
A Study of the MD5 Attacks: Insights and Improvements

J. Black ∗ M. Cochran ∗ T. Highland †

March 3, 2006

Abstract

MD5 is a well-known and widely-used cryptographic hash function. It has received renewed attention
from researchers subsequent to the recent announcement of collisions found by Wang et al. [14]. To date,
however, the method used by researchers in this work has been fairly difficult to grasp.

In this paper we conduct a study of all attacks on MD5 starting from Wang. We explain the techniques
used by her team, give insights on how to improve these techniques, and use these insights to produce an
even faster attack on MD5. Additionally, we provide an “MD5 Toolkit” implementing these improvements
that we hope will serve as an open-source platform for further research.

Our hope is that a better understanding of these attacks will lead to a better understanding of our
current collection of hash functions, what their strengths and weaknesses are, and where we should direct
future efforts in order to produce even stronger primitives.

Keywords: Cryptographic Hash Functions, Differential Cryptanalysis, MD5.

∗ University of Colorado at Boulder, USA E-mail: jrblack@cs.colorado.edu, Martin.Cochran@colorado.edu WWW:
www.cs.colorado.edu/∼jrblack/, ucsu.colorado.edu/∼cochranm

† University of Texas at Austin, USA E-mail: trevor.highland@gmail.com

1

Contents

1 Introduction 3

2 Notation 4

3 The MD5 Algorithm 5

3.1 The compression function MD5c . 5

4 High-Level Overview 6

4.1 Finding the differentials and conditions . 7

5 The Dirty Details 9

5.1 Outline of method . 9
5.2 “Sufficient” conditions . 10
5.3 Single-message modification . 10
5.4 Multi-message modification . 11
5.5 1st block multi-message modification . 12

6 New Multi-Message Modification Methods 13

6.1 New multi-message modifications for correcting Q20,17 and Q20,31. 13
6.2 2nd block multi-message modification . 16

7 A New Method 17

A Tables 19

2

1 Introduction

Background. MD5 was the last in a succession of cryptographic hash functions designed by Ron Rivest
in the early 1990s. It is a widely-used well-known 128-bit iterated hash function, used in various appli-
cations including SSL/TLS, IPSec, and many other cryptographic protocols. It is also commonly-used in
implementations of timestamping mechanisms, commitment schemes, and integrity-checking applications for
online software, distributed filesystems, and random-number generation. It is even used by the Nevada State
Gaming Authority to ensure slot-machine ROMs have not been tampered with.

Cryptographic hash functions like MD5 do not have a sound mathematical security definition, but instead
rely on the following “intuitive” notions of security: for a hash function h with domain D and range R, we
require the following three properties.1

Pre-image Resistance: For a given y ∈ R, it should be “computationally infeasible” to find an x ∈ D
such that h(x) = y.

Second Pre-image Resistance: For a given x ∈ D, it should be “computationally infeasible” to find a
distinct x′ ∈ D such that h(x) = h(x′).

Collision Resistance: It should be “computationally infeasible” to find distinct x, x′ ∈ D such that h(x) =
h(x′).

In all attacks described in this paper, the focus is on violating the last requirement above: that is, we
wish to find collisions in MD5.

In 1993 B. den Boer and A. Bosselaers [4] found two messages that collided under MD5 with two different
IVs. In 1996 H. Dobbertin [5] published an attack, without details, that found a collision in MD5 with a
chosen IV different from the MD5’s. Finally, at CRYPTO 2004, a team of researchers from the Shandong
University in Jinan China, led by Xiaoyun Wang, announced collisions in MD5 as well as collisions in a
host of other hash functions including MD4, RIPEMD, and HAVAL-128. Their findings were published
at EUROCRYPT in 2005 [13, 14]. The same team presented two papers at the 2005 CRYPTO conference
detailing applications of their methods to the hash functions SHA0 and SHA1, with a generated collision for
SHA0, and a description on how to obtain collisions in SHA1. Given the variety of hash functions attacked
by this team, it seems likely that their approach may prove effective against all cryptographic hashes in the
MD family, including all variants of SHA. It therefore seems worthwhile to seek a complete understanding
of how this approach works, how it can be improved, and how it can be generalized.

In Wang’s short talk at the CRYPTO rump session, few details were given. She presented a brief general
overview of the attacks, including the exact differentials for the pairs of colliding message blocks, along with
several example collisions and estimations of the time complexity for each attack. In the interim between this
talk and the publication of the team’s papers [13, 14], much interest was generated in finding the methods
used by the Chinese researchers, and several papers were published on the subject [6–8]. Unfortunately, some
key details of the attacks are omitted from the EUROCRYPT papers, and there are several discrepancies
between the analysis done in [6, 8] and the results presented by the Chinese team.

Our Contributions. This paper attempts to consolidate and summarize all relevant knowledge of the
attacks on MD5 from the works cited above [6–8, 13, 14], then additionally offer new insights and further
improvements to this body of work. Specifically:

• We fully explain the “multi-message modification” technique invented by Wang.

• We offer new insights on how to find other differential paths.

• We use the above insights to demonstrate how to satisfy several more conditions in round 2 of the
MD5 computation, thereby significantly speeding up the search for collisions.

1For a more complete discussion of hash function security definitions, see [11].

3

• We demonstrate new methods for decreasing the search complexity when finding collisions.

• We provide an “MD5 Toolkit” that uses the above optimizations to produce MD5 collisions faster than
any other known implementation; it also serves as a platform for testing further improvements and
new ideas

Along the way, we correct many of the mistakes made by previous authors in their published anal-
yses, using what we believe is an improvement in notation. Also, in contrast to the other publications
above, we provide full source code implementing our methods as an “MD5 Toolkit.” Our hope is that
this toolkit will serve as a useful device for researchers wishing to explore further techniques in this line
of work. For example, making further code optimizations or search optimizations, adding further con-
ditions, or searching for differential paths in an automated way. The MD5 Toolkit can be found at
http://www.cs.colorado.edu/~jrblack/md5toolkit.tar.gz.

Our ultimate goal as a research community is to understand as best we can the way these iterated hash
functions work, and the best known attacks against them. Our hope is that the observations offered here,
along with the specific improvements we make for MD5 collision-finding, will lead to progress along these
lines.

Overview of the Paper. We begin by covering the notation used throughout the paper. Section 3 reviews
the specification of MD5. We then give a high-level overview of the attacks and touch on the motivation
and theory behind the attacks in section 4. Then we move on to the details of the attack in section 5.

The remainder of the paper is devoted to detailing our insights and improvements. Specific to MD5,
we offer improvements that reduce the best-known time complexity [8] by roughly a factor of three. The
methods used by the Chinese team require an expected 237 MD5 computations to find the first block pair
of the colliding messages, and an expected 230 MD5 computations to find the second block pair. Klima [8]
improved the attack so that an expected 233 and 224 MD5 computations are needed to find the first and
second, respectively, message block pairs, although Klima did not implement his improved attack for finding
the second block pair. Our method improves the attack so that an expected 230 MD5 computations are
required to find the first block pair, and we implement Klima’s code for finding the second block pair.

The Wang team reported that the example collision they found for the first block took about an hour
on an IBM supercomputer, and the second block pair was found in 15 seconds to 5 minutes on the same
computer. Our code produces both blocks in an average of 11 minutes on a commodity PC.

