
Side-Channel Attacks on Symmetric Encryption Schemes:

The Case for Authenticated Encryption

John Black
University of Nevada, Reno

jrb@cs.unr.edu, http://www.cs.unr.edu/˜jrb

Hector Urtubia
University of Nevada, Reno

urtubia@cs.unr.edu, http://mrbook.org

Abstract

Vaudenay recently demonstrated side-channel at-
tacks on a common encryption scheme, CBC Mode
encryption, exploiting a “valid padding” oracle
[Vau02]. Mirroring the side-channel attacks of Ble-
ichenbacher [Ble98] and Manger [Man01] on asym-
metric schemes, he showed that symmetric encryp-
tion methods are just as vulnerable to side-channel
weaknesses when an adversary is able to distinguish
between valid and invalid ciphertexts.

Our paper demonstrates that such attacks are per-
vasive when the integrity of ciphertexts is not guar-
anteed. We first review Vaudenday’s attack and
give a slightly more efficient version of it. We then
generalize the attack in several directions, consider-
ing various padding schemes, other symmetric en-
cryption schemes, and other side-channels, demon-
strating attacks of various strengths against each.
Finally we argue that the best way to prevent all
of these attacks is to insist on integrity of cipher-
texts [BN00] in addition to semantic security as the
“proper” notion of privacy for symmetric encryption
schemes.

1 Introduction

Following the chosen-ciphertext attack of Bleichen-
bacher, RSA PKCS #1 v.1 was abandoned in favor
of a scheme with chosen-ciphertext security (CCA)
[Ble98, Pub98]. It is now expected that any new
public-key cryptosystems will provide CCA security.
However most symmetric encryption schemes at-

tain, at best, semantic security against chosen plain-
text attacks [BDJR97].

Vaudenay recently demonstrated a side-channel at-
tack against CBC Mode encryption with CBC-PAD
[Vau02, BR96]. Given an oracle which reveals
whether or not the plaintext (corresponding to some
altered ciphertext) is correctly padded, he showed
that one can efficiently recover the plaintext.

A reasonable reaction to this attack is to seek other
padding methods or other encryption schemes which
do not succumb to this particular attack. However,
as we show, this type of weakness is pervasive: it
occurs for many natural padding schemes, and in
most common encryption schemes. Vaudenay’s pa-
per focuses on the CBC-PAD padding method and
comments on a few others. In this paper we exam-
ine several classes of padding schemes and show it
is actually quite rare for CBC to retain semantic
security in the presence of a “valid padding” ora-
cle when using any of these schemes, including the
commonly-used 10∗ padding where one pads by ap-
pending a single 1 bit and then zero or more 0 bits.
We also show that all other commonly-used sym-
metric encryption schemes are similarly vulnerable
in the prescence of a “valid padding” oracle.

It is most-likely possible to get around these weak-
nesses by ridding ourselves of the oracle in one way
or another. However one can easily imagine other
oracles which might arise in practice which would
provide similar powers to the adversary if he retains
the ability to to freely induce predictable changes
in the plaintext via modification of the ciphertext.
For example, imagine a cryptographic relay which
accepts ciphertext encrypted by one scheme and
outputs ciphertext under another [JDK+91]. If the

first scheme uses some padding method and the sec-
ond is length-revealing, we effectively have an oracle
which divulges the length of the padding used by the
first scheme. There are doubtless other examples as
well. Therefore our view is this: these weaknesses
are not faults of padding schemes or relays or any-
thing of this nature; they follow directly from the
fact that an adversary can reliably and efficiently
produce valid ciphertexts which have a predictable
relationship with the underlying plaintext, even if
he knows virtually nothing about the plaintext.

Several schemes have been proposed to provide au-
thenticity of ciphertexts at a very low cost [BN00,
Jut01, RBBK01]. Our hope is that, similar to
the public-key domain, researchers and practition-
ers will insist on this stronger notion of security for
symmetric encryption to obviate the simple weak-
nesses listed above.

Contributions. This paper makes a number of
observations concerning the power of possessing a
valid-padding oracle. Our starting point is the at-
tack on CBC Mode encryption with CBC-PAD from
[Vau02]. We begin by reviewing this attack. Then

• We describe an improvement to the attack
which finds the length of the padding in lg(b)
oracle queries whereas [Vau02] used an ex-
pected 128b queries (here b is the number of
bytes in a block).

• We generalize padding methods by exploring
other types of natural schemes which variously
resist and succumb to similar attacks.

• We exhibit a padding method which essentially
removes the oracle, and therefore defeats the
attack altogether.

• We generalize the attack to other encryption
schemes showing that other common methods
for symmetric encryption (CTR, OFB, CFB,
and stream ciphers) all possess the required
weaknesses which permit this type of attack.

Finally, we argue that such side-channels are bound
to crop up again and again as long as we allow
the adversary to freely manipulate ciphertexts, and
we argue in favor of adopting the combination of
chosen-plaintext security and integrity of cipher-
texts [BN00] as the standard requirement for sym-
metric encryption schemes, even when privacy is the
only goal.

