. This scheme will therefore once

again be stateful.

Again we have some ε-AU hash family H = {h : D → {0, 1}�}, and a set of

functionsR = Rand(� + b, L). We choose a random h ∈ H and a random ρ ∈ R. The shared



53

key between signer and verifier is (h, ρ). We describe the scheme FCH[H,R]. The signer has

a counter, cnt, which is an integer variable, initially 0. To sign message M , the signer first

ensures that cnt < 2b − 1 and if so increments cnt and then sends (cnt, ρ(〈cnt〉b ‖ h(M)).

To verify a received message M with tag (i, s), the verifier computes ρ(〈i〉b ‖ h(M)) and

ensures it equals s. We now state and prove a theorem on the security of this scheme.

Theorem 4.3.5 LetH be ε-AU and letR = Rand(� + b, L). Then FCH[H,R] is (ε+1/2L)-

secure.

Proof: The proof is strongly reminiscent of our last stateful scheme.

Once again we must show that there cannot exist an adversary E which makes q queries

Q = (M1,M2, · · · ,Mq) of the MAC oracle receiving tags T = (t1, t2, · · · , tq) and then outputs

a new message M∗ �∈ Q along with a tag t∗ and counter value i∗ such that ρ(〈i∗〉b ‖ h(M∗)) =

t∗ where h
R←H and ρ

R←R.

We compute the probability that E forges after making q queries. Since E outputs a counter

value i∗, there are two possibilities: either i∗ ≤ q or i∗ > q. We consider the latter first. If

i∗ > q then 〈i∗〉b ‖ h(M∗) is domain point of ρ which has never been sampled before (we

know this because our counter value has a fixed-length encoding, namely, b bits). Therefore

ρ(〈i∗〉b ‖ h(M∗)) is a uniformly-distributed random string uncorrelated to any value yet

seen. So E’s ability to guess t∗ is exactly 1/2L.

Now consider the case that i∗ ≤ q. She must produce M ∗ �= Mi∗ and t∗ such that t∗ =

ρ(〈i∗〉b ‖ h(M∗)). How can this happen? There are two ways: either h(Mi∗) = h(M∗) or

this did not happen and yet ρ(〈i∗〉b ‖ h(Mi∗)) = ρ(〈i∗〉b ‖ h(M∗)). We might call these
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cases a “collision in h” and a “collision in ρ,” respectively. We will upper-bound the overall

probability of forgery in the present case by adding the probabilities of each of these. We

know the probability of a collision in h to be at most ε. The point to note is that the

adversary has, in fact, obtained no information correlated to h. In response to her queries

she obtains the images under ρ of the distinct points M1, . . . ,Mq. These values, t1, . . . , tq,

are random L-bit strings; the adversary E would be provided an identical distribution of

views if the oracle were replaced by one which, in response to a query, returned a random

L-bit string.

The probability of a collision in ρ is simply 1/2L. So our overall bound is ε + 1/2L. Since

ε + 1/2L > 1/2L, we have ε + 1/2L as an upper bound in both cases.

As before we may pass to the complexity-theoretic result by adding the appropriate

term.

Theorem 4.3.6 Let H be ε-AU and let Init denote the time required to select a random

h ∈ H. Let Hash(q) denote the time required to hash q strings. Fix a b > 1. Let

F : {0, 1}κ × {0, 1}�+b → {0, 1}L be a ε′(t, q)-secure PRF. Let E be a FCH[H, F ] MAC

adversary running in time at most t, making at most q queries, the length of these queries

totalling at most µ bits. Then E forges with probability at most ε + 1/2L + ε′(t + Init +

Hash(q + 1) + O(q), q + 1).



55

Chapter 5

Protected Counter Sums

Many times we can view a MAC in the Carter-Wegman spirit, even when the

designers did not view it this way themselves. The advantage is that often the analysis

becomes much simpler. We begin with a simple example in this chapter, viewing Berstein’s

“Protected Counter Sum” construction [5] as a Carter-Wegman MAC, and then proceed on

in the following chapter to view a variant of the CBC MAC this way as well.

5.1 Protected Counter Sums

Recall the definition of the XOR MAC from Section 3.7: we have a random func-

tion ρ : {0, 1}� → {0, 1}L. We require that � is an even number. If M is the message we

wish to MAC, we divide M into �/2-bit blocks: M = M1.M2. · · · .Mn where |Mi| = �/2. Let

〈i〉 denote an �/2 − 1 bit encoding of the integer i. (So we require i ≤ 2�/2−1.) Then the

XOR MAC of M is

t = ρ(0.r) ⊕ ρ(1.〈1〉.M1) ⊕ ρ(1.〈2〉.M2) ⊕ · · · ρ(1.〈n〉.Mn)
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where r is a random �− 1 bit string.

Bernstein’s construction is based on XOR MAC. His Protected Counter Sum

(PCS) construction works as follows: let ρ : {0, 1}� → {0, 1}L be a random function with

� > L and c = �−L. If M is the message we wish to MAC, we divide M into L-bit blocks:

M = M1.M2. · · · .Mn where |Mi| = L and n < 2c. Let 〈i〉 denote an c-bit encoding of the

integer i. Then the PCS MAC of M is

t = ρ(〈0〉 . (ρ(〈1〉.M1) ⊕ ρ(〈2〉.M2) ⊕ · · · ⊕ ρ(〈n〉.Mn)).

Although Bernstein’s analysis takes a very different approach, we might notice that

his construction strongly resembles the Carter-Wegman type MACs we’ve been discussing.

To make the resemblance even stronger we will recast PCS MAC in a slightly different

(but equivalent) form. Instead of applying ρ with 〈0〉 prepended to the inner XORs, we

will instead apply some different, independently chosen, random function ρ′. This scheme,

which we call FCS MAC will be viewed as a PRF applied to the hash result (see Section 4.3).

First we describe a hash family we will call the “XOR hash.” Fix some positive

number c < �, the “counter size.” Let the hash domain D = ({0, 1}�−c)<2c
. Let H = {h :

D → {0, 1}�} be the family of functions where members are selected by the random choice

of some ρ ∈ Rand(�, L). For any M ∈ D we break M into (�−c)-bit chunks M1.M2. · · · .Mn.

We then compute h(M) as

h(M) = ρ(〈1〉.M1) ⊕ ρ(〈2〉.M2) ⊕ · · · ⊕ ρ(〈n〉.Mn)

where again 〈i〉 denotes some c-bit encoding of i.

We now instantiate FCS MAC as FH[H,Rand(�, L)]. The security of this scheme

is, as we have already seen, εq(q+1)/2. Of course we would like to know what kind of value
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we can prove for ε here, which is the next order of business. Although we require only that

the XOR hash be ε-AU, we will prove that it is ε-AXU which clearly implies the former.

Theorem 5.1.1 Fix some � ≥ 1 and some positive c < �. Then the XOR hash on domain

D = ({0, 1}�−c)<2c
is 2−�-AXU.

Proof: We are required to show that for any two distinct values M,M′ ∈ D and constant

a ∈ {0, 1}�, the probability over uniform random choices of functions ρ ∈ Rand(�, �) that

the XOR hashes of M and M ′ XOR to a is at most 2−�. In other words we must prove that

for any a ∈ {0, 1}�,

Pr
ρ∈Rand(�,�)

[(ρ(〈1〉.M1) ⊕ · · · ⊕ ρ(〈n〉.Mn)) ⊕ (ρ(〈1〉.M ′1) ⊕ · · · ⊕ ρ(〈n〉.M ′
n′)) = a] ≤ 2−�.

We know M and M ′ are distinct; we now consider two cases: (1) one of these messages is

a prefix of the other, or (2) neither is a prefix of the other.

Case 1: Without loss of generality, assume that M ′ is a prefix of M . This means that

M1 = M ′
1, M2 = M ′

2, · · ·, Mn′ = M ′
n′ . Since the XOR of a value with itself is 0, we may

cancel terms and rewrite the above as

Pr
ρ∈Rand(�,�)

[(ρ(〈n′ + 1〉.Mn′+1) ⊕ · · · ⊕ ρ(〈n〉.Mn)) = a] ≤ 2−�.

Now imagine we choose ρ ∈ Rand(�, �) in two phases: we first determine the value of ρ at all

domain points except 〈n〉 .Mn. Then in the second phase we choose the value of ρ(〈n〉 .Mn).

It should be clear that we are not at all constrained in the second phase by choices made in

the first phase because the counter values ensure that our second-phase input has not yet
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been determined. Therefore we need only prove

Pr[ρ(〈n〉.Mn) = a ⊕ ρ(〈n′ + 1〉.Mn′+1) ⊕ · · · ⊕ ρ(〈n− 1〉.M ′
n−1))] ≤ 2−�

where the probability is taken over random choices of ρ(〈n〉 .Mn), and this will imply the

theorem. But there is of course only one value which makes the equality true, that being

the value on the right-hand side of the equation. Therefore the above probability is indeed

2−�.

Case 2: This case is similar to the above, so we’ll be a bit more terse. Since M and M′

are distinct, they must differ in some (� − c)-bit block; without loss of generality, assume

M1 �= M ′
1. (This argument could be repeated for any i where Mi �= M ′

i .) Again we

determine ρ(·) in two phases: first the value of ρ(·) at all points except 〈1〉 .M1 and 〈1〉 .M ′
1

are determined, then finally we determine ρ(〈1〉 .M1) and ρ(〈1〉 .M ′
1). Rearranging terms,

we note we now need only prove that

Pr[ρ(〈1〉.M1) ⊕ ρ(〈1〉.M ′
1) = a ⊕ ρ(〈2〉.M2) ⊕ · · · ⊕ ρ(〈n〉.M ′

n))] ≤ 2−�

where the probability is taken over the second-phase choices. Since M1 �= M ′
1 we know

〈1〉 .M1 �= 〈1〉 .M ′
1 and so these points are going to be two independent random values

between 0 and 2�− 1. Therefore the probability that they XOR to some particular value is

exactly 2−�.

Given the preceding theorem, we may now invoke Theorem 4.3.3 to conclude that

FCS MAC is q(q + 1)/2�+1-secure.
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Chapter 6

CBC MAC Variants

As noted in the previous chapter, we can often view an existing MAC as a Carter-

Wegman MAC in spite of the fact it may not have been designed as one. In this chapter

we will consider variants of the CBC MAC as Carter-Wegman MACs. This will make the

analysis easier than it has been when considered from other viewpoints [3, 22], and it will

allow us to extend the capabilities of the MAC to efficiently handle messages of any length

(rather restrict us to only those messages whose lengths are a multiple of the block length).

6.1 Introduction

Recall from Section 3.7 the definition of the CBC MAC. Let E : Key × {0, 1}n →

{0, 1}n be a block cipher (see Section 2.2): it uses a key K ∈ Key to encipher an n-bit

block X into an n-bit ciphertext Y = EK(X). The message space for the CBC MAC

is ({0, 1}n)+, meaning binary strings whose lengths are a positive multiple of n. So let

M = M1 · · ·Mm be a string that we want to MAC, where |M1| = · · · = |Mm| = n. Then
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CBCEK
(M), the CBC MAC of M under key K, is defined as Cm, where Ci = EK(Mi⊕Ci−1)

for i = 1, . . . ,m and C0 = 0n.

Bellare, Kilian and Rogaway proved the security of the CBC MAC, in the sense of

reduction-based cryptography [3]. But their proof depends on the assumption that it is only

messages of one fixed length, mn bits, that are being MACed. Indeed when message lengths

can vary the CBC MAC is not secure. This fact is well-known. As a simple example, notice

that given the CBC MAC of a one-block message X, say T = CBCEK
(X), the adversary

immediately knows the CBC MAC for the two-block message X . (X⊕T ), since this is once

again T .