2 Notation

All indices start at 0. This is in contrast to the notation used in the Wang et al. papers, as well as [6, 8].
Thus, for a 4-byte unsigned integer x, the bits are labeled from 0 to 31, with 0 referring to the least significant
bit. Let {0, 1}n denote the set of all binary strings of length n. For an alphabet Σ, let Σ∗ denote the set of
all strings with elements from Σ. Let Σ+ = Σ∗ − {ε} where ε denotes the empty string. For strings s, t, let
s ‖ t denote the concatenation of s and t. For a binary string s let |s| denote the length of s. For a string s
where |s| is a multiple of n, let |s|n denote |s|/n. Given binary strings s, t such that |s| = |t|, let s⊕ t denote
the bitwise XOR of s and t. For a string M such that |M | is a multiple of n, |M |n = k, then we will use
the notation M = (M0, M1, M2, . . . , Mk−1) such that |M0| = |M1| = |M2| = . . . = |Mk−1| = n. We will also
use the notation M = (m0, m2, . . . , mk−1) such that |m0| = |m2| = . . . = |mk−1| = n. This latter notation
is used when n = |mi| = 32. The former notation will be used when n = |Mi| = 512. We may think of M as
a k-tuple if it is convenient (hence the vector notation). Generally, the symbol M will be used for members
of ({0, 1}512)+. For a set S of the form {Ai : a ≤ i ≤ b}, we will sometimes denote S as Aa:b.

XOR Differential vs. Subtraction Differential. These methods use a combination of the XOR
differential and the subtraction differential, but with an emphasis on the subtraction differential. That
is, for two integers x, x′ ∈ [0, 231 − 1], consider the function ∆X (x, x′) = x⊕x′. This defines the XOR
differential for x, x′. Alternatively, define ∆S(x, x′) as x′ − x mod 232. This is the subtraction differential.

4

The Chinese authors supply two columns of differentials in their tables of differentials for each step. One
column contains the subtraction differential. Another contains what is essentially the XOR differential, but
there is extra information included to indicate bit differences. For example, let ∆S(x, x′) = 22. There are
many possibilities for ∆X(x, x′) such as these three examples.

• ∆X(x, x′) = 0x00000004 (there is only one bit different between x and x′, in index 2)

• ∆X(x, x′) = 0x0000000c (bit 3 is set in x′ but is not set in x, bit 2 is not set in x′ but is set in x)

• ∆X(x, x′) = 0x0000fffc (bit 15 is set in x′ but is not set in x, bits 2 through 14 are not set in x′ but
are set in x

The differential used in [13, 14] captures this type of information by the following notation. Let x be in
[0, 231 − 1]. Then x′ = x[a1, a2, . . . , an,−b1,−b2, . . . ,−bm] denotes x′ = x + 2a1 + 2a2 + · · · + 2an − 2b1 −
2b2 · · · − 2bm mod 232. From this information one can compute both ∆X(x, x′) and ∆S(x, x′) if and only if
for every index i for which x and x′ differ i ∈ {a1, a2, . . . , an, b1, b2, . . . , bm}. The complete differential tables
in the appendix use this specialized differential, but with the above property so that both ∆X and ∆S may
be computed.

3 The MD5 Algorithm

The following is a brief description of MD5 using the notation that is used to describe the attacks later
in this paper. We omit message padding in this description since it has no effect on our attacks. The full
specification for MD5 can be found in [10].

MD5 is a hash function in the Merkle-Damg̊ard paradigm [3, 9], where the security of the hash function
reduces to the security of its compression function. The MD5 compression function, which we denote as
MD5c, accepts as input a 128-bit chaining value CV which we break into four 32-bit values cv0, cv1, cv2, cv4

and a 512-bit message block M and outputs a 128-bit chaining value CV ′. Formally, MD5c : {0, 1}128 ×
{0, 1}512 → {0, 1}128. Let H0 ∈ {0, 1}128 and let M = (M0, M1, . . . , Mk) for some k ≥ 0 and |Mi| ∈ {0, 1}512
for 0 ≤ i ≤ k. Then MD5(M) is computed as follows. Let Hi+1 = MD5c(Hi, Mi) for 0 ≤ i ≤ k. MD5(M) is
defined as Hk+1.

3.1 The compression function MD5c

We now detail the compression function used in MD5. There are 64 intermediate values produced, which we
will call step values and denote by Qi for 0 ≤ i < 64. The step values are computed in the following fashion:

Ti ← Φi(Qi−1, Qi−2, Qi−3) + Qi−4 + wi + yj

Qi ← Qi−1 + (Ti ≪ si)

Where si, yi are step-dependent constants and wi is the i-th block of the initial message expansion. For
0 ≤ i < 64, wi = mj for some 0 ≤ j < 16. The exact message expansion can be found in [10]. By ‘x + y’
we mean the addition of x and y modulo 232, and by ‘x ≪ y’ we mean the circular left shift of x by y bit
positions (similarly, ‘x ≫ y’ denotes the circular right shift of x by y bit positions).

The Φ function is defined in the following manner:

Φi(x, y, z) = F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), 0 ≤ i ≤ 15
Φi(x, y, z) = G(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), 16 ≤ i ≤ 31
Φi(x, y, z) = H(x, y, z) = x⊕ y ⊕ z, 32 ≤ i ≤ 47
Φi(x, y, z) = I(x, y, z) = y ⊕ (x ∨ ¬z), 48 ≤ i ≤ 63

Q−1, . . . , Q−4 are determined by the chaining values to MD5 so that

Q−4 ← cv0, Q−3 ← cv3, Q−2 ← cv2, Q−1 ← cv1

5

The chaining values are initially set to, in big endian byte order,

cv0 ← 0x01234567, cv1 ← 0x89abcdef

cv2 ← 0xfedcba98, cv3 ← 0x76543210

After all 64 steps are computed, MD5c computes

cv′0 ← cv0 + Q60, cv′1 ← cv1 + Q63, cv′2 ← cv2 + Q62, cv′3 ← cv3 + Q61

and outputs CV ′ ← cv′0 ‖ cv′1 ‖ cv′2 ‖ cv′3.
Because of their importance later, we repeat some of our notation and terminology: for each message

block, MD5c has four rounds, each of which computes 16 step values (for a total of 64).

4 High-Level Overview

Define δ0 as
(0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

and δ1 as
(0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0).

Let M = (M0, M1) be a 1024-bit string such that |M0| = |M1| = 512. For any such M let M ′
0 = M0 + δ0,

M ′
1 = M1 + δ1 and M ′ = (M ′

0, M
′
1) where addition is done component-wise modulo 232.

The Wang attacks describe a way of efficiently finding 1024-bit strings M such that MD5(M) = MD5(M ′).
They do this by tracking the differences in the step values during the computation of MD5(M) and MD5(M ′).
Formally, let Qi denote the output of the i-th round of the MD5 compression function upon input M and
let Q′

i denote the output of the i-th round of MD5 upon input M ′. Then [14] supplies 128 values (64 for
the first block and 64 for the second block) ai, 0 ≤ i < 128 such that if their methods find an M such that
MD5(M) = MD5(M ′), then Q′

i − Qi = ai for all Qi computed during the computation of MD5c(M0) and
MD5c(M

′
0) and Q′

i−Qi = ai+64 for all Qi computed during the computation of MD5c(M1) and MD5c(M
′
1).

We will call the values Q′
i −Qi differentials. The ai are the correct or prescribed differentials. Additionally,

four extra values are given in [14] that specify the differentials for the intermediate chaining values, or the
outputs of MD5c(M0) and MD5c(M

′
0).

It is not described in [14] or elsewhere how they chose the values for ai, but in the next subsection we
conjecture some ideas on their derivation. Regardless, Wang et al. detail methods for efficiently finding such
M by determining conditions on the Qi such that if those conditions are satisfied then the differentials hold
with high probability ([14] mistakenly labels the conditions as ‘sufficient’). Very little information is given
in [14] as to how the conditions on the Qi are obtained from the given differentials, but an excellent analysis
is given by Hawkes, Paddon, and Rose in [6].