Related Work. CBC Mode encryption has the
property that flipping a particular bit in the i-th
block of ciphertext will flip the same bit in the i+1-
st block of underlying plaintext. The fact that this
property can be exploited by attackers has been
known for some time. Bellovin published an at-
tack on CBC where the IV was altered to effect a
change in the first block of the received plaintext
[Bel96]. Also in [Bel96], an attack (very similar to
the attacks in this paper) is described which recov-
ers plaintext bits by sending altered ciphertexts to
a TCP peer which then acts as a validity oracle for
each packet by either dropping it or returning an
ACK for it. A cleaner example of this attack is de-
scribed in an attack on WEP by Borisov, Goldberg,
and Wagner [BGW01].

Bleichenbacher demonstrated that side-channels in
the asymmetric setting could be used to mount a
chosen-ciphertext attack against RSA PKCS #1 v.1
[Ble98]. Bleichenbacher’s side-channel was a “valid
formatting” oracle similar in spirit to the “valid
padding” oracle used by Vaudenay. Manger fol-
lowed this by showing how RSA PKCS #1 v.2, a
scheme with chosen-ciphertext security (in the ran-
dom oracle model), could be similarly exploited as-
suming a different side-channel [Man01]. Manger’s
side-channel requires an oracle indicating that an er-
ror occurred between the decryption and integrity-
check phases of the algorithm. In a more theoretical
setting, Krawczyk showed how a stream encryption
mode (under an unusual plaintext encoding) com-
bined with a MAC would yield a side-channel at-
tack based on message validity if the order was en-
code, then authenticate, then encrypt [Kra01]. His
goal was to show that this ordering of primitives
was not generically secure. Vaudenay was the first
to show that message padding might create similar
side-channels under CBC Mode encryption [Vau02].
His attack requires an oracle indicating whether or
not the padding of an underlying plaintext is valid.

2 Preliminaries

Notation. For any nonnegative integer n, let
{0, 1}n represent the set of bit strings of length n.
Let ε represent the empty string. For two strings A
and B we write A ‖B or simply AB to denote their
concatenation. For the XOR of A and B we write
A⊕B. Let ||A|| denote the length of A in bytes,

and |A| the length of A in bits. We write A[i] to
mean the i-th bit of A, counting from zero, starting
from the leftmost bit of A. We write A[i . . . j] to
mean the substring of A starting at position i and
ending at position j.

In general, if S is a set we write S+ to mean 1 or
more repetitions of elements from S; that is, the set
{s1s2 · · · sm | m > 0, si ∈ S, 1 ≤ i ≤ m}.

A function family from n-bits to n-bits is a map
E : K × {0, 1}n → {0, 1}n where K is a finite set of
strings, typically the set of strings all of some fixed
length. It is a block cipher if each EK(·) = E(K, ·) is
a permutation. We can build an encryption scheme
from a block cipher using any of various standard
modes of operation.

CBC Mode Encryption. Given a block cipher
E : {0, 1}k × {0, 1}n → {0, 1}n, a k-bit block-
cipher key K, and some message M ∈ ({0, 1}n)+,
we write M as the concatenation of � strings each
n-bits long, M = M1M2 · · ·M�. To encrypt M un-
der key K, we randomly select an n-bit value, the
IV, and set C0 ← IV. We then compute Ci ←
EK(Mi⊕Ci−1) for each 1 ≤ i ≤ �. The ciphertext
is (IV, C1C2 · · ·C�). In the standard model, CBC
is provably-secure against chosen-plaintext attack
with good bounds: assuming the underlying block
cipher is “good,” an adversary has little chance to
distinguish the CBC Mode encryption of a given
plaintext from the CBC Mode encryption of ran-
dom bits. (For a precise definition and proof, see
[BDJR97].)

Padding. The above description assumes that the
length of M is a multiple of the block size n. In
practice this may not be the case, and therefore
it is common to apply a padding function PAD :
{0, 1}∗ → ({0, 1}n)+ to M . We say a padding func-
tion is reversible if the function is injective; in other
words, reversible means one can always uniquely re-
cover M given PAD(M). Most applications require
the padding function to be reversible. Often the
padding function brings |M | up to the next multiple
of n, but nothing precludes expanding M even fur-
ther; indeed, SSL will sometimes add several blocks
of padding when using CBC-PAD.

We consider two classes of padding: byte-oriented
padding and bit-oriented padding. Byte-oriented
padding functions assume that both n and |M | are

multiples of 8. Bytes are then appended to the end
of M in some well-defined manner to bring its length
up to a multiple of n. Bit-oriented padding func-
tions take a message M of any bit-length and ap-
pend bits to M to bring |M | up to a multiple of n.

3 The Attack of Vaudenay and an
Improvement

We now sketch Vaudenay’s attack from [Vau02]
which will serve as a warm-up for later discussion.
We also show an improvement which deterministi-
cally finds the length of the padding in lg(b) oracle
queries, where b is the number of bytes per block.

CBC-PAD. The well-known CBC-PAD function
[BR96] is byte-oriented: CBCPAD : ({0, 1}8)+ →
({0, 1}n)+. Assume |M | is a multiple of 8, and let
n = 8b (for virtually all real block ciphers, b is at
most 32). Let p = ||M || mod b, so p is the number
of bytes we must pad (assuming we wish to add the
least possible amount of padding). If p = 0, we set
p = b. Finally, we write p as a byte and append it p
times to the end of M . So if there is one byte left to
pad, we append a single 01 to M ; if there are two
bytes of pad needed we append 02 02 to M , and
so forth. Clearly this method is reversible: given
CBCPAD(M) we can uniquely recover M .