Thus the CBC MAC (in the “raw” form that we have described) has two problems:

it can’t be used to MAC messages outside of ({0, 1}n)+, and all messages must have the

same fixed length.

Dealing with variable message lengths: EMAC. When message lengths may vary

the CBC MAC must be embellished. There have been several suggestions for doing this.

The most elegant one we have seen is to encipher CBCEK1
(M) using a new key, K2.

That is, the domain is still ({0, 1}n)+ but one defines EMAC (for encrypted MAC) by

EMACEK1,EK2
(M) = EK2(CBCEK1

(M)). This algorithm was developed for the RACE

project [4]. It has been analyzed by Petrank and Rackoff [22] who show, roughly said, that

an adversary who obtains the MACs for messages which total σ blocks cannot forge with

probability better than 2σ2/2n.

Among the nice features of EMAC is that one need not know |M | prior to pro-

cessing the message M . We now proceed to develop several variants of EMAC, all of which
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will preserve this feature.

6.1.1 Outline of Chapter

EMAC has a domain limited to ({0, 1}n)+ and uses 1 + |M |/n applications of the

block cipher E. In this chapter we refine EMAC in three ways: (1) we extend the domain

to {0, 1}∗; (2) we shave off one application of E; and (3) we avoid keying E by multiple

keys. Of course we insist on retaining provable security (across all messages lengths).

In Section 6.2 we introduce three refinements to EMAC, which we call ECBC,

FCBC, and XCBC. These algorithms are natural extensions of the basic CBC MAC. We

would like to think that this is an asset. The point here is to strive for economy, in terms

of both simplicity and efficiency.

Figure 6.1.1 summarizes the characteristics of the CBC MAC variants mentioned

in this chapter. The top three rows give known constructions (two of which we have now

defined). The next three rows are our new constructions. Note that our last construction,

XCBC, retains essentially all the efficiency characteristics of the CBC MAC, but extends

the domain of correct operation to all of {0, 1}∗.

For each of the new schemes we give a proof of security. Rather than adapt the

rather complex proof of [22], or the even more complicated one of [3], we follow a new

tack: we view EMAC as an instance of the Carter-Wegman paradigm: with EMAC one is

enciphering the output of a universal-2 hash function. This universal-2 hash function is the

CBC MAC itself. Since it is not too hard to upper bound the collision probability of the

CBC MAC (see Lemma 6.3.2), this approach leads to a simple proof for EMAC, and ECBC

as well. We then use the security of ECBC to prove security for FCBC, and then we use
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Construct Domain #E Appls #E Keys Key Length
CBC {0, 1}nm |M |/n 1 k

EMAC ({0, 1}n)+ 1 + |M |/n 2 2k

EMAC∗ {0, 1}∗ 1 + �(|M |+ 1)/n
 2 2k

ECBC {0, 1}∗ 1 + �|M |/n
 3 3k

FCBC {0, 1}∗ �|M |/n
 3 3k

XCBC {0, 1}∗ �|M |/n
 1 k + 2n

Figure 6.1: The CBC MAC and five variants. Here M is the message to MAC and E :
{0, 1}k × {0, 1}n → {0, 1}n is a block cipher. The third column gives the number of appli-
cations of E, assuming |M | > 0. The fourth column is the number of different keys used
to key E. For CBC the domain is actually ({0, 1}n)+, but the scheme is secure only on
messages of some fixed length, nm.

the security of FCBC to prove security for XCBC. In passing from FCBC to XCBC we use

a general lemma (Lemma 6.5.1) which says, in effect, that you can always replace a pair of

random independent permutations π1(·), π2(·) by a pair of functions π(·), π(·⊕K), where π

is a random permutation and K is a random constant.

We directly prove the security of ECBC. For this we view EMAC as an instance of

the Carter-Wegman paradigm: with EMAC one is enciphering the output of a universal-2

hash function. This universal hash function is the (basic) CBC MAC. Under this viewpoint

the bulk of proving security is to analyze the collision probability of the CBC MAC: that is,

what is the chance, for distinct messages M and M ′, that CBCπ(M) = CBCπ(M ′)? This is

a simple, information-theoretic question. In particular, the approach effectively eliminates

the complexity associated with the adversary’s adaptivity.

The same method used for ECBC gives a simple proof for EMAC. We include our

proof of EMAC in Section 6.3. Petrank and Rackoff’s proof was quite complex.

The proof again demonstrates that the adversary’s adaptivity does not help her

very much in this setting.
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New standards. This work was largely motivated by the emergence of the Advanced

Encryption Standard (AES). With the AES should come a next-generation standard for

using it to MAC. Current CBC MAC standards handle this, for example, in an open-ended

informational appendix [15]. We suggest that the case of variable message lengths is the

usual case in applications of MACs, and that a modern MAC standard should specify

only algorithms which will correctly MAC any sequence of bit strings. The methods here

are simple, efficient, provably sound, timely, and patent-free—all the right features for a

contemporary standard.

6.2 Schemes ECBC, FCBC, and XCBC

Arbitrary-length messages without obligatory padding: ECBC. We have de-

scribed the algorithm EMACEK1,EK2
(M) = EK2(CBCEK1

(M)). One problem with EMAC

is that its domain is limited to ({0, 1}n)+. What if we want to MAC messages whose lengths

are not a multiple of n?

The simplest approach is to use obligatory 10i padding: always append a “1” bit

and then the minimum number of “0” bits (possibly none) so as to make the length of the

padded message a multiple of n. Then apply EMAC. We call this method EMAC∗. For-

mally, EMAC∗EK1,EK2
(M) = EMACEK1,EK2

(M . 10n−1−|M | mod n). This construction works

fine. In fact, it is easy to see that this form of padding always works to extend the domain

of a MAC from ({0, 1}n)+ to {0, 1}∗.

One unfortunate feature of EMAC∗ is this: if |M | is already a multiple of n then

we are appending an entire extra block of padding, and seemingly “wasting” an application
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Figure 6.2: The ECBC construction using a block cipher E : Key × {0, 1}n → {0, 1}n. The
construction uses three keys, K1,K2,K3 ∈ Key. On the left is the case where |M | is a
positive multiple of n, while on the right is the case where |M | is not a positive multiple of
n.

of E. People have worked hard to optimize new block ciphers—it seems a shame to squander

some of this efficiency with an unnecessary application of E. Moreover, in practical settings

we often wish to MAC very short messages, where saving one invocation of the block cipher

can be a significant performance gain. In some domains messages of exactly 8 or 16 to 64

bytes may be commonplace.

Our first new scheme lets us avoid padding when |M | is a nonzero multiple of n.

We simply make two cases: one for when |M | is a positive multiple of n and one for when

it isn’t. In the first case we compute EMACEK1,EK2
(M). In the second case we append

minimal 10i padding (i ≥ 0) to make a padded message P whose length is divisible by n,

and then we compute EMACEK1,EK3
(P ). Notice the different second key—K3 instead of

K2—in the case where we’ve added padding. Here, in full, is the algorithm. It is also shown

in Figure 6.2.
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Figure 6.3: The FCBC construction with a block cipher E : Key × {0, 1}n → {0, 1}n. The
construction uses three keys, K1,K2,K3 ∈ Key. On the left is the case where |M | is a
positive multiple of n, while on the right is the case where |M | is not a positive multiple
of n.

Algorithm ECBCEK1,EK2,EK3
(M)

if M ∈ ({0, 1}n)+

then return EK2(CBCEK1
(M))

else return EK3(CBCEK1
(M . 10i)), where i = n− 1− |M | mod n

In Section 6.3 we prove that ECBC is secure. We actually show that it is a good pseudo-

random function (PRF), not just a good MAC. The security of ECBC does not seem to

directly follow from Petrank and Rackoff’s result [22]. At issue is the fact that there is a

relationship between the key (K1,K2) used to MAC messages in ({0, 1}n)+ and the key

(K1,K3) used to MAC other messages.

Improving efficiency: FCBC. With ECBC we are using �|M |/n
+1 applications of the

underlying block cipher. We can get rid of the +1 (except when |M | = 0). We start off, as

before, by padding M when it is outside ({0, 1}n)+. Next we compute the CBC MAC using

key K1 for all but the final block, and then use either key K2 or K3 for the final block.

Which key we use depends on whether or not we added padding. The algorithm follows,

and is also shown in Figure 6.3.
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Algorithm FCBCEK1,EK2,EK3
(M)

if M ∈ ({0, 1}n)+

then K ← K2, and P ←M
else K ← K3, and P ←M . 10i, where i← n− 1− |M | mod n

Let P = P1 · · ·Pm, where |P1| = · · · = |Pm| = n
C0 ← 0n

for i← 1 to m− 1 do
Ci ← EK1(Pi⊕Ci−1)

return EK(Pm⊕Cm−1)

In Section 6.4 we prove the security of this construction. Correctness follows from the result

on the security of ECBC.

Avoiding multiple encryption keys: XCBC. Most block ciphers have a key-setup

cost, when the key is turned into subkeys. The subkeys are often larger than the original

key, and computing them may be expensive. So keying the underlying block cipher with

multiple keys, as is done in EMAC, ECBC, and FCBC, is actually not so desirable. It

would be better to use the same key for all of the block-cipher invocations. The algorithm

XCBC does this.

We again make two cases. If M ∈ ({0, 1}n)+ we CBC as usual, except that we

XOR in an n-bit key, K2, before enciphering the last block. If M �∈ ({0, 1}n)+ then append

minimal 10i padding (i ≥ 0) and CBC as usual, except that we XOR in a different n-bit key,

K3, before enciphering the last block. Here, in full, is the algorithm. Also see Figure 6.4.

The proof of security can be found in Section 6.5.
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Figure 6.4: The XCBC construction with a block cipher E : Key × {0, 1}n → {0, 1}n. We
use keys K1 ∈ Key and K2,K3 ∈ {0, 1}n. On the left is the case where |M | is a positive
multiple of n; on the right is the case where |M | is not a positive multiple of n.

Algorithm XCBCEK1,EK2,EK3
(M)

if M ∈ ({0, 1}n)+

then K ← K2, and P ←M
else K ← K3, and P ←M . 10i, where i← n− 1− |M | mod n

Let P = P1 · · ·Pm, where |P1| = · · · = |Pm| = n
C0 ← 0n

for i← 1 to m− 1 do
Ci ← EK1(Pi⊕Ci−1)

return EK1(Pm⊕Cm−1⊕K)

We have now defined functions CBCρ1(·), EMACρ1, ρ2(·), ECBCρ1, ρ2, ρ3(·), FCBCρ1, ρ2, ρ3(·),

and XCBCρ1, ρ2, ρ3(·) where ρ1, ρ2, ρ3: {0, 1}n → {0, 1}n. We emphasize that the definitions

make sense for any ρ1, ρ2, ρ3: {0, 1}n → {0, 1}n; in particular, we don’t require ρ1, ρ2, ρ3

be permutations. Notice that we interchangeably use notation such as ρ1 and EK1; the key

K1 is simply naming a function ρ1 = EK1.

Basic facts. It is often convenient to replace random permutations with random functions,

or vice versa. The following proposition lets us easily do this. For a proof see Proposition 2.5

in [3].

Lemma 6.2.1 [PRF/PRP Switching] Fix n ≥ 1. Let A be an adversary that asks at

most p queries. Then

∣∣∣Pr[π R← Perm(n) : Aπ(·) = 1] − Pr[ρ R← Rand(n, n) : Aρ(·) = 1]
∣∣∣ ≤ p(p− 1)/2n+1.
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As is customary, we will show the security of our MACs by showing that their information-

theoretic versions approximate random functions. As is standard, this will be enough to

pass to the complexity-theoretic scenario. Part of the proof is Proposition 2.7 of [3].