Wang’s method for finding an M of the correct form can be described in pseudocode as the following:

Algorithm Find Collision
while collision found is false do:

1. Use random seeds and deterministic methods to find M which satisfies most conditions on Qi

2. Compute all Qi and Q′
i to check to see if differentials are correct

3. if (rest of differentials hold) then collision found ← true

else collision found ← false

end do

return M

We also note here that the above pseudocode is actually done once for each block of M . First a 512-bit
block M0 is found that satisfies all first-block differentials, then block M1 is found.

6

x y z ∆x⇒ ∆y ⇒ ∆z ⇒
∆F ∆F ∆F

0 0 0
√

0 0 1
√ √

0 1 0
√ √

0 1 1
√

1 0 0
√

1 0 1
√ √

1 1 0
√ √

1 1 1
√

x y z ∆x⇒ ∆y ⇒ ∆z ⇒
∆G ∆G ∆G

0 0 0
√

0 0 1
√

0 1 0
√ √

0 1 1
√ √

1 0 0
√ √

1 0 1
√ √

1 1 0
√

1 1 1
√

Figure 1: Output differences for F = Φi, 0 ≤ i < 16 and G = Φi, 16 ≤ i < 32

4.1 Finding the differentials and conditions

Generating Message Differentials. The derivation of the message and step value differentials used by
Wang remains unexplained. We attempt here to conjecture how these were derived, although we stress that
this is pure speculation and guesswork.

We begin by noting the following three things:

• The Φ function for round three is just the bitwise XOR of the inputs and is therefore linear - any
change in one of the inputs necessarily changes the output in the same bits (formally, for any six 32-bit
unsigned integers u, v, w, x, y, z, H(x⊕u, y⊕ v, z⊕w) = H(u, v, w)⊕H(x, y, z)). On a related note,
as can be seen in figure 1, Φi for 0 ≤ i < 32 has some ‘absorbing’ properties. That is, it is common
that bit changes in the input do not change the output.

• The differential is 0 for the last few step values in round 2 and the first few step values for round 3.

• The differential is 231 for almost all step values in rounds 3 and 4.

Before continuing, we digress slightly to answer the following question: How is this difference in bit 31
propagated through round 3? The last few steps of round two have differential of zero and the first bit
difference introduced (by way of the differential in M) in round 3 is in step 34:

Q′

34 ← Q33 + ((H(Q33, Q32, Q31) + Q30 + y34 + m11 + 215) ≪ 16)

which implies that 2

Q′

34 = Q34 + (215
≪ 16) = Q34 + 231 = Q34[31].

In step 35, another bit difference is introduced because m′
14 = m14 + 231:

Q′

35 ← Q′

34 + ((H(Q′

34, Q33, Q32) + Q31 + y35 + m14 + 231) ≪ 23)

Substituting Q34 + 231 for Q′
34 we obtain the following.

Q′
35 ← 231 + Q34 + ((H(Q34 + 231, Q33, Q32) + Q31 + y35 + m14 + 231) ≪ 23)

= 231 + Q34 + ((H(Q34, Q33, Q32) + 231 + Q31 + y35 + m14 + 231) ≪ 23)

= 231 + Q34 + ((H(Q34, Q33, Q32) + Q31 + y35 + m14) ≪ 23) = Q35 + 231 = Q35[31]

2This computation does not always hold because shifting and carry expansion do not commute. In [14], this is codified in
the condition φ34,32 = 0. We will assume here that the computation holds (or that Wang’s condition is satisfied).

7

In step 36, no difference is introduced by the message word used. The step value is computed as follows.

Q′
36 ← Q′

35 + ((H(Q′
35, Q

′
34, Q33) + Q32 + y36 + m1) ≪ 4)

= 231 + Q35 + ((H(Q35 + 231, Q34 + 231, Q33) + Q32 + y36 + m1) ≪ 4)

= 231 + Q35 + ((H(Q35, Q34, Q33) + (231⊕ 231) + Q32 + y36 + m1) ≪ 4)

= 231 + Q35 + ((H(Q35, Q34, Q33) + Q32 + y36 + m1) ≪ 4) = Q36 + 231 = Q36[31]

Another bit difference is introduced by the message word in step 37.

Q′
37 ← Q′

36 + ((H(Q′
36, Q

′
35, Q

′
34) + Q33 + y37 + m4 + 231) ≪ 11)

= 231 + Q36 + ((H(Q36 + 231, Q35 + 231, Q34 + 231) + Q33 + y37 + m4 + 231) ≪ 11)

= 231 + Q36 + ((H(Q36, Q35, Q34) + 232 + 231 + Q33 + y37 + m4 + 231) ≪ 11)

= 231 + Q36 + ((H(Q36, Q35, Q34) + Q33 + y37 + m4) ≪ 11) = Q37 + 231 = Q37[31]

One can then easily verify that if no further bit differences are introduced via the message words, for step
values Qi in round 3 with i ≥ 38, Q′

i = Qi + 231. Thus, the bit 31 cascades down the step values without
further conditions.3 Using the linearity of H and addition of 231 modulo 232 is a clever way to minimize
the differences in the step values in round 3, where the Φ function does not have the difference absorbing
properties of the Φ functions of rounds 1 and 2.

The above analysis leads us to believe the following course of action was used in determining the message
and step value differentials:

• Assume that whatever message differences are introduced in the first and second rounds can be absorbed
by the Φi functions so that there are no differences in the step values used in the first step of round 3.

• Pick message differences so that the difference in bit 31 cascades through the step values. This involves:

– Picking blocks in the initial message expansion ma, mb, mc, such that ma = wi, mb = wi+1,
mc = wi+3, 32 ≤ i < 45.

– Let the differential be m′

b = mb + 231, m′
c = mc + 231 and m′

a = ma + 231−si where si is the shift
value for round i.

• Find a differential path through the first and second rounds, using the message differentials chosen
above, so that the difference for the last four step values in round 2 is zero.

• Find sufficient conditions on the step values to guarantee the differential path (the work done in [6] is
an excellent resource on this step).

• For the above step try to minimize 2nd round conditions to avoid complicated multi-message modifi-
cation techniques.

This third to last step is still surrounded in mystery, but one can see that by the properties of the Φi

functions for rounds 1 and 2 that the task is possible. Although the step update function for MD4 and
RIPEMD is different than that of MD5, the Wang et al. attacks [13] on those functions support the above
analysis. That is, there is no difference in the step values for the last few steps of round 2 and the message
differentials appear to have been chosen to minimize differences in round three by exploiting the linearity of
bit 31. Again, we stress that this analysis is guesswork and we eagerly await a full exposition by the authors
of [13, 14].

3This may have been inspired by [5], as is mentioned obliquely in the introduction in [14]. However, Dobbertin’s message
differential has hamming weight of only one, so other bit differences are introduced in round 3.

8

x y z ∆x⇒ ∆y ⇒ ∆z ⇒
∆H ∆H ∆H

0 0 0
√ √ √

0 0 1
√ √ √

0 1 0
√ √ √

0 1 1
√ √ √

1 0 0
√ √ √

1 0 1
√ √ √

1 1 0
√ √ √

1 1 1
√ √ √

x y z ∆x⇒ ∆y ⇒ ∆z ⇒
∆I ∆I ∆I

0 0 0
√ √

0 0 1
√ √ √

0 1 0
√ √

0 1 1
√ √ √

1 0 0
√

1 0 1
√ √

1 1 0
√

1 1 1
√ √

Figure 2: Output differences for H = Φi, 32 ≤ i < 48 and I = Φi, 48 ≤ i < 64

Fulfilling the Conditions. Conditions on Qi are conditions on the individual bits of Qi. For example,
for the first block near-collision of MD5 to guarantee the differential they require that the 8-th least significant
bit of Q4 is zero. There are a total of 290 conditions on the round values for the first block attack, and there
a total of 310 conditions for step values in the second block.