Although CBCPAD(·) is reversible, it is not bijec-
tive: what should the receiver do after decryption
if he finds that the recovered plaintext is not in the
function’s range? That is, what is the proper action
if the padding is invalid? This of course depends on
an implementation detail. Some protocols specify
that the session be torn down (SSL/TLS), others
just log the error (ESP [KA98]), and others return
an error message (WTLS [Wir01]). Vaudenay re-
cently made the observation that if one can ascer-
tain somehow the padding error status, it can be
used as a side-channel to mount a chosen-ciphertext
attack in the symmetric-key setting [Vau02]. He
showed how, given an oracle O which accepts a ci-
phertext and returns either VALID or INVALID de-
pending on whether the corresponding plaintext is
properly padded, one can recover the underlying
plaintext. His attack requires a single ciphertext,
and a number of oracle queries proportional to the
number of bytes in the padded message.

�� � � ��

�

EK EK

M�

C�−1 C�

Figure 1: CBC Mode Decryption. Fixing C� and flipping any bit of C�−1 flips the corresponding bit
of M�.

The Attack. Let’s say we have an oracle O as
described above: O accepts ciphertexts, decrypts
using CBC under the secret key K, and recovers
the corresponding plaintext M ′. If M ′ is correctly
padded (ie, M ′ = CBCPAD(M) for some M), then
O returns VALID. Otherwise O returns INVALID.
We now mount a chosen-ciphertext attack on CBC
Mode encryption. (A point of clarification: nor-
mally a “chosen-ciphertext attack” implies that we
have access to a decryption oracle which supplies
the plaintexts for ciphertexts of our choice. Here
we have something different: an oracle which does
accept ciphertexts but returns only a bit. It is im-
portant to keep this distinction in mind.)

The attack works as follows: we obtain some ci-
phertext C under the secret key K. For simplicity,
suppose C is two blocks (IV, C1). (The attack gen-
eralizes easily to longer ciphertexts.) As shown in
Figure 1, the oracle will compute the CBC Mode de-
cryption of C in the standard way, and any changes
to IV will cause changes to the plaintext block M1.
Initially, M1 is a correctly-padded block of plain-
text. However, by manipulating the bits of IV we
can cause predictable changes within M1 and infer
a great deal about its contents.

Vaudenay’s attack works in two phases. First he
randomly flips bits in IV until O(C) = VALID.
Once this occurs, we know we must have induced
an M ′

1 with a proper CBC-PAD. That is, our in-
duced M ′

1 must end in 01, or 02 02, or 03 03
03, etc. The probability that each occurs is 1/28,
or 1/216, or 1/224, etc., respectively. The event
O(C) = VALID should therefore occur in at most
128 expected queries, and once it does it is highly-
likely that we induced a 01 in the final byte of M ′

1.
(The less-probable cases can be detected with a few
additional oracle queries.) And once we know the
value of the final byte in the induced M ′

1, we know

the value of the final byte in M1: say IV′ is the IV
which induced a 01 in the final byte of M ′

1. Then the
final byte of M1 is simply the final byte of IV′⊕ 01.

Vaudenay then iterates the method using the above
technique as a subroutine. He therefore decrypts a
block in about 128b expected oracle queries (recall
b is the number of bytes per block).

An Improvement. While our main aim in this pa-
per is to show how widely we can generalize the
above ideas, we first note a simple improvement
to the attack above which greatly improves its effi-
ciency for short messages.

Suppose we again have a padding oracle O and a
ciphertext C = (IV, C1). We know that M1 has
a valid CBC-PAD as before. We mount a binary
search to discover which of the b possible pad-values
was used, as follows: first, notice that inducing a
change in any padding byte (except the final byte)
of M1 will always cause O to return INVALID. Also
notice that inducing a change in any message byte
(ie, a non-padding byte) of M1 always causes O to
return VALID. We may therefore perform a binary
search by altering a single byte at a time. Number
the bytes of IV starting from the right end, begin-
ning from 1. That is, write IV = ibib−1 · · · i2i1,
where each ij is a byte. Let IVm be equal to IV but
with its m-th byte complemented (complementation
is an arbitrary choice; any change to the m-th byte
will do). That is, IVm = ib · · · im+1imim−1 · · · i1,
where im denotes bit complementation. We use val-
ues of m from b down to 2 to find the length of the
padding in M1. Variables IV, C1, and O are as-
sumed to be global, and the algorithm is initially
invoked with Find-Len(b, 1).

Find-Len(i, j)
if i = j then return i

m← � i+j
2 �

if O(IVm, C1) = INVALID then

Find-Len(i, m)
else

Find-Len(m− 1, j)

The algorithm finds the length of the padding in
lg(b) steps where b is the length of a block in bytes
and lg() is log2(). So our improved algorithm first
finds the length of the padding as above, then uses
Vaudenay’s method on the remainder of the block.
If we assume the length of the padding is uniformly
distributed between 1 and b, this new algorithm
finds the plaintext associated to a padded block in
an expected 64b + lg(b) oracle queries. This is a
substantial improvement for short messages only.