Lemma 6.2.2 [Inf. Th. PRF ⇒ Comp. Th. PRF] Fix n ≥ 1. Let CONS be a

construction such that CONSρ1,ρ2,ρ3(·): {0, 1}∗ → {0, 1}n for any ρ1, ρ2, ρ3 ∈ Rand(n, n).

Suppose that if |M | ≤ µ then CONSρ1,ρ2,ρ3(M) depends on the values of ρi on at most p

points (for 1 ≤ i ≤ 3). Let E: Key × {0, 1}n → {0, 1}n be a family of functions. Then

Advprf
CONS[E](t, q, µ) ≤ Advprf

CONS[Perm(n)](q, µ) + 3 ·Advprp
E (t′, p), and

Advmac
CONS[E](t, q, µ) ≤ Advprf

CONS[Perm(n)](q, µ) + 3 ·Advprp
E (t′, p) +

1
2n

,

where t′ = t + O(pn).

6.3 Security of ECBC

In this section we prove the security of the ECBC construction. See Section 6.2

for a definition of ECBCρ1,ρ2,ρ3(M), where ρ1, ρ2, ρ3 ∈ Rand(n, n).

Our approach is as follows: we view the CBC MAC as an almost universal-2 family

of hash functions and prove a bound on its collision probability. Then we create a PRF

by applying one of two random functions to the output of CBC MAC and claim that this

construction is itself a good PRF. Applying a PRF to a universal-2 hash function is a well-

known approach for creating a PRF or MAC [9, 30, 6]. The novelty here is the extension to

three keys and, more significantly, the treatment of the CBC MAC as an almost universal-2

family of hash functions. The latter might be against one’s instincts because the CBC MAC
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is a much stronger object than a universal hash-function family. Here we ignore that extra

strength and study only the collision probability.

We wish to show if M,M ′ ∈ ({0, 1}n)+ are distinct strings then Prπ[CBCπ(M) =

CBCπ(M ′)] is small. By “small” we mean a slowly growing function of m = |M |/n and

m′ = |M ′|/n. Formally, for n,m,m′ ≥ 1, define the collision probability of the CBC MAC

to be

Vn(m,m′) def= max
M∈{0,1}nm,M ′∈{0,1}nm′ ,M �=M ′

{Pr[π R← Perm(n) : CBCπ(M) = CBCπ(M ′)]}.

(The character “V ” is meant to suggest collisions.) It is not hard to infer from [22] a collision

bound of Vn(m,m′) ≤ 2.5 (m + m′)2/2n by using their bound on EMAC and realizing that

collisions in the underlying CBC MAC must show through to the EMAC output. But a

direct analysis easily yields a (slightly better) bound.

We can upper bound the collision probability of the CBC MAC in two different

ways. One way is to build on Petrank and Rackoff’s result [22] which measures the distance

between EMAC[Rand(n, n)] and Rand({0, 1}∗, n). Another way is with a direct analysis.

Here is the former.

Lemma 6.3.1 [First CBC MAC Collision Bound] Let n,m,m′ ≥ 1. Then

Vn(m,m′) ≤ 2.5 (m + m′)2

2n
.

Proof: Let A be an adversary that asks queries in ({0, 1}n)+ which total p = m+m′ blocks.

Let N = 2n. From [22] we know that

Pr[ρ, σ
R← Rand(n, n) : AEMACρ,σ(·) = 1] − Pr[R R← Rand(({0, 1}n)+, n) : AR(·) = 1]

≤ 2p2/N .
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The above is true for any adversary who asks at most p blocks. Consider the particular

adversary that asks its oracle the fixed queries M ∈ ({0, 1}n)m and M ′ ∈ ({0, 1}n)m
′
, where

M �= M ′, and then outputs “1” if the return values are the same. The result above tells us

that

Pr[ρ, σ
R← Rand(n, n) : EMACρ,σ(M) = EMACρ,σ(M ′)] −

Pr[R R← Rand(({0, 1}n)+, n) : R(M) = R(M ′)] ≤ 2p2/N .

Of course the second term is exactly 1/N and so

Pr[ρ, σ
R← Rand(n, n) : EMACρ,σ(M) = EMACρ,σ(M ′)] ≤ 2p2 + 1

N
.

Lemma 6.2.1 lets us now replace the random function ρ by a random permutation π giving

Pr[π R← Perm(n); σ
R← Rand(n, n) : EMACπ,σ(M) = EMACπ,σ(M ′)]

≤ 2p2 + 1
N

+
p(p− 1)

2N

≤ 2.5p2

N
.

Now we observe that

Pr[π R← Perm(n) : CBCπ(M) = CBCπ(M ′)]

≤ Pr[π R← Perm(n); σ
R← Rand(n, n) : EMACπ,σ(M) = EMACπ,σ(M ′)]

since collisions in EMACπ,σ are caused either by a collision in CBCπ(M) and CBCπ(M ′)

or by a collision in σ at the distinct points CBCπ(M) and CBCπ(M ′). We conclude that

Pr[π R← Perm(n) : CBCπ(M) = CBCπ(M ′)] ≤ 2.5(m + m′)2

N
,
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as desired.

We also have a direct argument, much simpler than given in [22], which yields a slightly

better bound.

Lemma 6.3.2 [Second CBC Collision Bound] Fix n ≥ 1 and let N = 2n. Let

M,M ′ ∈ ({0, 1}n)+ be distinct strings having m = |M |/n and m′ = |M ′|/n blocks. Assume

that m,m′ ≤ N/4. Then

Vn(m,m′) ≤ (m + m′)2

2n
.

Proof: Although M and M ′ are distinct, they may share some common prefix. Let k be

the index of the last block in which M and M ′ agree. (If M and M ′ have unequal first

blocks then k = 0.)

Each particular permutation π is equally likely among all permutations from {0, 1}n to

{0, 1}n. In our analysis, we will view the selection of π as an incremental procedure. This will

be equivalent to selecting π uniformly at random. In particular, we view the computation

of CBCπ(M) and CBCπ(M ′) as playing the game given in Figure 6.5. Here the notation

Mi indicates the ith block of M . We initially set each range point of π as undefined;

the notation Domain(π) represents the set of points x where π(x) is no longer undefined.

We use Range(π) to denote the set of points π(x) which are no longer undefined; we use

Range(π) to denote {0, 1}n −Range(π).

During the game, the Xi are those values produced after XORing with the current message

block, Mi, and the Yi values are π(Xi). See Figure 6.6.

We are concerned with the probability that π will cause CBCπ(M) = CBCπ(M ′), which
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1: bad ← false; for all x ∈ {0, 1}n do π(x)← undefined; X1 ←M1; X ′1 ←M ′
1; BAD ← {X1,X

′
1}

2: for i← 1 to k do
3: if Xi ∈ Domain(π) then Yi ← Y ′i ← π(Xi)
4: else Yi ← Y ′i

R← Range(π); π(Xi)← Yi

5: if i < m then Xi+1 ← Yi⊕Mi+1

6: if Xi+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {Xi+1}
7: if i < m′ then X ′i+1 ← Y ′i⊕M ′

i+1

8: if X ′i+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {X ′i+1}

9: for i← k + 1 to m do
10: if Xi ∈ Domain(π) then Yi ← π(Xi)
11: else Yi

R← Range(π); π(Xi)← Yi

12: if i < m then Xi+1 ← Yi⊕Mi+1

13: if Xi+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {Xi+1}

14: for i← k + 1 to m′ do
15: if X′i ∈ Domain(π) then Y ′i ← π(X ′i)
16: else Y ′i

R← Range(π); π(X′i)← Y ′i
17: if i < m then X ′i+1 ← Y ′i⊕M ′

i+1

18: if X′i+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {X ′i+1}

Figure 6.5: Game used in the proof of Lemma 6.3.2. The algorithm gives one way to
compute the CBC MAC of distinct messages M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ . These

messages are identical up to block k, but different afterwards. The computed MACs are Ym

and Ym′ , respectively.
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Figure 6.6: A fragment of the CBC construction showing the labeling convention used in
the proof of Lemma 6.3.2.

will occur in our game iff Ym = Y ′m′ . Since π is invertible, this occurs iff Xm = X ′m′ . As we

shall see, this condition will cause bad = true in our game. However, we actually set bad

to true in many other cases in order to simplify the analysis.

The idea behind the variable bad is as follows: throughout the program (lines 4, 11, and 16)

we randomly choose a range value for π at some undefined domain point. Since π has not

yet been determined at this point, the selection of our range value will be an independent

uniform selection: there is no dependence on any prior choice.

If the range value for π were already determined by some earlier choice, the analysis would

become more involved. We avoid the latter condition by setting bad to true whenever such

interdependencies are detected. The detection mechanism works as follows: throughout the

processing of M and M ′ we will require π be evaluated at m+m′ domain points X1, · · · ,Xm

and X ′1, · · · ,X′m′ . If all of these domain points are distinct (ignoring duplications due to

any common prefix of M and M ′), we can rest assured that we are free to assign their

corresponding range points without constraint. We maintain a set BAD to track which

domain points have already been determined; initially X1 and X ′1 are the only such points,

since future values will depend on random choices not yet made. Of course if k > 0 then

X1 = X ′1 and BAD contains only one value. Next we begin randomly choosing range points;
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if ever any such choice leads to a value already contained in the BAD set, we set the flag

bad to true.

We now bound the probability of the event that bad = true by analyzing our game. The

variable bad can be set true in lines 6, 8, 13, and 18. In each case it is required that some

Yi was selected such that Yi⊕Mi+1 ∈ BAD (or possibly that some Y ′i was selected such that

Y ′i⊕M ′
i+1 ∈ BAD). The set BAD begins with at most 2 elements and then grows by 1 with

each random choice of Yi or Y ′i . We know that on the ith random choice in the game the

BAD set will contain at most i + 1 elements. And so each random choice of Yi (resp. Y ′i )

from the co-range of π will cause Yi⊕Mi+1 (resp. Y ′i⊕M ′
i+1) to be in BAD with probability

at most (i + 1)/(N − i + 1). We have already argued that in the absence of bad = true

each of the random choices we make are independent. We make m − 1 choices of Yi to

produce X2 through Xm and m′ − 1 choices of Y ′i to determine X′2 through X ′m′ and so we

can compute

Pr[bad = true] ≤
m−1+m′−1∑

i=1

i + 1
N − i + 1

.

Using the fact that m,m′ ≤ N/4, we can bound the above by

m+m′−2∑
i=1

i + 1
N − i

≤ 2
N

m+m′−2∑
i=1

i + 1 ≤ (m + m′)2

N
.

This completes the proof.

Fix n ≥ 1 and let F : Key×{0, 1}n → {0, 1}n be a family of functions. Let ECBC[F ] be the

family of functions ECBCf1,f2,f3(·) indexed by Key × Key × Key. We now use the above

to show that ECBC[Perm(n)] is close to being a random function.
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Theorem 6.3.3 [ECBC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an adversary

which asks at most q queries each of which is at most mn-bits. Assume m ≤ N/4. Then

Pr[π1, π2, π3
R← Perm(n) : AECBCπ1,π2,π3 (·) = 1] − Pr[R R← Rand({0, 1}∗, n) : AR(·) = 1]

≤ q2

2
Vn(m,m) +

q2

2N
≤ (2m2 + 1)q2

N
.

Proof: We will first compute a related probability where the final permutation is a random

function; this will simplify the analysis. So we are interested in the quantity

Pr[π1
R← Perm(n); ρ2, ρ3

R← Rand(n, n) : AECBCπ1,ρ2,ρ3(·) = 1]

−Pr[R R← Rand({0, 1}∗, n) : AR(·) = 1] .