However, most of these conditions occur in the first and second rounds. This is important because during
the first round, one can easily change M so that all the conditions are satisfied because at that point one has
complete control over M and any changes do not affect prior computation. The Chinese team denoted these
types of changes as “single-message modifications” or “single-step modifications.” We will adopt and use the
former terminology. Some round two conditions may also be corrected by other methods, which we will refer
to as “multi-message modifications,” but these methods are considerably more complicated because one has
to be sure, because of the initial message expansion, that changes to M do not affect the computation of
earlier rounds.

We present efficient methods [8, 14] which satisfy all but 30 conditions for the first block, and all but 24
conditions for the second block. The remaining conditions are satisfied in a probabilistic manner. On the
assumption that each condition is satisfied with probability 1/2, an expected 230 (224, resp) messages need
to be generated before a message M is found which satisfies all the first (second, resp) block conditions. This
estimate is actually a tad low, because it does not account for the fact that the conditions on the Qi are
necessary, but not sufficient, for the step differentials to hold, even in the later rounds where the differentials
cannot be satisfied deterministically.

5 The Dirty Details

5.1 Outline of method

Once we are convinced that the attack works in theory, we proceed to implementation. The code we wrote
as part of this project uses the following rough outline [8, 14]:

Algorithm Find Collision′

while collision found is false do

1. Select values Q0:15 arbitrarily.

2. Modify Q0:15 to satisfy all first round conditions and differentials (deterministic).

3. Compute M0:15 from these values of Q0:15 (deterministic).

4. Satisfy all possible second round conditions and differentials using multi-message modification methods
(probabilistic, but computationally insignificant to next step).

9

5. Check to see if all other conditions and differentials are satisfied (probabilistic).

6. if (all differentials satisfied) then collision found ← true

7. else collision found ← false

end do

return M

There are several speed-ups to the above pseudocode. The main one is this: instead of selecting new
random values Q0:15 every time a condition isn’t satisfied, just change M slightly so that all first round and
most second round conditions are still satisfied.

5.2 “Sufficient” conditions

The conditions presented in [14] as sufficient for all first-round differentials to hold, are not. Thus, it
is necessary to satisfy some of the first round differentials probabilisitically; this step is computationally
insignificant compared to fulfilling the second-, third-, and fourth-round conditions and does not affect the
overall runtime. In practice, this means that our code randomly chooses M , performs the first round single-
message modifications, then checks to see if the differentials are satisfied. If so, great - the code proceeds
to the second round multi-message modifications. If not, a new random M is chosen and the process is
repeated.

5.3 Single-message modification

Single-message modification is the process by which a message M is modified such that all of the first round
conditions hold. The term originates with the Wang papers on MD4 and MD5 [13, 14] in which the same
method is also referred to as “single-step modification.” It is probably named so because to correct the
conditions on any one Qi, 0 ≤ i < 16, only one message block mi needs to be modified.

The method of single-message modification we present here is slightly different from that given in the
Wang et al. papers, for two reasons. One is that there are some details omitted in the Wang papers
(perhaps for simplicity’s sake) on the method of single-message modification; if one uses those papers as
a guide, inevitably the code will produce incorrect and/or otherwise useless output because some of their
instructions are based on the incorrect assumption that shifting and carry expansion commute. We also feel
that the methods we present are easier to initially understand.

The idea behind single-message modification is simple. Select the step value so that all conditions hold
and recompute the message word from the chosen step value. We present some pseudocode to perform step
(2) from the program outline in subsection 5.1. For i going from 0 to 15 do the following:

1. Change Qi to satisfy conditions by simple bit-flipping.

2. Calculate mi.

mi ← ((Qi −Qi−1) ≫ si)− Ti −Qi−4 − Φi(Qi−1, Qi−2, Qi−3) (1)

Note that this is just simple algebraic manipulation of the step update function.

At the end of this method all step values are correctly computed from the changed message words and all
first round conditions are satisfied. If we are using the original set of conditions, the first round differentials
may not be satisfied. As noted in the previous subsection, we satisfy these differentials probabilistically and
therefore may need to run the single-message modifications over many choices of M before all first conditions
and differentials hold. Although not deterministic, this method has time complexity vastly less than that of
the overall collision-finding program.

10

5.4 Multi-message modification

One of the key ideas in the Chinese papers is that of multi-message modification. This is where after the
satisfaction of all first-round conditions has occurred, one may alter several message blocks together to satisfy
second round conditions while leaving all first-round conditions satisfied. Despite the importance of these
methods for decreasing the time complexity of the attack, the description in [13, 14] is either completely
omitted or brief and truncated. We seek here to fully explain the mystery of multi-message modification
techniques by covering the general ideas behind the method and then walking through a few (new) examples
in detail.

General Idea. In [14] the method of multi-message modification is given, almost entirely, in a table similar
to the following:

Modify mi anew, bnew, cnew, dnew

1 m1 12 m1 ← m1 + 226 dnew
1 , a1, b0, c0

2 m2 17 m2 ← ((c1 − dnew
1) ≫ 17)− c0 − Φ2(d

new
1 , a1, b0)− y2 c1, d

new
1 , a1, b0

3 m3 22 m3 ← ((b1 − c1) ≫ 22)− b0 − Φ3(c1, d
new
1 , a1)− y3 b1, c1, d

new
1 , a1

4 m4 7 m4 ← ((a2 − b1) ≫ 7)− a1 − Φ4(b1, c1, d
new
1)− y4 a2, b1, c1, d

new
1

5 m5 12 m5 ← ((d2 − a2) ≫ 12)− dnew
1 − Φ5(a2, b1, c1)− y5 d2, a2, b1, c1

The table is a guide to correcting the condition on Q16,31, or a5,32 in the notation from [14]. The condition
is that this bit must be 0. The first column denotes the step number. The second column and third columns
denote the message word and the shift value, respectively, used in the computation of the step value. The
column under the heading “Modify mi” details the update needed to correct the step value or message word
in that step. The last column lists updates to step variables, if any, after the modification for that step.

How does this all work? Let’s walk through the table. Although not shown in the table, the shift value for
round 16 is 5. Therefore, the addition of 226 to m1 has the net effect of adding 231 to Q16,31, which corrects
for the condition in question. However, this change to m1 also changes the value of a step value computed
earlier: Q1(= d1). Therefore we must recompute d1 with the new value of m1 to obtain dnew

1 (this is not
explicitly shown in the above table, but we will come to this in a bit). The other rows of the table detail
how to assimilate the changes in d1 so that none of the other step values are changed (but the message bits
are). Note that we can still change other message bits because in step 16 only one message block has been
used to compute more than one step value. Namely, m1. At the end of the process, m1, m2, m3, m4, m5, Q1,
and Q16 have been changed, but all other step values and message bits remain the same. The change in Q16

was to remedy the incorrect condition, and the other changes were necessary to absorb the changes to m1

and Q1.
Furthermore, in the paper by Wang et al. discussing their attack on MD4, the table denotes that to

update d1 to dnew
1 all one needs to do is add 226 shifted by the appropriate amount (in this case 12, so that

dnew
1 = d1 +26). This does not always produce the correct value because shifting and carry expansion do not

commute. The safest way to compute dnew
1 is to just re-do the step value computation. A complete table

with the updated computation is given below.