4 Other Padding Methods

While CBC-PAD is certainly a common byte-
oriented method, there are several other schemes in
common use, and some natural ones not in use. We
now survey the most natural schemes and classify
their vulnerabilities to this type of attack. The pur-
pose here is to demonstrate that virtually all com-
mon padding schemes are vulnerable to some kind of
attack based on “valid padding” side-channels un-
der unauthenticated CBC Mode encryption. Our
results are summarized in Figure 2.

For each scheme listed here, we focus on attacking
single block messages where the ciphertext looks like
(IV, C1). This generalizes easily to multi-block mes-
sages since we can attack each block individually by
using the prior block of ciphertext as an IV. That
is, given ciphertext (IV, C1, C2, · · ·), we attack block
Cj by attacking the two-block ciphertext (Cj−1, Cj)
where here Cj−1 is acting as the IV.

ESP Padding (ESP-PAD). The padding scheme
for IPSec’s Encapsulated Security Payload is similar
to the CBC-PAD method we saw above. It is a
reversible byte-oriented padding scheme; if we have
to pad p > 0 bytes, we append the bytes 01 02 ...
up to p. As mentioned in [Vau02], a valid-padding
oracle for this method also allows recovery of the
plaintext; our improvement from Section 3 works
here as well.

XY Padding (XY-PAD). This byte-oriented
method uses two distinct public constant byte-
values X and Y . We transform M by first append-
ing X one time (mandatory), then adding the nec-
essary number of Y values. Clearly this method is
reversible: M is easily recovered after padding by
removing all trailing Y bytes and the last trailing
X byte. And once again, this method succumbs to
the attacks described above, including our improve-
ment from Section 3, although in this case we must
take care to avoid converting X to Y when we per-
form the IV alteration; since we are not constrained
in how we make this alteration, and since we know
the public values X and Y , we can simply avoid this
problem.

Obligatory 10∗ Padding (OZ-PAD). The so-
called “obligatory 10∗ padding” is a bit-oriented
padding scheme; it works as follows: append a 1-
bit to M (mandatory) and then zero or more 0-bits
as necessary to fill out the block. This is the bit-
oriented version of the XY padding method above,
and is similarly reversible: remove all trailing 0-bits
and the last 1-bit.

But suddenly it seems the attacks we discussed
above no longer apply. The key difference is this:
virtually every plaintext string is a correctly-padded
string since the only requirement for validity is that
there is a 1-bit somewhere.

This is encouraging in some sense: many standards
recommend obligatory 10∗ padding and therefore
seem more robust against these side-channel at-
tacks. However, there is one plaintext block which
is invalid under this padding definition: 0n. Sup-
poseO were an oracle which accepts CBC-encrypted
ciphertext and returns VALID whenever the final
block of the corresponding plaintext contained at
least one 1-bit, and INVALID when it was all ze-
roes. It’s clear that this, once again, enables one
to entirely recover the plaintext, but there is no ef-
ficient method for recovering the plaintext. The
problem is this: in order to get the oracle to report
INVALID we must essentially ask O(IV′, C1) where
IV′ = IV⊕M1. In other words, we must guess what
M1 is in order to get a response of INVALID. There-
fore, our oracle is simply answering “yes” or “no” to
our guesses about what the plaintext block is. If we
assume the plaintext is uniform and random, it will
take an expected 28b−1 guesses to guess correctly.

Bit- Byte- Loss of # Queries to Find Exp # Queries to
Scheme Oriented Oriented Semantic Security? Padding Length Recover Plaintext

CBC-PAD × Y lg(b) 64b + lg(b)

ESP-PAD × Y lg(b) 64b + lg(b)

XY-PAD × Y lg(b) 64b + lg(b)

OZ-PAD × Y n/a 28b−1

BOZ-PAD × Y lg(b) 64b + lg(b)

PAIR-PAD × Y n/a 28b−8

ABYT-PAD × N n/a n/a

ABIT-PAD × N n/a n/a

Figure 2: Security in the Presence of a Valid-Padding Oracle. For each padding scheme in the
paper, we list which induce a loss of semantic security in the presence of a valid-padding oracle. Also, when
the attack first obtains the padding length, we list the number of queries needed to find it for a single block
(in terms of b, the number of bytes per block). The expectation in the final column is computed assuming
all plaintext lengths are equally likely.

However, this is not to say that such an oracle is
useless. In fact, in the presence of such an ora-
cle, CBC Mode encryption does not retain seman-
tic security. One incarnation of semantic security
plays the following game: we submit a value to an
oracle and it encrypts either the value we submit-
ted or some random value. If we can guess which
choice it made with probability much larger than
1/2, we win. Clearly in the presence of our valid-
padding oracle we can win this game for CBC en-
cryption with probability essentially 1. We merely
ask the encryption oracle to encrypt some random
block M1, it returns ciphertext (IV, C1), then if
O(IV⊕M1, C1) = INVALID we know M1 was (with
overwhelming probability) the value encrypted.

But what does this mean in practice? Well, if
we have a set of candidate blocks which we sus-
pect might match the plaintext for a given cipher-
text block, the valid-padding oracle will allow us
to determine which of them, if any, is the correct
one. This is perhaps not as far-fetched as it sounds:
natural-language plaintexts commonly contain salu-
tations, addresses, and other standard sections in
their bodies. Structured documents will often con-
tain headers with a well-known format. It should
be desirable to hide all of this information!