For economy of notation we encapsulate the initial parts of our experiments into the proba-

bility symbols Pr1 and Pr2, rewriting the above as Pr1[AECBCπ1,ρ2,ρ3 (·) = 1]−Pr2[AR(·) = 1].

We condition Pr1 on whether a collision occurred within π1, and we differentiate between

collisions among messages whose lengths are a nonzero multiple of n (which are not padded)

and other messages (which are padded). Let UnpadCol be the event that there is a collision

among the unpadded messages and let PadCol be the event that there is a collision among

the padded messages. We rewrite the above as

Pr1[AECBCπ1,ρ2,ρ3(·) = 1 | UnpadCol ∨ PadCol] Pr1[UnpadCol ∨ PadCol]

+ Pr1[AECBCπ1,ρ2,ρ3(·) = 1 | UnpadCol ∨ PadCol] Pr1[UnpadCol ∨ PadCol]

− Pr2[AR(·) = 1].

We observe that in the absence of event (UnpadCol∨PadCol), the adversary sees the output

of a random function on distinct points; that is, she is presented with random, uncorrelated
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points over the range {0, 1}n. Therefore we know

Pr1[AECBCπ1,ρ2,ρ3 (·) = 1 | UnpadCol ∨ PadCol] = Pr2[AR(·) = 1].

Now bounding

Pr1[UnpadCol ∨ PadCol]

and

Pr1[AECBCπ1,ρ2,ρ3(·) = 1 | UnpadCol ∨ PadCol]

by 1, we reduce the bound on the obtainable advantage to Pr1[UnpadCol ∨ PadCol] ≤

Pr1[UnpadCol] +Pr1[PadCol]. To bound this quantity, we break each event into the disjoint

union of several other events; define UnpadColi to be the event that a collision in π1 occurs

for the first time as a result of the ith unpadded query. Let qu be the number of unpadded

queries made by the adversary, and let qp be the number of padded queries. Then

Pr1[UnpadCol] =
qu∑
i=1

Pr1[UnpadColi] .

Now we compute each of the probabilities on the right-hand side above. If we know no

collisions occurred during the first i − 1 queries we know the adversary has thus far seen

only images of distinct inputs under a random function. Any adaptive strategy she adopts in

this case could be replaced by a non-adaptive strategy where she pre-computes her queries

under the assumption that the first i − 1 queries produce random points. In other words,

any adaptive adversary can be replaced by a non-adaptive adversary which does at least

as well. A non-adaptive strategy would consist of generating all q inputs in advance, and

from the collision bound on the hash family we know Pr1[UnpadColi] ≤ (i − 1)Vn(m,m) .
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Summing over i we get

Vn(m,m)
qu∑
i=1

(i− 1) ≤ q2
u

2
Vn(m,m) .

Repeating this analysis for the padded queries we obtain an overall bound of

q2
u

2
Vn(m,m) +

q2
p

2
Vn(m,m) ≤ q2

2
Vn(m,m) .

Finally we must replace the PRFs ρ2 and ρ3 with the PRPs π2 and π3. Using Lemma 6.2.1

this costs us an extra q2
u/2N + q2

p/2N ≤ q2/2N , and so our final bound is

q2

2
Vn(m,m) +

q2

2N
,

and if we apply the bound on Vn(m,m) from Lemma 6.3.2 we have

q2

2
4m2

N
+

q2

2N
≤ (2m2 + 1)q2

N
.

This completes the proof.

Tightness, and non-tightness, of our bound. Employing well-known techniques

(similar to [24]), it is easy to exhibit a known-message attack which forges with high prob-

ability (> 0.3) after seeing q = 2n/2 message/tag pairs. In this sense the analysis looks

tight. The same statement can be made for the FCBC and XCBC analyses. But if we pay

attention not only to the number of messages MACed, but also their lengths, then none

of these analyses is tight. That is because the security bound degrades quadratically with

the total number of message blocks, while the the attack efficiency improves quadratically

with the total number of messages. Previous analyses for the CBC MAC and its variants

all shared this same characteristic.
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Complexity-Theoretic Result. In the usual way we can now pass from the information-

theoretic result to a complexity-theoretic one. We state the result, which follows using

Lemma 6.2.2.

Corollary 6.3.4 [ECBC is a PRF] Fix n ≥ 1 and let N = 2n. Let E: Key×{0, 1}n →

{0, 1}n be a block cipher. Then

Advprf
ECBC[E](t, q,mn) ≤ 2m2q2 + q2

N
+ 3 · Advprp

E (t′, q′), and

Advmac
ECBC[E](t, q,mn) ≤ 2m2q2 + q2 + 1

N
+ 3 ·Advprp

E (t′, q′)

where t′ = t + O(mq) and q′ = mq.

It is worth noting that using a very similar argument to Theorem 6.3.3 we can easily obtain

the same bound for the EMAC construction [4]. This yields a proof which is quite a bit

simpler than that found in [22]. The reader who has already carefully read the previous

proof for ECBC will need only skim this proof since it is highly similar and included only

for completeness.

Theorem 6.3.5 [EMAC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an adversary

which asks at most q queries, each of which is at most m n-bit blocks, where m ≤ N/4.

Then

Pr[π, σ
R← Perm(n) : AEMACπ,σ(·) = 1]− Pr[ρ R← Rand(({0, 1}n)+, n) : Aρ(·) = 1]

≤ q2

2
Vn(m,m) +

q2

2N

≤ (2m2 + 1)q2

N
.
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Before proving the theorem, we begin by stating and proving a general lemma regarding

the following construction: given a message M compute ρ(h(M)) where h is a hash function

drawn from some family of hash functions and ρ is a random function. We evaluate this

construction as a PRF. Immediately afterward, we will prove Theorem 6.3.5.

Lemma 6.3.6 [PRF(Hash) as a PRF] Fix n ≥ 1. Let H = {h: Msg → {0, 1}n}

be a family of hash functions. Let δ(m) be a function such that for all distinct pairs

M,M ′ ∈ Msg, with M and M ′ at most mn bits long, Pr
h

R←H
[h(M) = h(M ′)] ≤ δ(m). Let

A be an adversary that asks q queries from Msg, each query of length at most mn bits.

Then

Pr[h R← H; ρ
R← Rand(n, n) : Aρ(h(·)) = 1] − Pr[R R← Rand(Msg, n) : AR(·) = 1]

≤ q2

2
δ(m).

Proof: For economy of notation we encapsulate the initial parts of our experiments into

the probability symbols, rewriting the difference in probabilities above as Pr1[Aρ(h(·)) =

1]− Pr2[AR(·) = 1]. Now condition Pr1 on whether a collision occurred within the selected

function h: define the event HCol to indicate that there is some repeated value among

h(m1), h(m2), . . . , h(mq) within the experiment in Pr1. Then we may rewrite the above as

Pr1[Aρ(h(·)) = 1 | HCol] Pr1[HCol] + Pr1[Aρ(h(·)) = 1 | HCol] Pr1[HCol] − Pr2[AR(·) = 1].

We observe that in the absence of event HCol, the adversary sees the output of a random

function on distinct points; that is, she is presented with random, uncorrelated points over

the range {0, 1}n. Therefore we know

Pr1[Aρ(h(·)) = 1 | HCol] = Pr2[AR(·) = 1].
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Bounding Pr1[HCol] and Pr1[Aρ(h(·)) = 1 | HCol] by 1, we reduce the bound on the obtainable

advantage to Pr1[HCol].

To bound Pr1[HCol], we break the event HCol into the disjoint union of q events; define

HColi to be the event that a collision in h occurs for the first time as a result of the ith

query, then

Pr2[HCol] =
q∑

i=1

Pr2[HColi] .

Now we may easily compute each of the probabilities on the right-hand side above. If we

know no collisions occurred during the first i − 1 queries, we know the adversary has thus

far seen only images of distinct inputs under a random function. Any adaptive strategy

she adopts in this case could be effectively replaced by an equivalent non-adaptive strategy

where she pre-computes her queries under the assumption that the first i−1 queries produce

random points. In other words, any adaptive adversary can be replaced by an equivalent

non-adaptive adversary which would do at least as well. A non-adaptive strategy would

consist of generating all q inputs in advance, and from the collision bound on the hash

family we know Pr1[HColi] must be at most (i− 1)δ(m). Summing over i we get

q∑
i=1

(i− 1)δ(m) ≤ q2

2
δ(m)

which is the desired bound.

And now we may give the proof of Theorem 6.3.5.

Proof: We begin by invoking Lemma 6.3.6 with the various parameters relevant for EMAC:

let the hash family H be the set of functions CBCπ for all π ∈ Perm(n). Let the mes-

sage space Msg be ({0, 1}n)+, and let δ(m) = 4m2/N . Then Lemma 6.3.2 gives that
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Pr
h

R←H
[h(M) = h(M ′)] ≤ δ(m). Therefore we may conclude from Lemma 6.3.6 that

Pr[π R← Perm(n); ρ
R← Rand(({0, 1}n)+, n) : Aρ(CBCπ(·)) = 1] −

Pr[ρ R← Rand(({0, 1}n)+, n) : Aρ(·) = 1] ≤ 2q2m2

N
.

Finally the PRF ρ in the left-hand probability must be replaced with a PRP to properly

realize the EMAC construction. Using Lemma 6.2.1 this costs us an extra q2/2N , and so

our final bound is

q2

2
Vn(m,m) +

q2

2N
,

and if we apply the bound from Lemma 6.3.2 we have

q2

2
4m2

N
+

q2

2N
≤ (2m2 + 1)q2

N
,

as required.

6.4 Security of FCBC

In this section we prove the security of the FCBC construction, obtaining the

same bound we have for ECBC. See Section 6.2 for a definition of FCBCρ1,ρ2,ρ3(M), where

ρ1, ρ2, ρ3 ∈ Rand(n, n).

Theorem 6.4.1 [FCBC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an adversary

which asks at most q queries, each of which is at most mn bits. Assume m ≤ N/4. Then

Pr[π1, π2, π3
R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1] − Pr[R R← Rand({0, 1}∗, n) : AR(·) = 1]

≤ q2

2
Vn(m,m) +

q2

2N

≤ (2m2 + 1)q2

N
.
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Proof: Let us compare the distribution on functions

{ECBCπ1,π2,π3(·) | π1, π2, π3
R← Perm(n)} and {FCBCπ1,σ2,σ3(·) | π1, σ2, σ3

R← Perm(n)} .

We claim that these are the same distribution, so, information theoretically, the adversary

has no way to distinguish a random sample drawn from one distribution from a random

sample from the other. The reason is simple. In the ECBC construction we compose the

permutation π1 with the random permutation π2. But the result of such a composition

is just a random permutation, σ2. Elsewhere in the ECBC construction we compose the

permutation π1 with the random permutation π3. But the result of such a composition

is just a random permutation, σ3. Making these substitutions—σ2 for π2 ◦ π1, and σ3 for

π3 ◦ π1, we recover the definition of ECBC. Changing back to the old variable names, we

now have that that

Pr[π1, π2, π3
R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1]

= Pr[π1, π2, π3
R← Perm(n) : AECBCπ1,π2,π3 (·) = 1]

So the bound of our theorem follows immediately from Theorem 6.3.3.

Since the bound for FCBC exactly matches the bound for ECBC, Corollary 6.3.4 applies

to FCBC as well.

6.5 Security of XCBC

In this section we prove the security of the XCBC construction. See Section 6.2

for a definition of XCBCρ1,ρ2,ρ3(M), where ρ1, ρ2, ρ3 ∈ Rand(n, n) and M ∈ {0, 1}∗.
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We first give a lemma which bounds an adversary’s ability to distinguish between

a pair of random permutations, π1(·), π2(·), and the pair π(·), π(K⊕·), where π is a random

permutation and K is a random n-bit string. This lemma, and ones like it, may make

generally useful tools.