Modify mi anew, bnew, cnew, dnew

1 m1 12 mnew
1 ← m1 + 226 dnew

1 , a1, b0, c0

dnew
1 ← a1 + ((Φ1(a1, b0, c0) + d0 + y1 + mnew

1) ≪ 12)
2 m2 17 mnew

2 ← ((c1 − dnew
1) ≫ 17)− c0 − Φ2(d

new
1 , a1, b0)− y2 c1, d

new
1 , a1, b0

3 m3 22 mnew
3 ← ((b1 − c1) ≫ 22)− b0 − Φ3(c1, d

new
1 , a1)− y3 b1, c1, d

new
1 , a1

4 m4 7 mnew
4 ← ((a2 − b1) ≫ 7)− a1 − Φ4(b1, c1, d

new
1)− y4 a2, b1, c1, d

new
1

5 m5 12 mnew
5 ← ((d2 − a2) ≫ 12)− dnew

1 − Φ5(a2, b1, c1)− y5 d2, a2, b1, c1

So this is the gist of multi-message modification, but this simple trick does not handle all cases, and
unfortunately the details to some of the trickier modifications are not to be found in the Chinese papers.
In the next section we go through an example of a slightly more complex multi-message modification, in

11

addition to attempting to explain the motivation for each step in the method. We hope that by doing so the
reader gains a deeper understanding of the (as yet more-or-less unexplained) method.

5.5 1st block multi-message modification

Here we present our methods for finding the first block pair, based on the methods found in [8, 14]. Before
detailing our new methods for satisfying three extra conditions, we review and correct the collision-finding
pseudocode in Klima’s paper [8].

1st Block Collision-Finding Program Outline. Klima is able to satisfy four extra conditions from
[14] through some clever probabilistic multi-message modifications. The following outline is nearly identical
to that which is presented in Klima’s full paper [8]. There are a couple of mistakes in Klima’s multi-message
modification methods as presented in his paper, however. A few of the steps are out of order and some
crucial steps are omitted. Here is how the code should look (using our notation with shifted indices):

1. We choose Q2:15 fulfilling conditions.

2. We compute m6:15: For i going from 6 to 15 do

mi ← ((Qi −Qi−1) ≫ si)− F (Qi−1, Qi−2, Qi−3)−Qi−4 − yi

3. We change Q16 until conditions Q16:18 are fulfilled. Sometimes this is not possible (because the values
of Q12, Q13, Q14, Q15 do not allow the conditions on Q17 and Q18 to hold), and it becomes necessary
to change Q2:15.

Q17 ← Q16 + ((G(Q16, Q15, Q14) + Q13 + m6 + y17) ≪ s17)

Q18 ← Q17 + ((G(Q17, Q16, Q15) + Q14 + m11 + y18) ≪ s18)

4. All conditions Q2:18 are fulfilled now. Moreover, we have free value m0.

5. We choose Q19 arbitrarily, but fulfilling the one condition for it. Then we compute m0:

m0 ← ((Q19 −Q18) ≫ s19)−G(Q18, Q17, Q16)−Q15 − y19

6. Compute Q0 from new value of m0:

Q0 ← Q−1 + ((F (Q−1, Q−2, Q−3) + Q−4 + m0 + y0) ≪ s0)

7. Compute m1:

m1 ← ((Q16 −Q15) ≫ s16)−G(Q15, Q14, Q13)−Q12 − y16

8. Compute Q1 from new values of m1, Q0:

Q1 ← Q0 + ((F (Q0, Q−1, Q−2) + Q−3 + m1 + y1) ≪ s1)

9. Compute m2:5: For i going from 2 to 5 do

mi ← ((Qi −Qi−1) ≫ si)− F (Qi−1, Qi−2, Qi−3)−Qi−4 − yi

12

For step 3, we chose to satisfy the conditions on Q16:18 probabilistically, by simply randomly selecting Q16

and checking to see whether the other conditions were satisfied. There are only 9 conditions for these three
chaining variables, so this can be done quickly. Sometimes no selection of Q16 will satisfy the conditions,
so in this case our code simply begins anew by randomly selecting another Q2:15 such that the first round
conditions are satisfied.4

After step 9, we continue the computation, checking to see if the remaining conditions are satisfied
(each condition is expected to be satisfied with probability near 1/2, so we expect to iterate over the above
pseudocode 230 times before we find a suitable first block pair). If a condition isn’t satisfied, then we have
to choose a new message. We do this efficiently by iterating over all possible 231 values of Q19 in step 5
(simply incrementing Q19 after each failed attempt is the fastest way). If we exhaust all possible values for
Q19 without finding a suitable message, we return to step 3 and select another value for Q16. In this manner
we avoid significant unnecessary computation.

6 New Multi-Message Modification Methods

We now cover the details of our methods which reduce the overall complexity of the attack to an expected
230 MD5 computations. In subsection 5.4 we covered the basic idea behind multi-message modifications and
went over a simple example. However, not all second-round conditions can be handled as easily. In previous
papers [13, 14], these more complicated methods are not described at all. Therefore our approach will be
to walk through our techniques in detail, attempting to explain our methodology at each step so that the
reader gains not only an understanding of our techniques, but hopefully insight into the general technique
of multi-message modifications as well.

6.1 New multi-message modifications for correcting Q20,17 and Q20,31.

These modifications take into account all the modifications that Klima has done to correct the conditions
on Q0:19. These methods satisfy the two conditions on Q20 or a6 (Wang’s notation).

Outline of Method. We set up a few conditions on Q16:19 so that flipping a couple of bits of Q18 and
Q19 does not affect earlier computations but with high probability satisfies the two conditions on Q20. For
example, bit 31 of Q20 must be set to 0. Let’s say it is 1. Note how Q20 is computed:

Q20 ← Q19 + ((G(Q19, Q18, Q17) + Q16 + m5 + y20) ≪ 5)

We set conditions on Q17:19 so that by default the value of the 26th bit of G(Q19, Q18, Q17) is 0, but that
if we flip the 26th bits of both Q19 and Q18 then the value of the 26th bit G(Q19, Q18, Q17) changes to 1.
To derive such conditions, one has to look at how the function G is computed, but it can easily be verified
that if the 26th bits of Q18 and Q19 are 0, then the 26th bit of G(Q19, Q18, Q17) will be zero, and if the 26th
bits of Q19 and Q18 are flipped to 1, then the 26th bit of G(Q19, Q18, Q17) will also be flipped. Flipping the
26th bit of G(Q19, Q18, Q17) in this manner has the net effect of adding 231 +226 to the value of Q20 because
we have added 226 to Q19, which occurs twice in the computation of Q20 (once in the computation of G()
and once by addition to T19 ≪ 5). Adding 231 flips the most significant bit of Q20, like we wanted, and the
addition of 226, which we cannot really avoid, will only re-flip the most significant bit of Q20 if the next 5
most significant bits of Q20 were originally set, which occurs with probability 1/32.

At this point the observant reader may ask “Why did we have to flip the 26th bits of both Q19 and
Q18?”. “Why not just flip the 26th bit of Q19?” Here’s why: Remember back in Klima’s code how m0 was
computed:

m0 ← ((Q19 −Q18) ≫ s19)−G(Q18, Q17, Q16)−Q15 − y19

4We implement this by setting a reasonable upper limit on the number of random selections of Q16 which are chosen and
tested before we select new values for Q2:15.

13

If we just changed Q19, we would have to re-compute m0, which would affect the computation of m5 a
couple of steps later, and Q20 would likewise be affected. In fact, changing m0 by one bit in this way can
change m5 by a bunch of bits, so we must be very careful so we don’t have to modify it for our methods
to work. By changing both Q19 and Q18 in the same way, the changes cancel each other out and m0 is not
changed, so long as G(Q18, Q17, Q16) is not affected by these changes. It can easily be verified that requiring
the condition Q16,26 = 0 satisfies this goal (1 more condition). It is important to note that these added
conditions do not significantly affect the performance of the overall code because they are satisfied in step 3
of Klima’s code. Instead of 9 conditions to probabilistically satisfy in step 3, we now have 11, which is still
tiny in comparison to the overall runtime.