As a final comment: one could eliminate this prob-
lem by simply defining the block 0n to be a valid

block of plaintext and (say) removing it. But we
must then also be careful to define what happens
to the preceding block (if any). Do we also remove
padding bits from it or do we stop? One virtue of
10∗ padding is that it is simple; adding complexity
to its definition merely increases the chance that we
will implement O via implementation errors.

A Byte-Oriented Version of 10∗ Padding

(BOZ-PAD). It might be tempting to implement
10∗ padding in a byte-oriented manner by append-
ing 0x80 once and then as many 00 bytes as needed
to fill out the block. This is probably how most
applications generate padding when they know the
plaintext will already be byte-aligned and need to
use 10∗ padding. If, however, the receiver depends
on this, and that dependence is externally mani-
fested, we once again have a useful valid-padding
oracle. In other words, if the receiver somehow in-
dicates whether or not the padding is 80h followed
by zero or more 00 bytes, we have a specific instance
of the XY Padding method mentioned above.

Arbitrary-Pair Padding (PAIR-PAD). An in-
teresting try at avoiding the weaknesses involved
with XY Padding is to allow any distinct values
X and Y . The sender is still free to use what-
ever values he wishes, and they need not be ran-

dom provided they are not fixed public constants.
Once the sender decides on the X and Y values,
he pads by appending X once and Y one or more
times to bring the message up to the desired length.
(Here we must require Y be appended at least once
else the padding method is not reversible.) This
padding method is identical to XY-PAD; the differ-
ence is in how the padding is removed. The receiver
allows any two distinct values, so the algorithm to
remove the padding is to first remove all matching
trailing byte values at the end of the string, and
then also remove the byte preceding these matching
values. This nearly removes the oracle since, like
10∗ padding, nearly all plaintext blocks are correctly
padded. However, again like 10∗ padding, there re-
mains the case where all bytes are equal in a block.
If we have an oracle telling us when all bytes are
equal, we can again mount an attack similar to the
one described for 10∗ padding. But random guess-
ing will not be efficient here since, assuming random
and uniform plaintexts, it would take an expected
28b−8 queries just to get an INVALID response from
the oracle. (Although we cannot tell which byte is
repeated in the plaintext when we get an INVALID
from the oracle, we know there are only 256 possi-
bilities left for the plaintext and—assuming it has
some structure—we should be able to recover the
plaintext at this point.)

Arbitrary-Tail Padding (ABYT-PAD). A bet-
ter byte-oriented padding method is this: the sender
examines the last byte X of the message M . He
picks an arbitrary distinct byte-value Y and uses Y
to pad (if M is the empty string, he picks any byte-
value for Y .) He then pads M with Y , adding one
or more bytes of Y to the end of M as desired (note
that he must add at least one!).

The receiver merely removes all matching trailing
bytes until either a distinct byte is found (which
is left intact) or the empty string is reached. This
method is clearly reversible, and all plaintexts are
valid so there is no attack of the type mentioned in
this paper. The oracle has been removed entirely.

Notice that the sender need not generate random
values here: he may instead follow a well-defined
rule such as

1. If the final byte of M is 00, pad with 01.

2. In all other cases (including M = ε) pad with
00.

As before, the receiver cannot depend on any such
rule, since otherwise we may once again implement
some oracle suitable for use in an attack.

A Bit-Oriented Analog (ABIT-PAD). There
is an obvious bit-oriented analog here as well: the
sender examines the last bit of M and pads with rep-
etitions of the opposite bit, always adding at least
one bit of padding. For M = ε he pads with 0-bits.
Once again, all plaintexts are valid and the oracle is
removed.

Padding the Ciphertext. Another simple ap-
proach to removing the oracle is to use some length-
preserving variant of CBC Mode. There are several
ways of doing this, with “ciphertext stealing” prob-
ably the most well-known [BR96]. Since there is no
padding, there is no padding oracle, and the above
attacks vanish. If there is still a need to pad (be-
cause, for example, we require the ciphertext end
on an alignment boundary), we could then pad the
ciphertext.

One problem with this approach is that the length
of the plaintext is divulged to a bit granularity and
this may be undesirable. (See the next section for
further discussion.)

5 Stream-Based Schemes

Thus far we have focussed exclusively on CBC
Mode encryption. While CBC Mode encryption is
certainly ubiquitous, it is by no means the only
symmetric encryption scheme used. In fact, the
RC4 stream cipher is often the encryption method
of choice for SSL/TLS. Other block-cipher modes
generate streams used as one-time pads as well:
Output-Feedback Mode (OFB), Cipher-Feedback
Mode (CFB), and Counter Mode (CTR) all fall into
this class [MvV96]. It is therefore natural to ask if
the padding attacks mounted against CBC apply to
these schemes as well. The answer is: maybe.

The reason we say “maybe” is because padding may
or may not be used with stream-based encryption
schemes. When encrypting with a pseudorandom
bit-stream, we are free to use exactly the number
of bits needed; there is no need to pad. However in
practice we find it is quite common to add padding

�

�

�

�

M�

C�

pseudorandom bitstream

Figure 3: Stream-Based Decryption. Similar to
CBC, flipping bits in C� flip the corresponding bits
in M� independent of the key stream used for de-
cryption.

even when using stream-based schemes. The moti-
vation is this: when performing encryption we are
normally willing to divulge two things: (1) commu-
nication is taking place, and (2) the length of this
communication.