Lemma 6.5.1 [Two Permutations From One] Fix n ≥ 1 and let N = 2n. Let A be

an adversary which asks at most p queries. Then

∣∣∣ Pr[π R← Perm(n); K
R← {0, 1}n : Aπ(·), π(K⊕·) = 1]

− Pr[π1, π2
R← Perm(n) : Aπ1(·), π2(·) = 1]

∣∣∣
≤ p2

N
.

Proof:

We use the game shown in Figure 6.7 to facilitate the analysis. Call the game in that

figure Game 1. We play the game as follows: first, the initialization procedure is executed

once before we begin. In this procedure we set each range point of π as undefined; the

notation Domain(π) represents the set of points x where π(x) is no longer undefined. We

use Range(π) to denote the set of points π(x) which are no longer undefined. We use

Range(π) to denote {0, 1}n −Range(π). Now, when the adversary makes a query X to her

left oracle, we execute the code in procedure π(X). When she makes a query X to her right

oracle, we execute procedure π(K⊕X). We claim that in this setting we perfectly simulate

a pair of oracles where the first is a random permutation π(·) and the second is π(K⊕·).

To verify this, let us examine each of the procedures in turn.
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Initialization:
1: S, T ← {0, 1}n; K

R← {0, 1}n; for all X ∈ {0, 1}n do π(X)← undefined

Procedure “π(X)” (a left-query of X):
2: if X ∈ Domain(π) then bad ← true, return π(X)

3: Y
R← S

4: if Y ∈ Range(π) then bad ← true, Y
R← Range(π)

5: π(X)← Y ; S ← S − {Y }; return Y

Procedure “π(K⊕X)” (a right-query of X):
6: if (K⊕X) ∈ Domain(π) then bad ← true, return π(K⊕X)

7: Y
R← T

8: if Y ∈ Range(π) then bad ← true, Y
R← Range(π)

9: π(K⊕X)← Y ; T ← T − {Y }; return Y

Figure 6.7: Game used in the proof of Lemma 6.5.1. With the shaded text in place the
game behaves like a pair of functions π(·), π(K⊕·). With the shaded text removed the
game behaves like a pair of independent random permutations π1(·), π2(·).

For procedure π(X), we first check to see if X is in the domain of π. We are assuming that

the adversary will not repeat a query, but it is possible that X is in the domain of π if the

adversary has previously queried the second procedure with the string K⊕X. In this case

we faithfully return the proper value π(X). If her query is not in the domain of π we choose

a random element Y from S which we hope to return in response to her query. However, it

may be that Y is already in the range of π. Although we always remove from S any value

returned from this procedure, it may be that Y was placed in the range of π by the second

procedure. If this occurs, we choose a random element from the co-range of π and return

it. For procedure π(K⊕·) we behave analogously.

Note during the execution of Game 1, we faithfully simulate the pair of functions π(·) and

π(K⊕·). That is, the view of the adversary would be exactly the same if we had selected
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a random permutation π and a random n-bit string K and then let her query π(·) and

π(K⊕·) directly.

Now consider the game we get by removing the shaded statements of Game 1. Call that

game Game 2. We claim that Game 2 exactly simulates two random permutations. In

other words, the view of the adversary in this game is exactly as if we had given her

two independent random permutations π1 and π2. Without loss of generality, we assume

the adversary never repeats a query. Then examining procedure π(X), we see each call

to procedure π(X) returns a random element from {0, 1}n which has not been previously

returned by this procedure. This clearly is a correct simulation of a random permutation

π1(·). For procedure π(K⊕X), we offset the query value X with some hidden string K,

and then return a random element from {0, 1}n which has not been previously returned by

this procedure. Note in particular that the offset by K has no effect on the behavior of

this procedure relative to the previous one. Therefore this procedure perfectly simulates a

random independent permutation π2(·).

In both games we sometimes set a variable bad to true during the execution of the game.

In neither case, however, does this have any effect on the values returned by the game.

We name the event that bad gets set to true as BAD. This event is well-defined for both

Games 1 and 2. Notice that Games 1 and 2 behave identically prior to bad becoming

true. One can imagine having two boxes, one for Game 1 and one for Game 2, each box

with a red light that will illuminate if bad should get set to true. These two boxes are

defined as having identical behaviors until the red light comes on. Thus, collapsing the

initial parts of the probabilities into the formal symbols Pr1 and Pr2, we may now say that
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Pr1[Aπ(·),π(K⊕·) = 1 | BAD] = Pr2[Aπ1(·),π2(·) = 1 | BAD]. And since Games 1 and 2 behave

identically until bad becomes true, we know Pr1[BAD] = Pr2[BAD]. We have that

∣∣∣ Pr1[Aπ(·),π(K⊕·) = 1]− Pr2[Aπ1(·),π2(·) = 1]
∣∣∣ =

∣∣∣ Pr1[Aπ(·),π(K⊕·) = 1 | BAD] · Pr1[BAD] + Pr1[Aπ(·),π(K⊕·) = 1 | BAD] · Pr1[BAD] −

Pr2[Aπ1(·),π2(·) = 1 | BAD] · Pr2[BAD] − Pr2[Aπ1(·),π2(·) = 1 | BAD] · Pr2[BAD]
∣∣∣ .

From the previous assertions we know this is equal to

∣∣∣ Pr1[Aπ(·),π(K⊕·) = 1 | BAD] · Pr1[BAD]− Pr2[Aπ1(·),π2(·) = 1 | BAD] · Pr2[BAD]
∣∣∣

=
∣∣∣ Pr2[BAD] ·

(
Pr1[Aπ(·),π(K⊕·) = 1 | BAD]− Pr2[Aπ1(·),π2(·) = 1 | BAD]

)∣∣∣
≤ Pr2[BAD].

Therefore we may bound the adversary’s advantage by bounding Pr2[BAD].

We define p events in Game 2: for 1 ≤ i ≤ p, let BADi be the event that bad becomes

true, for the first time, as a result of the ith query. Thus BAD is the disjoint union of

BAD1, . . . ,BADp and

Pr2[BAD] =
p∑

i=1

Pr2[BADi] .

We now wish to bound Pr2[BADi]. To do this, we first claim that adaptivity does not

help the adversary to make BAD happen. In other words, the optimal adaptive strategy

for making BAD happen is no better than the optimal non-adaptive one. Why is this?

Adaptivity could help the adversary if Game 2 released information associated to K. But

Game 2 has no dependency on K—the variable is not used in computing return values to

the adversary. Thus Game 2 never provides the adversary any information that is relevant
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for creating a good ith query. So let A be an optimal adaptive adversary for making BAD

happen. By the standard averaging argument there is no loss of generality to assume that

A is deterministic. We can construct an optimal non-adaptive adversary A′ by running A

and simulating two independent permutation oracles. Since Game 2 returns values of the

same distribution, for all K, the adversary A′ will do no better or worse in getting BAD

to happen in Game 2 if A′ asks the sequence of questions that A asked in the simulated

run. Adversary A′ can now be made deterministic by the standard averaging argument.

The resulting adversary, A′′, asks a fixed sequence of queries and yet does just as well as

the adaptive adversary A.

Now let us examine the chance that bad is set true in line 2, assuming the adversary has

chosen her queries in advance. As we noted above, this can occur when the adversary asks

a query X after having previously issued a query K⊕X to the second procedure. What is

the chance that this occurs? We can view the experiment as follows: at most i− 1 queries

were asked of the second procedure; let’s name those queries Q = {X1, · · · ,Xi−1}. We wish

to bound the chance that a randomly chosen X will cause K⊕X ∈ Q. But this is simply

asking the chance that K ∈ {X⊕X1, · · · ,X⊕Xi−1} which is at most (i− 1)/N .

What is the chance that bad becomes true in line 4? This occurs when the randomly

chosen Y is already in the range of π. Since Y is removed from S each time the first

procedure returns it, this occurs when the second procedure returned such a Y and it was

then subsequently chosen by the first procedure. Since at most i − 1 values were returned

by the second procedure, the chance is at most (i− 1)/N that this could occur.

The same arguments apply to lines 6 and 8. Therefore we have Pr2[BADi] ≤ 2(i − 1)/N,
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and

Pr2[BAD] ≤
p∑

i=1

2(i− 1)
N

≤ p2

N

which completes the proof.

We may now state and prove the theorem for the security of our XCBC construction. The

bound follows quickly from the the bound on FCBC and the preceding lemma.

Theorem 6.5.2 [XCBC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an adversary

which asks at most q queries, each of which is at most mn bits. Assume m ≤ N/4. Then

∣∣∣ Pr[π1
R← Perm(n); K2,K3 R← {0, 1}n : AXCBCπ1,K2,K3(·) = 1]

− Pr[R R← Rand({0, 1}∗, n) : AR(·) = 1]
∣∣∣

≤ q2

2
Vn(m,m) +

(2m2 + 1)q2

N
≤ (4m2 + 1)q2

N
.

Proof:

One version of the triangle inequality states that for any real numbers a, b, c, |a − b| ≤

|a − c| + |c − b|. We use this to show that the difference above (between XCBC and a

random function) is at most the sum of the distance between XCBC and FCBC plus the

distance between FCBC and a random function. So the above difference is at most

∣∣∣ Pr[π1, π2, π3
R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1] − Pr[R R← Rand({0, 1}∗, n) : AR(·) = 1]

∣∣∣
+

∣∣∣ Pr[π1, π2, π3
R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1]

− Pr[π1
R← Perm(n); K2,K3 R← {0, 1}n : AXCBCπ1,K2,K3(·) = 1]

∣∣∣
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and Theorem 6.4.1 gives us a bound on the first difference above. We now bound the second

difference. Clearly this difference is at most

∣∣∣ Pr[π1, π2, π3
R← Perm(n) : Aπ1(·),π2(·),π3(·) = 1]

− Pr[π1
R← Perm(n); K2,K3 R← {0, 1}n : Aπ1(·),π1(K2⊕·),π1(K3⊕·) = 1]

∣∣∣
since any adversary which does well in the previous setting could be converted to one which

does well in this setting. (Here we assume that A makes at most mq total queries of her

oracles). Applying Lemma 6.5.1 twice we bound the above by 2m2q2/N . Therefore our

overall bound is

q2

2
Vn(m,m) +

q2

2N
+

2m2q2

N
≤ q2

2
Vn(m,m) +

(2m2 + 1)q2

N
.

And if we apply the bound on Vn(m,m) from Lemma 6.3.2 we have

q2

2
4m2

N
+

(2m2 + 1)q2

N
≤ (4m2 + 1)q2

N

as required.

xor-AFTER-last-enciphering does NOT work. We comment that the XCBC-variant

that XORs the second key just after applying the final enciphering does not work. That is,

when |M | is a nonzero multiple of the blocksize, we’d have MACπ,K(M) = CBCπ(M)⊕K.

This is no good. In the attack, the adversary asks for the MACs of three messages: the

message 0 = 0n, the message 1 = 1n, and the message 1 .0. As a result of these three

queries the adversary gets tag T0 = π(0)⊕K, tag T1 = π(1)⊕K, and tag T2 = π(π(1))⊕K.

But now the adversary knows the correct tag for the (unqueried) message 0 . (T0⊕T1), since

this is just T2: namely, MACπ,K(0 . (T0⊕T1)) = π(π(0) ⊕ (π(0)⊕K)⊕(π(1)⊕K)) ⊕K =

π(π(1))⊕K = T2.
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On key-search attacks. If FCBC or XCBC is used with an underlying block cipher (like

DES) which is susceptible to exhaustive key search, then the MACs inherit this vulnerability.