Okay. So we’ve sneakily changed Q19 and Q18 so that m0 is unaffected and a condition on Q20 is fulfilled
with high probability. Now we have to fix everything else. We recompute the value of m11 from the new
value of Q18 by the following:

m11 ← ((Q18 −Q17) ≫ s18)−G(Q17, Q16, Q15)−Q14 − y18

And we now have to recompute Q11 from m11.

Q11 ← Q10 + ((F (Q10, Q9, Q8)−Q7 − y11) ≪ s11)

Luckily the changes we made to m11 don’t affect any of the 15 conditions on Q11, so long as bit 2 of Q11

is originally set to 0 (so that we don’t have to worry about carries). So we add this condition to the list -
again, it is fulfilled “for free” by the single-message modification methods presented in the Wang papers (or
by the fact that Q11 is initially arbitrarily chosen in the Klima paper).

The only thing left to do is to recompute m12:15 to absorb the changes in Q11. This can be done without
changing any of the other Q variables by simply recomputing m12:15 as we did earlier:

m12 ← ((Q12 −Q11) ≫ s12)− F (Q11, Q10, Q9)−Q8 − y12

m13 ← ((Q13 −Q12) ≫ s13)− F (Q12, Q11, Q10)−Q9 − y13

m14 ← ((Q14 −Q13) ≫ s14)− F (Q13, Q12, Q11)−Q10 − y14

m15 ← ((Q15 −Q14) ≫ s15)− F (Q14, Q13, Q12)−Q11 − y15

That’s it. At the end of everything we have changed Q19 and Q18 so that one condition on Q20 has been
changed with probability 31/32, m11 and Q11 have been changed, but without affecting the conditions on
Q11, and m12−15 have been changed to absorb the changes in Q11 so that no other Q values are affected.

The exact same method can be used to correct the condition on the 17th bit of Q20 (just shift all bit
values above by 14). There are a total of 8 new conditions that this method requires, but they are all more
or less “free.”

It is possible that the above methods fail to correct the specified conditions, but the probability that this
happens is bounded above by 1/32 + 1/32 = 1/16.

After each iteration, our code goes back to starting values for m11:15, Q11, and Q18, because we need the
correct bits of Q11 and Q18 to be set so that flipping them to satisfy Q20 can occur safely.

New Modifications for Correcting the Condition on Q21. When used with Klima’s methods, the
above modifications reduce the number of probabilistically-satisfied conditions to 31. We now detail another
multi message modification to reduce that number to 30.

The method we use here is based on the multi message modifications explained above to correct for
the conditions on Q16. Essentially, we will make a change to one of the message words to correct the
condition and then change the other necessary message words and step values in order to ‘absorb’ the
changes. Unfortunately, this method is not quite as straightforward as the method to correct conditions on
Q16 as detailed in subsection 5.4.

The first reason for the added complexity is this: at step 21, we have used a number of message words
in the second round. Namely, m1, m6, m11, m0, m5, and m10. Any modification methods must not change

14

these message words, otherwise earlier second-round computations will be affected. Our methods get around
this by setting up conditions on first-round step values so that we use the properties of the Φ function to
avoid changing these message words.

The other reason we can’t use the same method as for correcting conditions on Q16 is that in this case
the methods affect conditions on earlier step values. Specifically, here is the problem we encounter if we try
to use the same method: we are trying to correct the condition Q21,31 = 0. The shift value for round 21 is
9, so to correct the condition we can change m10 so that mnew

10 ← m10 + 222. However, m10 is used in the
computation of Q10, a round for which the shift value is 17. Thus, when we update the value of Q10, we
essentially update the value Qnew

10 ← Q10 +27. This is a problem because there is a condition on Q10,7 which
we change. Furthermore, in order to absorb the changes to Q10 we would almost certainly have to modify
m11, which would affect earlier round-two computations. So it appears we have to do something different.

The trick in this case is to instead fix the condition by manipulating the values of bit 22 of Q7, Q8, Q9,
and Q10 so that we can modify m10 without modifying any other bit values of Q10 and without modifying
m11.

Here is the method:

• Add the following first-round conditions: Q7,22 = 0, Q8,22 = 1, Q9,22 = 0 and Q10,22 = 0.

• If the condition on Q21,31 is not satisfied, do the following:

– Flip bit 22 of Q9 to 1 (denote change as Qnew
9 ← Q9 + 222).

– Recompute m9 to reflect this change

mnew
9 ← ((Qnew

9 −Q8) ≫ s9)− F (Q8, Q7, Q6)−Q5 − y9

– Recompute m10

mnew
10 ← ((Q10 −Qnew

9) ≫ 17)− F (Qnew
9 , Q8, Q7)−Q6 − y10

– Recompute m12 and m13

mnew
12 ← ((Q12 −Q11) ≫ s12)− F (Q11, Q10, Q

new
9)−Q8 − y12

mnew
13 ← ((Q13 −Q12) ≫ s13)− F (Q12, Q11, Q10)−Qnew

9 − y13

– Recompute Q21

Qnew
21 ← Q20 + ((G(Q20, Q19, Q18) + Q17 + y21 + mnew

10) ≪ s21)

This process looks similar to the technique present earlier in subsection 5.4, but the following question
naturally arises: Why doesn’t m11 need to be modified? The trick is looking at the values of F in these
rounds before and after the change to Q9,22. We’re not really concerned with how changing Q9,22 affects
m9, m12, or m13, but we would like mnew

10 to look something like m10 + 222 and we would like m11 to not be
affected at all. In the computation of mnew

10 ,

mnew
10 ← ((Q10 −Qnew

9) ≫ 17)− F (Qnew
9 , Q8, Q7)−Q6 − y10

the change to Q9,22 can affect mnew
10 twice. Note that for the values on bits 22 of Q9, Q8, Q7, bit 22 of

F (Q9, Q8, Q7) is 0. However, bit 22 of F (Qnew
9 , Q8, Q7) is 1.

So, substituting Q9 + 222 for Qnew
9 we obtain that

mnew
10 ← ((Q10 −Q9 − 222) ≫ 17)− F (Q9, Q8, Q7)− 222 −Q6 − y10

= ((Q10 −Q9) ≫ s10)− 25 − F (Q9, Q8, Qu)− 222 −Q6 − y10

= m10 − 222 − 25

15

This change to m10 will almost certainly have the desired effect on Q21 because Qnew
21 = Q21− 231− 214.

The factor of 214 will only affect bit 31 of Q21 if bits 14 through 30 of Q21 are zero, which occurs with
probability 1/217.

Now we just have to make sure that this change to Q9,22 doesn’t affect m11. Let’s look at how m11 might
be affected.

m11 ← ((Q11 −Q10) ≫ s11)− F (Q10, Q
new
9 , Q8)−Q7 − y11

It is clear that m11 will only change if F (Q10, Q9, Q8) 6= F (Q10, Q
new
9 , Q8). We only have to check if bit

22 changes. Because bit 22 of Q10 is 0, bit 22 of F (Q10, Q9, Q8) and F (Q10, Q
new
9 , Q8) are both equal to

Q8,22 = 1. Thus m11 is not changed.