But for short strings we may wish to slightly obscure
the length of the communication. As an extreme
example, if we are encrypting a single bit, an adver-
sary quickly knows the plaintext is one of only two
values. Padding serves as a way to at least partially
obscure the length of the plaintext.

If padding is used, the potential for a valid-padding
side-channel resurfaces. This arises because stream-
based encryption is simply the XOR of the plaintext
with a pseudorandom bit-stream (Figure 3). There-
fore, as with CBC Mode, we may flip plaintext bits
merely by flipping the corresponding ciphertext bits.
The only difference here is that in CBC Mode we
flipped bits in C�−1 to affect bits in M�, and here
we flip bits in C� instead.

Therefore we see our current collection of attacks is
not restricted solely to CBC Mode encryption but
will occur with several common schemes if the plain-
text is padded. In [Vau02] we find further exam-
ples of modes (all CBC variants) which succumb to
padding attacks. The lesson here is that none of
these modes is trying to prevent an adversary from
manipulating the ciphertext, and the fact there exist
attacks against a wide variety of padding schemes
and encryption schemes based on manipulation of
the ciphertext should be no great surprise.

6 Other Side-Channels

All prior attacks considered how to exploit a valid-
padding oracle to recover the underlying plaintext
for any given ciphertext, assuming the use of a va-
riety of padding methods. But given the power to
freely and predictably alter the underlying plaintext
via manipulations of the ciphertext, one might ex-
pect that a variety of other oracles would be equally
useful to an attacker. In this section we describe an
oracle which divulges the bit-length of an underly-
ing plaintext and we show that such an oracle would
also result in highly-efficient attacks.

A Length-Revealing Oracle. A cryptographic
relay is a device which accepts ciphertext under
one scheme and outputs ciphertext under another
(usually with a different key). Probably the most
natural setup is where the incoming and outgoing
schemes are the same, but it is certainly conceiv-
able that they might be different. Routers which
handle a variety of physical-layer network protocols
are common, so a secure router might handle a va-
riety of cryptographic protocols.

Imagine a relay where the incoming scheme pads
the plaintext to a block boundary but the out-
going scheme uses some length-preserving mode
(Figure 4). If an adversary can view the cipher-
text on both sides of the relay, he effectively has
an oracle which divulges the length, within a block,
of the underlying plaintext. In the presence of this
oracle, even those padding schemes which resisted
valid-padding oracle attacks now succumb.

Consider the following example: suppose the incom-
ing ciphertext block C� is produced by encrypting
plaintext which is padded with 10∗ padding, but
the outgoing ciphertext uses some length-preserving
scheme such as CTR Mode. Then we can mount an
attack, regardless of the encryption scheme used,
more efficient than any we have seen thus far. Us-
ing our oracle we know the exact position of the last
trailing 1-bit in the underlying ciphertext. Suppose
it is in bit-position i of a plaintext block M�, count-
ing bits from 1 starting on the left end. We then
flip bit i by manipulating the ciphertext appropri-
ately, and submit this to the oracle which divulges
the position of the new rightmost 1-bit. In this man-
ner, we collect up the positions of all the 1-bits in
w(M�) oracle queries, where w() denotes the Ham-
ming weight of M�.

� �C�−1 C′
�C� C′

�−1Relay

Figure 4: A Cryptographic Relay. Ciphertext
blocks C�−1 and C� enter the relay as full blocks
under some padded scheme on the left, but exit
as blocks C ′

�−1 and C ′
� under a length-preserving

scheme on the right.

And even our “perfect” Arbitrary-Tail Padding
methods from Section 4 (ABYT-PAD, ABIT-PAD)
fail in the presence of this oracle, which now leads
us to look for new methods which remain secure in
this new setting. And so on.

It is likely that many innocent-looking oracles could
give rise to attacks in the style above, and it is prob-
ably difficult to avoid implementing such oracles in
real systems. However, each attack we examined
depended on the adversary’s ability to freely and
predictably alter bits of the plaintext via manipula-
tion of the ciphertext, and this ability was granted
by each of the symmetric encryption schemes con-
sidered. Perhaps the best way to avoid these at-
tacks is not by attempting to remove all potentially-
damaging oracles, but rather to remove the adver-
sary’s ability to alter plaintext bits in the first place.
One very-effective way to accomplish this is with au-
thenticated encryption.

7 An Argument for Authenticated
Encryption

Security experts have long been recommending that
encryption always be accompanied by authentica-
tion [Bel96]. Vaudenay and the present paper lend
further support to this recommendation. If it were
impossible for the adversary to produce valid cipher-
texts other than those he has already seen, all at-
tacks mentioned in this paper would vanish.

One might object to the assertion here that authen-
tication is truly required; after all, we have shown
methods in Section 4 which demonstrated that it
is possible, with care, to remove the padding or-
acle altogether. And it is obviously possible to
avoid implementing the length-revealing oracle men-
tioned in the previous section. However if we have

learned anything through this exercise it is that side-
channels like these are probably difficult to avoid
when designing cryptographic protocols. It “feels”
like the simple choice of how to pad a message be-
fore encryption would have absolutely zero impact
on security, but as we have seen this is potentially
untrue.