(The same can be said of ECBC and EMAC, except that the double encryption which these

MACs employ would seem to necessitate a meet-in-the-middle attack, which uses a great

deal of memory.) It was such considerations that led the designers of ISO 9797-1 to suggest

triple encryption for enciphering the last block [15]. It would seem to be possible to gain this

same exhaustive-key-search strengthening by modifying XCBC to again XOR the second

key (K2 or K3) with the result of the last encipherment. (If one is using DES, this amounts

to switching to DESX for the last encipherment [16].) We call this variant XCBCX. Likely

one could prove good bounds for it in the Shannon model. However, none of this is necessary

or relevant if one simply starts with a strong block cipher.

Complexity-Theoretic Result. One can once again pass from the information-theoretic

result to the complexity-theoretic one:

Corollary 6.5.3 [XMAC is a PRF] Fix n ≥ 1 and let N = 2n. Let E: Key×{0, 1}n →

{0, 1}n be a block cipher. Then

Advprf
XCBC[E](t, q,mn) ≤ 4m2q2 + q2

N
+ 3 ·Advprp

E (t′, q′), and

Advmac
XCBC[E](t, q,mn) ≤ 4m2q2 + q2 + 1

N
+ 3 · Advprp

E (t′, q′)

where t′ = t + O(mq) and q′ = mq.
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Chapter 7

The NH Hash Family

As we mentioned in Chapter 4, we can search for software-efficient Carter-Wegman

MACs by finding efficient ε-AU hash families. In this chapter we describe the NH hash

family introduced by Black, Halevi, Krawczyk, Krovetz, and Rogaway [6]. NH has a good

compression ratio, small ε, and is very fast on modern processors. The authors go on to

describe a complete MAC they call “UMAC” which will not be discussed here; they use the

FCH construction from Section 4.3.

7.1 Definition of NH

Fix an even n ≥ 2 (the “blocksize”) and a number w ≥ 1 (the “wordsize”). We

define the family of hash functions NH[n,w] as follows. The domain is A = {0, 1}2w ∪

{0, 1}4w ∪ · · · ∪ {0, 1}nw and the range is B = {0, 1}2w . Each function in NH[n,w] is named

by a string K of nw bits; a random function in NH[n,w] is given by a random nw-bit

string K. We write the function indicated by string K as NHK(·).
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Let Uw and U2w represent the sets {0, . . . , 2w−1} and {0, . . . , 22w−1}, respectively.

Arithmetic done modulo 2w returns a result in Uw; arithmetic done modulo 22w returns a

result in U2w. For integers x, y let (x +w y) denote (x + y) mod 2w.

Let M ∈ A and denote M = M1 · · ·M�, where |M1| = · · · = |M�| = w. Similarly,

let K ∈ {0, 1}nw and denote K = K1 · · ·Kn, where |K1| = · · · = |Kn| = w. Then NHK(M)

is defined as

NHK(M) =
�/2∑
i=1

(k2i−1 +w m2i−1) · (k2i +w m2i) mod 22w

where mi ∈ Uw is the number that Mi represents (as an unsigned integer), where ki ∈ Uw is

the number that Ki represents (as an unsigned integer), and the right-hand side of the above

equation is understood to name the (unique) 2w-bit string which represents (as an unsigned

integer) the U2w-valued integer result. For a pictorial representation, see Figure 7.1 on page

106. Henceforth we shall refrain from explicitly converting from strings to integers and back,

leaving this to the reader’s good sense. (We comment that for everything we do, one could

use any bijective map from {0, 1}w to Uw, and any bijective map from U2w to {0, 1}2w .)

When the values of n and w are clear from the context, we write NH instead of

NH[n,w].

7.2 Analysis

We use a slight variant of the usual concept of a ε-AU hash function. Instead of

just proving that NH is ε-AU over all of its domain, we will prove that it is instead “ε-AU

on equal-length strings.”
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Definition 7.2.1 Let H = {h : A → B} be a family of hash functions and let ε ≥ 0 be a

real number. We say that H is ε-AU on equal-length strings if for all distinct, equal-length

strings M,M ′ ∈ A, we have that Prh←H[h(M) = h(M ′)] ≤ ε.

The following theorem bounds the collision probability of NH.

Theorem 7.2.2 For any even n ≥ 2 and w ≥ 1, NH[n,w] is 2−w-AU on equal-length

strings.

Proof: Let M,M ′ be distinct members of the domain A with |M | = |M ′|. We are required

to show

Pr
K←NH

[
NHK(M) = NHK(M ′)

] ≤ 2−w.

Converting the message and key strings to n-vectors of w-bit words we invoke the definition

of NH to restate our goal as requiring

Pr


 �/2∑

i=1

(k2i−1 +w m2i−1)(k2i +w m2i) =
�/2∑
i=1

(k2i−1 +w m′2i−1)(k2i +w m′2i)


 ≤ 2−w

where the probability is taken over uniform choices of (k1, . . . , kn) with each ki in Uw. Above

(and for the remainder of the proof) all arithmetic is carried out in Z/22w .

Since M and M ′ are distinct, mi �= m′i for some 1 ≤ i ≤ n. Since n ≥ 2, and addition and

multiplication in a ring are commutative, we lose no generality in assuming m2 �= m′2. We

now prove that for any choice of k2, · · · , kn we have

Pr
k1∈Uw

[
(m1 +w k1)(m2 +w k2) +

�/2∑
i=2

(m2i−1 +w k2i−1)(m2i +w k2i) =

(m′1 +w k1)(m′2 +w k2) +
�/2∑
i=2

(m′2i−1 +w k2i−1)(m′2i +w k2i)
]
≤ 2−w
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which will imply the theorem. Collecting up the summations, let

y =
�/2∑
i=2

(m2i−1 +w k2i−1)(m2i +w k2i) −
�/2∑
i=2

(m′2i−1 +w k2i−1)(m′2i +w k2i)

and let c = (m2 +w k2) and c′ = (m′2 +w k2). Note that c and c′ are in Uw, and since

m2 �= m′2, we know c �= c′. We rewrite the above probability as

Pr
k1∈Uw

[
c(m1 +w k1)− c′(m′1 +w k1) + y = 0

] ≤ 2−w.

In Lemma 7.2.3 below, we prove that there can be at most one k1 in Uw satisfying

c(m1 +w k1)− c′(m′1 +w k1) + y = 0

yielding the desired bound.

The above proof reduced establishing our bound to the following useful lemma,

which is used again for Theorem 7.6.1.

Lemma 7.2.3 Let c and c′ be distinct values from Uw. Then for any m,m′ ∈ Uw and any

y ∈ U2w there exists at most one k ∈ Uw such that c(k +w m) = c′(k +w m′)+y in Z/22w .

Proof: We note that it is sufficient to prove the case where m = 0: to see this, notice that if

c(k +w m) = c′(k +w m′) + y, then also c(k∗ +w 0) = c′(k∗ +w m∗) + y, where we define

k∗ = (k +w m) and m∗ = (m′ −w m). If follows that if there exist k1 �= k2 satisfying the

former equality, then there must also exist k∗1 �= k∗2 satisfying the latter.

Assuming m = 0, we proceed to therefore prove that for any c, c′,m′ ∈ Uw with c �= c′ and

any y ∈ U2w there is at most one k ∈ Uw such that kc = (k +w m′)c′ + y in Z/22w. Since

k,m′ < 2w, we know that (k +w m′) is either k +m′ or k +m′− 2w, depending on whether
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k + m′ < 2w or k + m′ ≥ 2w respectively. So now we have

k(c− c′) = m′c′ + y and k < 2w −m′ (7.1)

k(c− c′) = (m′ − 2w)c′ + y and k ≥ 2w −m′ (7.2)

A simple lemma (Lemma 7.2.4, presented next) shows that there is at most one solution to

each of the equations above. The remainder of the proof is devoted to showing there cannot

exist k = k1 ∈ Uw satisfying Equation (7.1) and k = k2 ∈ Uw satisfying Equation (7.2) in

Z/22w. Suppose such a k1 and k2 did exist. Then we have k1 < 2w −m′ with k1(c − c′) =

m′c′ + y and k2 ≥ 2w −m′ with k2(c− c′) = (m′ − 2w)c′ + y. Subtracting the former from

the latter yields

(k2 − k1)(c′ − c) = 2wc′ (7.3)

We show Equation (7.3) has no solutions in Z/22w. To accomplish this, we examine two

cases:

Case 1: c′ > c. Since both (k2 − k1) and (c′ − c) are positive and smaller than 2w, their

product is also positive and smaller than 22w. And since 2wc′ is also positive and smaller

than 22w, it is sufficient to show that Equation (7.3) has no solutions in Z. But this clearly

holds, since (k2 − k1) < 2w and (c′ − c) ≤ c′, and so necessarily (k2 − k1)(c′ − c) < 2wc′.

Case 2: c′ < c. Here we show (k2 − k1)(c − c′) = −2wc′ has no solutions in Z/22w . As

before, we convert to Z, to yield (k2 − k1)(c − c′) = 22w − 2wc′. But again (k2 − k1) < 2w

and (c− c′) < (2w − c′), so (k2 − k1)(c − c′) < 2w(2w − c′) = 22w − 2wc′.
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Let Dw = {−2w + 1, . . . , 2w − 1} contain the values attainable from a difference of any two

elements of Uw. We now prove the following lemma, used in the body of the preceding

proof.

Lemma 7.2.4 Let x ∈ Dw be nonzero. Then for any y ∈ U2w, there exists at most one

a ∈ Uw such that ax = y in Z/22w.

Proof: Suppose there were two distinct elements a, a′ ∈ Uw such that ax = y and a′x = y.

Then ax = a′x so x(a− a′) = 0. Since x is nonzero and a and a′ are distinct, the foregoing

product is 22wk for nonzero k. But x and (a − a′) are in Dw, and therefore their product

is in {−22w + 2w+1 − 1, . . . , 22w − 2w+1 + 1}, which contains no multiples of 22w other than

0.

Remarks. The bound given by Theorem 7.2.2 is tight: let M = 0w0w and M ′ = 1w0w and

note that any key K = K1K2 with K2 = 0w causes a collision.

Although we do not require any stronger properties than the above, NH is actually

2−w-∆AU under the operation of addition modulo 22w; only trivial modifications to the

above proof are required. See [17] for a definition of ε-∆AU.

Several variants of NH fail to preserve collision probability ε = 2−w. In particular,

replacing the inner addition or the outer addition with bitwise-XOR increases ε substan-

tially. However, removing the inner moduli retains ε = 2−w (but significantly degrades

performance).
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7.3 The Signed Construction: NHS

To this point we have assumed our strings are interpreted as sequences of unsigned

integers. But often we will prefer they be signed integers. Surprisingly, the signed version

of NH has slightly higher collision probability: we shall now prove that the collision bound

increases by a factor of two to 2−w+1-AU on equal-length strings.

Let Sw and S2w be the sets {−2w−1, . . . , 2w−1 − 1} and {−22w−1, . . . , 22w−1 − 1},

respectively. For this section, assume all arithmetic done modulo 2w returns a result in Sw

and all arithmetic done modulo 22w returns a result in S2w. We are still doing “native”

moduli (ie, moduli are the normal machine operations). The family of hash functions NHS

is defined exactly like NH except that each Mi ∈ {0, 1}w and K ∈ {0, 1}w is bijectively

mapped to an mi ∈ Sw and a ki ∈ Sw.

Theorem 7.3.1 For any even n ≥ 2 and w ≥ 1, NHS[n,w] is 2−w+1-AU on equal-length

strings.