Performance. We ran code based on the work done by [12], modified with our extra methods, to find the
first block 80 times run on a desktop 3.0 GHz processor. The total time to find all 80 blocks was just under
ten hours seven minutes, giving an average time per block of 455 seconds. We also found a second block, one
for each first block found with corresponding IV s, in a total time of just under four hours 23 minutes, giving
an average time of 197 seconds per block found. Overall, full two-block collisions were found, on average, in
under 11 minutes. This is a dramatic improvement over the timings given by Klima, even after correcting
for discrepancies in hardware.

6.2 2nd block multi-message modification

The following is a method that is very similar to one described in the Klima paper with complexity 224. The
complexity turns out to be closer to 226 due to the insufficiency of the conditions on the step values.

This method satisfies conditions and differentials through Q0:20. The rest of the conditions and differen-
tials are satisfied probabilistically. There are 24 remaining conditions on Q21:63, along with conditions on
T22,17, T34,15, and T61,15.

1. Randomly select values for Q2:15, which satisfy conditions.

2. Compute m6:15.

3. Select Q0 and Q1 at random until conditions and differentials for Q16:20 are satisfied. This involves
computing m0:5 from these chosen values, then computing Q16:20. Sometimes it is necessary to return
to step one.

4. Randomly select values for Q7:10, which satisfy conditions (single-message modifications).

5. Calculate Q11. (m11 is not modified.)

6. If all conditions and differentials through step 20 are not satisfied return to step 4.

7. Cycle though all of the possible bit changes for Q8 and Q9 using gray code.5 note the following:

• Φ11 = (Q10 ∧Q9) ∨ (¬Q10 ∧Q8)

• If Q10,i = 1 and i ∈ I we can modify Q8,i while preserving x[11].

• I = {2, 3, 4, 5, 10, 11, 13, 14, 18, 19, 20, 21, 22, 29, 30}
• If Q10,j = 0 and j ∈ J we can modify Q9,j while preserving x[11].

• J = {2, 3, 4, 5, 10, 11, 20, 21, 22, 27, 28, 29, 30}

8. Return to step 4 until a collision has been found.

5This is just a method by which only one bit changes with each iteration over the possible values, done for efficiency’s sake.

16

This method modifies Q7:11, while leaving m11 unmodified. Since m1, m6, m11, m0, m5 are unchanged,
we know the conditions for Q16:20 remain satisfied.

Performance for Second Block Multi-Message Modification. At first the second block multi-
message modification performed quickly, but was rather inconsistent. Often the program had difficulty
completing steps 4-6 quickly. We were able to remedy this by returning to step one after a prescribed
number of iterations. Other times the program would simply be unable to find a collision in a reasonable
amount of time. After a number of trial runs we realized that a majority of collisions were found when step 7
had been reached less than 4096 times and of those that were found when step seven had been reached more
than 4096 times, many were found after step seven had been reached many more than 4096 times. Thus if
we detect that step seven has been reached more than 4096 times we select a new random message.

Once our program performed consistently, we performed tests on the second block multi-message modi-
fication using a Dell Latitude D610 running at 1.6 GHz. We were able to find 85 second block messages in
4 hours 29 minutes. The mean running time was 3 minutes 9 seconds, with a range from 5 seconds to 10
minutes. This method for second block multi-message modification has close to the same running time as the
method used by the Chinese team using a IBM P690. The method we used for second block multi-message
modification turns out to be 25-50 times faster than the method used by the Chinese Team, based on the
performance difference of the IBM P690 and a 1.6 GHz Pentium M [8].

7 A New Method

At the end of the previous section we discussed how some analysis of trends in the running time of the program
to find the second blocks could lead to decreased time complexity. This suggests a general technique to reduce
the search space which may be incorporated into the methods already presented.

In the example covered in the previous section, we noted that, for whatever reason, certain sets of values
for the step values were more likely to find an acceptable second block than others, and that there is a simple
way to test to see if a set of values is not in this desired group. The general technique can be described
simply as this, verifified experimentally but not analytically:

Relying on the fact that the step update function is not very random, we can attempt to identify
patterns in the step values which tend to yield solutions. Using this knowledge, we narrow our
search space to use only step values which fall within these patterns.

Another Example. The methods presented in section 6 provide an analytic method to satisfy conditions
on Q20 with probability near 15/16 (approximately 94% of the time). Although the analytic solution works,
it nearly doubles the computation over the main iterative loop, thus weakening its positive impact on the
running time of our collision-finding program. However, we were also able to obtain an equally or perhaps
more effective (satisfied conditions around 97% of the time on tests) method for satisfying conditions on Q20.

The pattern is simple. While iterating through values of Q19, as in step 5 of the pseudocode in section 5.5,
there are distinct patterns in which values of Q19 automatically satisfy conditions on Q20. That is, ignoring
our new multi-message modifications for Q20, we tried to identify which values of Q19 led to conditions on
Q20 being satisfied. We found that values of Q19 which satisfied conditions on Q20 often occurred sequentially
in blocks of 128 followed by 128 consecutive values of Q19 which didn’t satisfy conditions on Q20. There
were exceptions to this pattern, but the correlation was strong enough to reduce the time complexity. This
suggests a new method for satisfying conditions on Q20 that requires much less computation:

• While iterating over values of Q19, check to see if the conditions on Q20 are satisfied. If not, add 127
to Q19 and continue.

Restricting the values of Q19 in this manner yields an algorithm for which around 97% of all used values
of Q19 satisfy conditions on Q20, with the additional benefit that very little overhead is needed compared to
the other multi-message modification method.

17

The Method. We have not attempted to systematically identify and define this approach within our own
work. It was merely that through a casual analysis of data patterns observed during coding, we noticed this
phenomenon. Nonetheless, it seems that we used the following rough methodology:

• Record values for intermediate step values as well as result (Were all differentials satisfied with these
values? If not - how many were satisfied?). Do this for many random choices of M .

• Attempt to find simple patterns in these step values which will yield a good heuristic.

This procedure can have broad or narrow scope. With the above example, we looked at consecutive values
of Q19 and checked only two conditions on Q20. Broadening the scope may yield results, or it may decrease
the chances that simple patterns will be easy to find.

The above technique seems possible to automate so that no human interaction is necessary and we
believe this is a possible avenue for future research. We suspect that artificial intelligence techniques could
be especially useful with this sort of analysis. The main drawback to this method is that one might not be
able to easily understand why these patterns of data exist. In general, it seems preferable to do as much
analysis as possible, but it seems likely that an automated tool to detect these kinds of patterns may be
used with great success after analysis becomes too cumbersome or fruitless.

Acknowledgements

John Black’s and Martin Cochran’s work was supported by NSF CAREER-0240000 and NSF-0524118.
Trevor Highland’s work was supported by NSF REU-0244168. The authors wish to thank the anonymous
FSE 2006 reviewers for their helpful comments.

18

References

[1] Brassard, G., Ed. Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings (1990), vol. 435 of Lecture
Notes in Computer Science, Springer.

[2] Cramer, R., Ed. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings (2005), vol. 3494 of Lecture Notes in Computer Science, Springer.

[3] Damgård, I. A design principle for hash functions. In Brassard [1], pp. 416–427.

[4] den Boer, B., and Bosselaers, A. Collisions for the compressin function of MD5. In EUROCRYPT
(1993), pp. 293–304.

[5] Dobbertin, H. Cryptanalysis of MD5 compress. Presented at the rump session of Eurocrypt ’96.

[6] Hawkes, P., Paddon, M., and Rose, G. G. Musings on the wang et al. MD5 collision, October
2004. http://eprint.iacr.org/2004/264.

[7] Klima, V. Finding MD5 collisions: a toy for a notebook, March 2005. Draft available as
http://eprint.iacr.org/2005/075.

[8] Klima, V. Finding MD5 collisions on a notebook PC using multi-message modifications. In Interna-
tional Scientific Conference Security and Protection of Information (May 2005).