Authenticated Encryption. Each of the en-
cryption schemes we have discussed meets the min-
imal security requirement for privacy: it is compu-
tationally infeasible to distinguish the encryption of
a given message from the encryption of a random
string of the same length. This is so-called “seman-
tic security” under chosen-plaintext attack for an
encryption scheme, usually abbreviated IND-CPA
[BDJR97]. However, as we have seen, such a guar-
antee says nothing about the difficulty of produc-
ing new ciphertexts whose plaintexts are related to
those already seen. A scheme which prevents this is
called “non-malleable” [DDN00, BDPR98]. In par-
ticular, a non-malleable scheme does not allow one
to flip bits in the ciphertext and induce flipped cor-
responding bits in the plaintext; therefore it is self-
evident that our schemes do not meet this stronger
notion of security.

It is disconcerting to see encryption primitives used
as if they guarantee more than IND-CPA. A com-
mon example in protocols occurs when a party re-
ceives EK(x) and returns EK(x + 1) to “prove” he
holds the key K (here E() denotes some encryption
scheme and x is a positive integer). Normal no-
tions of security do not guarantee such properties.
In fact, an adversary with no knowledge of K can
easily produce EK(x + 1) given EK(x) with many
common instantiations of E . For example, if E is a
stream cipher we can merely complement the least
significant bit of EK(x) to produce EK(x + 1) with
probability about 0.5 (assuming that x is even with
probability about 0.5 and that it is encoded as a
string with its least-significant bit right-justified in
the plaintext).

A notion of security strictly stronger than non-
malleability is the following mouthful: integrity of
ciphertexts with semantic security against chosen-
plaintext attacks [BN00]. We will simply call this
“authenticated encryption.”

When we use authenticated encryption, we are guar-
anteed that (with overwhelming probability) an ad-
versary will not be able to take a given ciphertext

and manipulate it to produce a new valid cipher-
text. Nor will he be able to combine two ciphertexts
to produce a new valid ciphertext. In fact, the only
valid ciphertexts he will be able to produce are (with
overwhelming probability) repetitions of those he’s
seen generated as legitimate traffic. He will not be
able to produce any new ones on his own. Authen-
ticated encryption does provide the adversary with
an oracle which returns VALID and INVALID for any
ciphertexts he produces. However this oracle will
(with overwhelming probability) return INVALID
when given any ciphertext he has tampered with,
thus rendering the side-channel attacks mentioned
above (and indeed, any side-channel attacks which
depend on ciphertext manipulation) ineffective.

Cost of Authenticated Encryption. There
are several ways known for achieving authenticated
encryption. Perhaps the most well-known is to en-
crypt the plaintext with any semantically secure
scheme (like CBC Mode encryption), then apply
a Message Authentication Code (MAC) to the re-
sulting ciphertext. Assuming the MAC is “strongly
unforgeable,” the resulting scheme will achieve au-
thenticated encryption [BN00, KY00, Kra01]. How
much additional cost is incurred by the authenti-
cation step? The fastest-known MACs can pro-
cess messages of moderate length (say, 256 bytes)
at around 10 cycles per byte [BCK96, BHK+99], so
the additional cost is quite minimal. This approach
also has the advantage of being free of patents.

Recently there have been several modes of oper-
ation which perform simultaneous encryption and
authentication [Jut01, RBBK01, GD94]. Their per-
formance is typically quite good; for example, OCB
Mode [RBBK01] is about 6.5% slower than just
CBC Mode encryption, and is fully parallelizable
(whereas CBC Mode is not). It requires about
half the cost of running CBC Mode encryption and
CBC MAC (under the encrypt-then-MAC method
above).

And it’s Still Possible to go Wrong. The
mere use of authenticated encryption does not guar-
antee that a particular implementation will avoid
inducing side-channel oracles. We might leak infor-
mation during the decryption and integrity check
phases which would be useful to an adversary. In
fact, Manger’s attack on OAEP [Man01] was based
on precisely this idea. There are doubtless analo-

gous dangers on the symmetric side if one is not
careful.

As a simple example, suppose on the sending side
we pad then encrypt then MAC, but then on the re-
ceiving side we decrypt, strip the padding, and then
check the MAC on the ciphertext last. Using this
unusual ordering, we might send back an error mes-
sage about invalid padding before checking to see
if the ciphertext was authentic or not; this scheme
would of course be vulnerable to the types of attacks
exhibited in this paper. The message here is clear:
check the authenticity first; if a received message is
inauthentic, reject it without any further process-
ing.

8 Conclusion

The cost of authenticated encryption is quite small
and, when properly implemented, promises to elim-
inate a wide variety of side-channel attacks based
on manipulation of ciphertexts. Authentication has
long been thought of as a separate security goal,
used only when one is concerned about such things
as message integrity, authenticity of origin, and non-
repudiation. It is often regarded as unnecessary in
systems which require only privacy. But as we have
seen, the ability to freely manipulate ciphertexts
gives rise to a wide range of possible attacks based
on side-channels which presumably cannot be ex-
ploited without this ability. These side-channels are
demonstrably damaging and it is likely very difficult
to avoid constructing them in real systems. In light
of this, perhaps it is time to view authentication as
a strongly-desirable property of any symmetric en-
cryption scheme, including those where privacy is
the only security goal.

9 Acknowledgements

The authors would like to thank Phil Rogaway for
useful comments and suggestions, and Serge Vau-
denay for providing us with an early draft of his
paper. Kindest thanks to David Wagner for bring-
ing our attention to additional related work. We
would also like to thank the USENIX Security ’02
program committee for their helpful comments.