The proof of Theorem 7.3.1 is identical to the proof for Theorem 7.2.2 with two exceptions:

instead of Uw we take elements from Sw, and in the end we use Lemma 7.3.3, which guaran-

tees a bound of two on the number of k1 values satisfying c(m1 +w k1)−c′(m′1 +w k1)+y =

0. To prove Lemma 7.3.3 we begin by restating Lemma 7.2.4 for the signed case. Recall

that Dw = {−2w + 1, . . . , 2w − 1}.

Lemma 7.3.2 Let x ∈ Dw be nonzero. Then for any y ∈ S2w, there exists at most one

a ∈ Sw such that ax = y in Z/22w .

Proof: Notice that the set of possible differences of any two elements of Sw is again Dw.
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(This follows from the fact that the obtainable differences for two elements of any set of

j consecutive integers is always the same, namely {−j + 1, . . . , j − 1}.) Since the proof of

Lemma 7.2.4 depends only on Dw, we may recycle the proof without modification.

Lemma 7.3.3 Let c and c′ be distinct values from Sw. Then for any m,m′ ∈ Sw and any

y ∈ S2w there exist at most two k ∈ Sw such that c(k +w m) = c′(k +w m′) + y in Z/22w .

Proof: As in the proof to Lemma 7.2.3, we again notice it is sufficient to prove the case

where m = 0. We now consider two cases depending on whether m′ < 0 or m′ ≥ 0. We

show in either case there can be at most two values of k in Sw satisfying c(k +w m) =

c′(k +w m′) + y in Z/22w .

Case 1: m′ < 0. Since k ∈ Sw, we know that (k +w m′) is either k + m′ + 2w (if

k + m′ < −2w−1), or k + m′ (if −2w−1 ≤ k + m′). Clearly we cannot have k + m′ ≥ 2w−1.

Substituting these values and moving k to the left yields

k(c − c′) = (m′ + 2w)c′ + y and k + m′ < −2w−1

k(c− c′) = m′c′ + y and k + m′ < 2w−1

But Lemma 7.3.2 tells us there can be at most one solution to each of the above equations.

Case 2: m′ ≥ 0. Since k ∈ Sw, we now have that (k +w m′) is either k + m′ (if k + m′ <

2w−1) or k + m′ − 2w (if k + m′ ≥ 2w−1). Clearly we cannot have k + m′ < −2w−1.

Substituting these values and moving k to the left yields

k(c− c′) = m′c′ + y and k + m′ < 2w−1



99

k(c− c′) = (m′ − 2w)c′ + y and k + m′ ≥ 2w−1

But again Lemma 7.3.2 tells us there can be at most one solution to each of the above

equations.

A Lower Bound. We now show that the bound for NHS is nearly tight by exhibiting two

equal-length messages where the probability of collision is very close to 2−w+1.

Theorem 7.3.4 Let m1 = m2 = 0 and let m′1 = m′2 = −2w−1. Then

Pr
K←NHS

[
NHSK(M) = NHSK(M ′)

] ≥ 2−w+1 − 21−2w

where the M and M ′ are mapped in the usual way from mi and m′i, respectively.

Proof: As usual, assume henceforth that all arithmetic is in Z/22w. Invoking the definition

of NHS, we will show

(k1 +w m1)(k2 +w m2) = (k1 +w m′1)(k2 +w m′2)

has at least 2w+1 − 2 solutions in k1, k2 ∈ Sw. This will imply the theorem. Therefore we

wish to prove

k1k2 = (k1 −w 2w−1)(k2 −w 2w−1)

has at least 2w+1 − 2 solutions. To remove the inner moduli, we let i1 = 1 if k1 < 0 and

i1 = 0 otherwise. Define i2 = 1 if k2 < 0 and i2 = 0 otherwise. Now we may re-write the

above as

k1k2 = (k1 − 2w−1 + i12w)(k2 − 2w−1 + i22w).
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Multiplying the right side out and rearranging terms we have

2w−1(k1(2i2 − 1) + k2(2i1 − 1)) + 22w−2 = 0.

Multiplying through by 4, we arrive at

2w+1(k1(2i2 − 1) + k2(2i1 − 1)) = 0.

We notice that all k1, k2 ∈ Sw such that |k1| + |k2| = 2w−1 will satisfy the above. Now

we count the number of k1, k2 which work: we see that for each of the 2w − 2 choices

of k1 ∈ Sw − {0,−2w−1} there are two values of k2 causing |k1| + |k2| = 2w−1, yielding

2w+1 − 4 solutions. And of course two further solutions are k1 = −2w−1, k2 = 0 and

k1 = 0, k2 = −2w−1. And so there are at least 2w+1 − 2 total solutions.

7.4 Reducing the Collision Probability: Toeplitz Extensions

The hash-function families NH and NHS are not yet suitable for use in a MAC:

they operate only on strings of “convenient” lengths (�w-bit strings for even � ≤ n); their

collision probability may be higher than desired (2−w when one may want 2−2w or 2−4w);

and they guarantee low collision probability only for strings of equal length. We begin

the process of removing these deficiencies, here describing a method to square the collision

probability at a cost far less than doubling the key length. For a description of methods to

correct the remaining deficiencies, see [6].
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7.5 The Toeplitz Approach

To reduce the collision probability for NH or NHS, we have a few options. In-

creasing the wordsize w yields an improvement, but architectural characteristics dictate the

natural values for w. Another well-known technique is to apply several random members of

our hash-function family to the message, and concatenate the results. For example, from

Proposition 4.1.5 we know that if we concatenate the results from, say, four independent

instances of a hash function family with collision probability 2−w, the collision probability

drops to 2−4w. But this solution requires four times as much key material. A superior (and

well-known) idea is to use the Toeplitz-extension of our hash-function families: given one

key we “left shift” to get another key, and we hash again. This is similar to Krawczyk’s

approach mentioned in Section 4.2.

For example, to reduce the collision probability to 2−64 for NH[n, 16], we can

choose an underlying hash key K = K1 . · · · .Kn+6 and then hash with the four derived keys

K1 . · · · .Kn, K3 . · · · .Kn+2, K5 . · · · .Kn+4, and K7 . · · · .Kn+6. This trick not only saves

key material but it can also improve performance by reducing memory accesses, increasing

locality of memory references, and increasing parallelism.

Since the derived keys are related it is not clear that the collision probability

drops to the desired value of 2−64. Although there are established results which yield this

bound (eg,, [19]), they only apply to hashing schemes over fields. Instead, NH operates over

a combination of rings (Z/2w and Z/22w). In Theorem 7.6.1 we prove that the Toeplitz

construction nonetheless achieves the desired bound in the case of NH, and in Theorem 7.7.1

we prove this for NHS as well.
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7.6 The Unsigned Case

We define the hash-function family NHT[n,w, t] (“Toeplitz-NH”) as follows. Fix

an even n ≥ 2, w ≥ 1, and t ≥ 1 (the “Toeplitz iteration count”). The domain A =

{0, 1}2w ∪ {0, 1}4w ∪ · · · ∪ {0, 1}nw remains as it was for NH, but the range is now B =

{0, 1}2wt. A function in NH[n,w, t] is named by a string K of w(n + 2(t − 1)) bits. Let

K = K1 . · · · .Kn+2(t−1) (where each Ki is a w-bit word), and let the notation Ki..j represent

Ki ‖ · · · ‖ Kj. Then for any M ∈ A we define NHT
K(M) as

NHT
K(M) = NHK1..n(M) ‖ NHK3..n+2(M) ‖ · · · ‖ NHK(2t−1)..(n+2t−2)

(M).

When clear from context we write NHT instead of NHT[n,w, t].

The following shows that NHT enjoys the best bound that one could hope for.

Theorem 7.6.1 For any w, t ≥ 1 and any even n ≥ 2, NHT[n,w, t] is 2−wt-AU on equal-

length strings.

Proof: We refer to NHT[n,w, t] as NHT and to NH[n,w] as NH, where the parameters n,

w, and t are as in the theorem statement.

Let M and M ′ be distinct members of the domain A with |M | = |M ′| = w� where � ≤ n.

We are required to show

Pr
K←NHT

[
NHT

K(M) = NHT
K(M ′)

] ≤ 2−wt.

As usual, we view M,M ′, K as sequences of w-bit words, M = M1 ‖ · · · ‖ M�, M ′ =

M ′
1 ‖ · · · ‖ M ′

� and K = K1 ‖ · · · ‖ Kn+2(t−1), where the Mi, M ′
i and Ki are each w-

bits long. We denote by mi, m′i, and ki the w-bit integers corresponding to Mi, M ′
i , and
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Ki, respectively. Again, for this proof assume all arithmetic is carried out in Z/22w. For

j ∈ {1, . . . , t}, define Ej as

�/2∑
i=1

(k2i+2j−3 +w m2i−1)(k2i+2j−2 +w m2i) =
�/2∑
i=1

(k2i+2j−3 +w m′2i−1)(k2i+2j−2 +w m′2i)

and invoke the definition of NHT to rewrite the above probability as

Pr
K←NHT

[E1 ∧E2 ∧ · · · ∧Et]. (7.4)

Call each term in the summations of Ej a “clause” (for example, (k1 +w m1)(k2 +w m2)

is a clause). We refer to the jth equality in Equation (7.4) as Equality Ej .

The idea here is that each Equality represents a collision of M and M ′ under a particular

position of the key. Since the key is being shifted, we are essentially hashing M and M ′

under many different positions of the key. In order for a collision to occur in the big picture,

we require that collisions occur for every position of the key and therefore each Equality

E1, · · · , Et must be simultaneously true.

Without loss of generality, we can assume that M and M′ disagree in the last clause (ie,,

that m�−1 �= m′�−1 or m� �= m′�). To see this, observe that if M and M ′ agree in the last few

clauses, then each Ej is satisfied by a key K if and only if it is also satisfied when omitting

these last few clauses. Hence, we could truncate M and M ′ after the last clause in which

they disagree, and still have exactly the same set of keys causing collisions.

Assume now that m�−1 �= m′�−1. (The proof may easily be restated if we instead have

m� �= m′�. This case is symmetric due to the fact we shift the key by two words.) We

proceed by proving that for all j ∈ {1, . . . , t}, Pr[Ej is true | E1, . . . , Ej−1 are true] ≤ 2−w,

implying the theorem.
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For E1, the claim is satisfied due to Theorem 7.2.2. For j > 1, notice that Equalities E1

through Ej−1 depend only on key words k1, . . . , k�+2j−4, whereas Equality Ej depends

also on key words k�+2j−3 and k�+2j−2. Fix k1 through k�+2j−4 such that Equalities E1

through Ej−1 are satisfied, and fix any value for k�+2j−3. We prove that there is at most

one value of k�+2j−2 satisfying Ej . To achieve this we follow the same technique used in

Theorem 7.2.2. Let

y =
�/2−1∑
i=1

(k2i+2j−3 +w m2i−1)(k2i+2j−2 +w m2i)

−
�/2−1∑
i=1

(k2i+2j−3 +w m′2i−1)(k2i+2j−2 +w m′2i)

and let c = (k�+2j−3 +w m�−1) and c′ = (k�+2j−3 +w m′�−1), and then rewrite Ej as

c(k�+2j−2 +w m�) + y = c′(k�+2j−2 +w m′�).

Since we assumed m�−1 �= m′�−1 we know c �= c′; clearly m�,m
′
�, c, c

′ ∈ Uw so Lemma 7.2.3

tells us there is at most one value of k�+2j−2 satisfying this equation, which completes the

proof.

7.7 The Signed Case

Now we consider the Toeplitz construction on NHS, the signed version of NH. The

only significant change in the analysis for NHT will be the effect of the higher collision

probability of NHS.

We define the hash family NHST[n,w, t] (“Toeplitz-NHS”) exactly as we did for

NH, but we instead use NHS as the underlying hash function. Now we restate Theorem 7.6.1

for the signed case.
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Theorem 7.7.1 For any w, t ≥ 1 and any even n ≥ 2, NHST[n,w, t] is 2t(−w+1)-AU on

equal-length strings.