References

[BCK96] M. Bellare, R. Canetti, and
H. Krawczyk. Keying hash func-
tions for message authentication. In
Advances in Cryptology – CRYPTO
’96, volume 1109 of Lecture Notes
in Computer Science, pages 1–15.
Springer-Verlag, 1996.

[BDJR97] Mihir Bellare, Anand Desai, Eron
Jokipii, and Phillip Rogaway. A con-
crete security treatment of symmetric
encryption: Analysis of the DES modes
of operation. In Proceedings of 38th
Annual Symposium on Foundations of
Computer Sci ence (FOCS 97), 1997.

[BDPR98] Mihir Bellare, Anand Desai, David
Pointcheval, and Phillip Rogaway. Re-
lations among notions of security for
public-key encryption schemes. In
H. Krawczyk, editor, Advances in Cryp-
tology – CRYPTO ’98, volume 1462 of
LNCS, pages 232–249. Springer-Verlag,
1998.

[Bel96] S. Bellovin. Problem areas for the
IP security protocols. Proceedings of
the Sixth USENIX Security Symposium,
1996.

[BGW01] Nikita Borisov, Ian Goldberg, and David
Wagner. Intercepting mobile communi-
cations: The insecurity of 802.11. In
MOBICOM, pages 180–189. ACM, 2001.

[BHK+99] J. Black, S. Halevi, H. Krawczyk,
T. Krovetz, and P. Rogaway. UMAC:
Fast and secure message authentication.
In Advances in Cryptology – CRYPTO
’99, Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[Ble98] D. Bleichenbacher. Chosen ciphertext
attacks against protocols based on the
RSA encryption standard PKCS #1.
In Advances in Cryptology – CRYPTO
’98, volume 1462 of Lecture Notes in
Computer Science, pages 1–12. Springer-
Verlag, 1998.

[BN00] M. Bellare and C. Namprempre. Au-
thenticated encryption: Relations
among notions and analysis of the
generic composition paradigm. In

Advances in Cryptology – ASIACRYPT
’00, volume 1976 of Lecture Notes in
Computer Science. Springer-Verlag,
2000.

[BR96] R. Baldwin and R. Rivest. The RC5,
RC5-CBC, RC5-CBC-Pad, and RC5-
CTS algorithms. RFC 2040, 1996.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-
malleable cryptography. SIAM Journal
on Computing, 3(2):391–497, 2000. Ear-
lier version appeared at STOC ’91.

[GD94] V. Gligor and P. Donescu. Fast encryp-
tion and authentication: XCBC encryp-
tion and XECB authentication modes.
In Fast Software Encryption, LNCS.
Springer, Apr 1994. (Earlier version:
manuscript of August 18, 2000, from
http://www.eng.umd.edu/~gligor/).

[JDK+91] D. Johnson, G. Dolan, M. Kelly, A. Le,
and S. Matyas. Common cryptographic
architecture cryptographic application.
IBM Systems Journal, 30(2):130–149,
1991.

[Jut01] Charanjit Jutla. Encryption modes
with almost free message integrity.
In Advances in Cryptology – EURO-
CRYPT ’01, volume 2045 of Lecture
Notes in Computer Science. Springer-
Verlag, 2001. (Earlier version in
Cryptology ePrint archive, reference
number 2000/039, August 1, 2000,
http://eprint.iacr.org/).

[KA98] S. Kent and R. Atkinson. IP Encapsulat-
ing Security Payload (ESP). RFC 2406,
Standards Track, The Internet Society,
1998.

[Kra01] Hugo Krawczyk. The order of encryp-
tion and authentication for protecting
communicat ions (or: How secure is
SSL?). In Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 310–
331. Springer-Verlag, 2001.

[KY00] J. Katz and M. Yung. Complete charac-
terization of security notions for proba-
bilistic private-key encryption. In Pro-
ceedings of the 32nd Annual Symposium
on the Theory of Computing (STOC).
ACM Press, 2000.

[Man01] J. Manger. A chosen ciphertext at-
tack on RSA optimal asymmetric en-
cryption padding (OAEP) as standard-
ized in PKCS #1 v2.0. In Advances in
Cryptology – CRYPTO ’01, volume 2139
of Lecture Notes in Computer Science,
pages 230–238. Springer-Verlag, 2001.

[MvV96] A. Menezes, P. van Oorschot, and
S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

[Pub98] Public-Key Cryptography Standard
(PKCS) #1 v2.0. RSA cryptography
standard. RSA Laboratories, 1998.

[RBBK01] Phillip Rogaway, Mihir Bellare, John
Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient au-
thenticated encryption. In ACM Confer-
ence on Computer and Communications
Security (CCS-8), pages 196–205. ACM
Press, 2001.

[Vau02] S. Vaudenay. Security flaws induced by
CBC padding – Applications to SSL,
IPSEC, WTLS... In Advances in Cryp-
tology — EUROCRYPT ’02, volume
2332 of Lecture Notes in Computer Sci-
ence, pages 534–545. Springer-Verlag,
2002.

[Wir01] Wireless Transport Layer Security.
Wireless Application Protocol WAP-
261-WTLS-20010406-a. Wirless Appli-
cation Protocol Forum, 2001.