Proof: The proof is precisely the same as the proof to Theorem 7.6.1 except we use

Theorem 7.3.1 in place of Theorem 7.2.2 and Lemma 7.3.3 in place of Lemma 7.2.3. Then,

using the same notation as Theorem 7.6.1, PrK←NHST [Ej | E1, . . . , Ej−1] ≤ 2−w+1, and so

PrK←NHST [E1 ∧E2 ∧ · · · ∧Et] ≤ 2t(−w+1), yielding our result.

7.8 Performance

The NH hash family is very fast: the operations we perform are simple and typically

take only a few cycles each on a modern CPU. There are no moduli by primes (which often

requires an expensive division operation). In addition, we are able to exploit certain SIMD

architectures to go even faster. We now discuss these issues.

Basic NH. The preferred embodiment for NH on a processor without SIMD instructions

is shown in Figure 7.1. The only requirement from the architecture is that we have a

multiplication instruction which can multiply two 32-bit words to a 64-bit result (or more

generally, the architecture enables two machine-words to be multiplied such that we obtain

the full result). This assumption was also made in [14].

Exploiting SIMD. Certain architectures, such as Motorola’s AltiVec and Intel’s MMX

architectures, provisions are made for multimedia support. Typically a “vector” datatype

is made available, and certain vector operations such as vector-addition and vector-dot-

product are fast single instructions. The intent here is to make sound and graphics efficient
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+64

64-Bit Hash Result

64

32 32

64

32

Figure 7.1: The basic NH. In this example, the word size w is 32 bits. Here we use four
32-bit additions, two 32-bit to 64-bit multiplications, and one 64-bit addition to hash our
message.

(for example, to transform a point in 3-space we often multiply the 3-coordinate vector which

represents the point by a 4× 4 matrix). A nice feature of NH is that these instructions can

be appropriated for its implementation as well. See Figure 7.2. It is quite remarkable that

only three MMX instructions are needed to implement the operation depicted. These three

instructions are two vector additions (paddwd) and one dot-product (pmaddwd). There is

a slight amount of additional overhead to add the results into a single 32-bit result at the

end as well. As one might guess, this SIMD version of NH is the fastest implementation we

tested.

Comments. We should note that the collision probability for the “basic” NH with w = 32

listed above is either 2−32 or 2−31 depending on whether unsigned or signed integers are

used, respectively. For the SIMD version using Intel’s MMX, the collision probability is

2−15 since signed integers are the only option for this instruction set. Therefore, in spite
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Figure 7.2: The SIMD version of NH. In this example, the word size w is 16 bits. For the
Intel MMX instruction set we can implement this picture with three MMX instructions.

of the fact we get extreme speeds for the MMX case, we will most likely have to use our

Toeplitz extension to reduce the collision probability which of course costs us in terms of

performance. Fortunately, there are ways to efficiently code the Toeplitz-extended hash

family so that using a Toeplitz iteration count of 2 does not actually cost us twice as much

time as a single NH invocation.

Timings. In the UMAC paper, the authors implement four UMAC variants using four

different parameters for NH. These are as follows:

• UMAC-STD-30 –This is basic NHS with w = 32.

• UMAC-STD-60 –This is basic NHS with w = 32 and a Toeplitz iteration count of 2.

• UMAC-MMX-30 –This is the Intel MMX version of NH with w = 16 and a Toeplitz

iteration count of 2.
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• UMAC-MMX-60 –This is the Intel MMX version of NH with w = 16 and a Toeplitz

iteration count of 4.

Although UMAC is slightly slower than the underlying NH hash, for reasonably long mes-

sages the time to hash dominates the time to MAC. Therefore we examine the speed of

these UMAC versions to get an idea of how fast NH is under the options listed above.

The tests were implemented on three representative hardware platforms: a 350

MHz Intel Pentium II, a 200 MHz IBM/Motorola PowerPC 604e, and a 300 MHz DEC Alpha

21164. We also implemented the UMAC-MMX variants on a pre-release PowerPC 7400

equipped with AltiVec SIMD instructions and running at 266 MHz. Performing well on

these platforms is important for acceptance of NH but also is an indication that it will work

well on future architectures. The SIMD operations in the MMX and AltiVec equipped

processors and the 64-bit register size of the Alpha are both features expected to become

more prevalent in future processors.

All tests were written in C with a few functions written in assembly. For the

Pentium II assembly was written for RC6, SHA-1, and the NH hash code. For the PowerPC

604e assembly was written for just NH. In both cases, the number of lines of assembly

written was small—about 70–90 lines. No assembly code was written for the Alpha or

AltiVec implementations.

For each combination of options we determined the scheme’s throughput on var-

iously sized messages, eight bytes through 512 KBytes. The experimental setup ensured

that messages resided in level-1 cache regardless of their length. For comparison the same

tests were run for HMAC-SHA1 [11] and the CBC-MAC of a fast block cipher, RC6 [25].
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Pentium II PowerPC Alpha
UMAC-STD-60 1.49 (1.93) 1.81 (1.58) 1.03 (2.78)
UMAC-STD-30 2.79 (1.03) 2.28 (1.26) 1.79 (1.60)
UMAC-MMX-60 2.94 (0.98) 4.21 (0.66) 0.287 (10.0)
UMAC-MMX-30 5.66 (0.51) 7.20 (0.39) 0.571 (5.02)
UMAC-MMX-15 8.47 (0.33) 10.5 (0.27) 0.981 (2.85)
CBC-MAC-RC6 0.162 (17.7) 0.210 (13.7) 0.068 (42.5)
HMAC-SHA1 0.227 (12.6) 0.228 (12.6) 0.117 (24.5)

Figure 7.3: UMAC Performance. Peak performance for three architectures measured in
Gbits/sec (and cycles/byte). The Gbits/sec numbers are normalized to 350 MHz.

The graph in Figures 7.3 and 7.4 show the throughput of the indicated versions of

UMAC, as well as HMAC-SHA1 (a very fast software-based MAC) and CBC-MAC-RC6, all

run on a Pentium II. The table gives peak throughput for the same MACs, but does so for

all three architectures. When reporting throughput in Gbits/second the meaning of “Gbit”

is 109 bits (as opposed to 230 bits). The performance curves for the Alpha and PowerPC

look similar to the Pentium II—they perform better than the reference MACs at around

the same message length, and level out at around the same message length.

In general, the amount of work spent hashing increases as word size decreases

because the number of arithmetic operations needed to hash a fixed-length message is

inversely related to word size. The performance of UMAC on the Alpha demonstrates

this clearly. On UMAC-MMX-60 (w = 16) it requires 10 cycles per byte to authenticate

a long message, while it requires 2.8 for UMAC-STD-60 (w = 32) and only 1.7 for a

test version which uses w = 64 bit words. Another reason UMAC-MMX-60 does less

wellon non-SIMD processors is because of additional overhead required to load small words

into registers and then sign-extend or zero the upper bits of those registers. Perhaps the

most surprising experimental finding was how, on some processors, performance could be
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Figure 7.4: Log-scale graph of performance over various message lengths on a Pentium II,
measured in machine cycles/byte. The lines in the graph correspond to the following MACs
(beginning at the top-right and moving downward): UMAC-MMX-30, UMAC-MMX-60,
UMAC-STD-30, UMAC-STD-60, HMAC-SHA1 and CBC-MAC-RC6.

dramatically improved by going from words of w = 32 bits to words of w = 16 bits. Such

a reduction in word size might appear to vastly increase the amount of work needed to

get to a given collision bound. But a single MMX instruction which UMAC uses heavily

can do four 16-bit multiplications and two 32-bit additions, and likewise a single AltiVec

instruction can do eight 16-bit multiplications and eight 32-bit additions. This is much

more work per instruction than the corresponding 32-bit instructions. UMAC-STD uses

only one-tenth as much hash key as UMAC-MMX to achieve the same compression ratio.
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Appendix A

Birthday Bounds

The following discussion was written by Mihir Bellare (taken from Appendix A of

[3]), with some additional details inserted.

We consider the classical “occupancy problem” of throwing q balls at random into

N bins. The i-th ball is equally likely to land in bins 1, 2, · · · , N . We denote by C(N, q)

the probability that at least two balls end up in the same bin after all q have been thrown.

Before stating and proving our main theorem, we establish some basic inequalities

which will prove useful in that proof.

Proposition A.0.1 For x ∈ [0, 1],

(
1− 1

e

)
x ≤ 1− e−x ≤ x.

Proof: We first consider the right-hand inequality. The Taylor expansion for e−x is

e−x = 1− x + x2/2! − x3/3! + · · · .
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Figure A.1: A plot of (1− 1/e)x and 1− e−x. The former is smaller on the interval [0, 1].

Since we are guaranteed x ∈ [0, 1], we can be sure the sum x2/2!−x3/3!+ · · · is nonnegative

and infer that e−x ≥ 1 − x. This immediately yields 1 − e−x ≤ x, as desired. (Note that

this inequality is actually true for all real x, though we don’t require it.)

The left-hand inequality is a bit more involved. We wish to show (1 − 1/e)x ≤ 1 − e−x

on the interval [0, 1]. Note that we have equality for x = 0 and x = 1. Also note that

(1 − 1/e)x is a line and that 1 − e−x is concave down on [0, 1]. (To verify this, take the

second derivative of 1− e−x, which is −e−x, and note that it is always negative.) There is

only one way for a curve to coincide with a line in two points and yet be concave down, and

that is if the curve exceeds the line between these two points.

Now we proceed to the main result of this section. We bound C(N, q) above and

below.
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Theorem A.0.2 Let C(N, q) be the probability that at least two balls occupy the same

bin when we throw q ≥ 1 balls randomly into N ≥ q bins. Then

1− e−q(q−1)/2N ≤ C(N, q) ≤ q(q − 1)
2N

,

and for 1 ≤ q ≤ √2N ,

0.316
q(q − 1)

N
≤ C(N, q) ≤ 0.5

q(q − 1)
N

.

Proof: The upper bound is easy. Define the event Ci to mean that the i-th ball lands in

an occupied bin. Using the sum bound, we can proceed as follows:

C(N, q) = Pr[C1 ∨ C2 ∨ · · · ∨ Cq]

≤ Pr[C1] + Pr[C2] + · · ·+ Pr[Cq]

≤ 0/N + 1/N + · · ·+ (q − 1)/N

=
q(q − 1)

2N
.

The lower bound is a bit harder. Let the event Di indicate that there is no collision among

the first i balls. It’s easy to compute Pr[Di+1 | Di]: since exactly i bins are occupied the

chance that we will miss all of them is exactly (N − i)/N . The probability we’re interested

in is the opposite of Dq (ie, that some two balls do collide). We compute

1− C(N, q) = Pr[Dq]

= Pr[Dq | Dq−1] Pr[Dq−1 | Dq−2] · · ·Pr[D1]
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and since Pr[D1] = 1,

=
q−1∏
i=1

Pr[Di+1 | Di]

=
q−1∏
i=1

(
1− i

N

)
.

We now use Proposition A.0.1 to substitute e−i/N for (1 − i/N) above. And so the above

product is at most

q−1∏
i=1

e−i/N = e−1/N−2/N−···−q(q−1)/N = e−q(q−1)/2N .

This completes the first of the lower bounds in the theorem statement. Next we require the

condition that q ≤ √2N . This means q(q− 1)/2N ≤ 1 and so we can use the other piece of

the inequality from Proposition A.0.1 to get

C(N, q) ≥
(

1− 1
e

)
q(q − 1)

2N
.

Since (1− 1/e)/2 > 0.316, we have our result.