[9] Merkle, R. C. One way hash functions and DES. In Brassard [1], pp. 428–446.

[10] Rivest, R. The MD5 message-digest algorithm. RFC 1321, 37 (April 1992).

[11] Rogaway, P., and Shrimpton, T. Cryptographic hash-function basics: Definitions, implications
and separations for preimage resistance, second-preimage resistance, and collision resistance. In Fast
Software Encryption (FSE 2004) (2004), Lecture Notes in Computer Science, Springer.

[12] Stach, P., and Liu, V. MD5 collision generation. Code available at
http://www.stachliu.com/collisions.html.

[13] Wang, X., Lai, X., Feng, D., Chen, H., and Yu, X. Cryptanalysis of the hash functions MD4 and
RIPEMD. In Cramer [2], pp. 1–18.

[14] Wang, X., and Yu, H. How to break MD5 and other hash functions. In Cramer [2], pp. 19–35.

A Tables

We have re-created the tables from [13, 14], but using our notation. They can be found in figures 3, 4, 5, and
6. We have left out the “missing” conditions reported in other papers because as of the writing of this paper
the extra conditions still do not make the entire set sufficient with regard to guaranteeing the differentials,
and the overall runtime is unaffected either way.

19

0: 32:

1: 33:

2:0.......0....0...... 34:

3: 1.......022212222222122220...... 35:

4: 1...1.0.0100000000000000001..1.1 36:

5: 02220212011111111011110001022021 37:

6: 00000011111111101111100000100000 38:

7: 000000011..100010.0.010101000000 39:

8: 11111011...100000.12111100111101 40:

9: 01......0..111111.01...001....00 41:

10: 00..........00011200...011....10 42:

11: 00....22....10000001...10....... 43:

12: 01....01....1111111....00...1... 44:

13: 0.0...00....1011111....11...1... 45:

14: 0.1...01........1...........0... 46:

15: 0.1............................. 47: 3...............................

16: 0.............0.2...........2... 48: 3...............................

17: 0.2...........1................. 49: 5...............................

18: 0.............0................. 50: 3...............................

19: 0............................... 51: 3...............................

20: 0.............2................. 52: 3...............................

21: 0............................... 53: 3...............................

22: 0............................... 54: 3...............................

23: 4............................... 55: 3...............................

24: 56: 3...............................

25: 57: 3...............................

26: 58: 3...............................

27: 59: 5.....0.........................

28: 60: 3....01.........................

29: 61: 3...............................

30: 62: 2...............................

31: 63:

aa: dd:0.........................

cc: 2....01......................... bb: 2....00...................0.....

Figure 3: Summary of First Block Conditions. Key - 0: bit equals 0, 1: bit equals 1, 2: bit equals bit of same index from

previous step, 3: bit equals bit of same index from two steps ago, 4: bit not equal to bit of same index from previous step,

5: bit not equal to bit of same index from two steps ago

20

0: 1...010...1.........0.....0..... 32:

1: 1222110...0222220..21...220..00. 33:

2: 1011111...011111...01..10112211. 34: 6...............................

3: 1011101...000100...0022000010002 35:

4: 010010....101111...0111001010000 36:

5: 0..0010...10..10...0110001010110 37:

6: 1..101122.00..012..1111000.....1 38:

7: 1..001000.11..101.....1111....20 39:

8: 1..111000.....010..2..0111....01 40:

9: 1....1111....0111..0..1111....00 41:

10: 1...........21011220..1111....11 42:

11: 12222222....10000001....1....... 43:

12: 00111111....1111111.....0...1... 44:

13: 01000000....1011111.....1...1... 45:

14: 01111101........0...........0... 46:

15: 0.1............................. 47: 3...............................

16: 0.............0.2...........2... 48: 3...............................

17: 0.2...........1................. 49: 5...............................

18: 0.............0................. 50: 3...............................

19: 0............................... 51: 3...............................

20: 0.............2................. 52: 3...............................

21: 0............................... 53: 3...............................

22: 0............................... 54: 3...............................

23: 4............................... 55: 3...............................

24: 56: 3...............................

25: 57: 3...............................

26: 58: 3...............................

27: 59: 5...............................

28: 60: 3.....1.........................

29: 61: 3.....1.........................

30: 62: 3.....1.........................

31: 63:1.........................

Figure 4: Summary of Second Block Conditions. Key - 0: bit equals 0, 1: bit equals 1, 2: bit equals bit of same index

from previous step, 3: bit equals bit of same index from two steps ago, 4: bit not equal to bit of same index from previous

step, 5: bit not equal to bit of same index from two steps ago

21

Step The output wi si ∆wi The output in the i-th step for M ′

0

in i-th step
for M0

3 Q3 (b1) m3 22

4 Q4 (a2) m4 7 231 Q4[7, . . . , 22,−23]
5 Q5 (d2) m5 12 Q5[−6, 23, 31]
6 Q6 (c2) m6 17 Q6[6, 7, 8, 9, 10,−11,−23,−24,−25,

26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4,−5]
7 Q7 (b2) m7 22 Q7[0, 15,−16, 17, 18, 19,−20,−23]
8 Q8 (a3) m8 7 Q8[−0, 1, 6, 7,−8,−31]
9 Q9 (d3) m9 12 Q9[−12, 13, 31]
10 Q10 (c3) m10 17 Q10[30, 31]

11 Q11 (b3) m11 22 215 Q11[7,−8, 13, . . . , 18,−19, 31]
12 Q12 (a4) m12 7 Q12[−24, 25, 31]
13 Q13 (d4) m13 12 Q13[31]

14 Q14 (c4) m14 17 231 Q14[3,−15, 31]
15 Q15 (b4) m15 22 Q15[−29, 31]
16 Q16 (a5) m1 5 Q16[31]
17 Q17 (d5) m6 9 Q17[31]

18 Q18 (c5) m11 14 215 Q18[17, 31]
19 Q19 (b5) m0 20 Q19[31]
20 Q20 (a6) m5 5 Q20[31]
21 Q21 (d6) m10 9 Q21[31]
22 Q22 (c6) m15 14 Q22

23 Q23 (b6) m4 20 231 Q23

24 Q24 (a7) m9 5 Q24

25 Q25 (d7) m14 9 231 Q25

26 Q26 (c7) m3 14 Q26

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

33 Q33 (d9) m8 11 Q33

34 Q34 (c9) m11 16 215 Q34[±31]

35 Q35 (b9) m14 23 231 Q35[±31]
36 Q36 (a10) m1 4 Q36[±31]

37 Q37 (d10) m4 11 231 Q37[±31]
38 Q38 (c10) m7 16 Q38[±31]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

44 Q44 (a12) m9 4 Q44[±31]
45 Q45 (d12) m12 11 Q45[31]
46 Q46 (c12) m15 16 Q46[31]
47 Q47 (b12) m2 23 Q47[31]
48 Q48 (a13) m0 6 Q48[31]
49 Q49 (d13) m7 10 Q49[−31]

50 Q50 (c13) m14 15 231 Q50[31]
51 Q51 (b13) m5 21 Q51[−31]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

57 Q57 (d15) m15 10 Q57[−31]
58 Q58 (c15) m6 15 Q58[31]
59 Q59 (b15) m13 21 Q59[31]

60 Q60 (a16) m4 6 231 Q60[31]

61 Q61 (d16) m11 10 215 Q61[25, 31]
62 Q62 (c16) m2 15 Q62[−25, 26, 31]
63 Q63 (b16) m9 21 Q63[25, 31]

Q64 = Q60 + Q−4 Q64[31]
Q65 = Q61 + Q−3 Q65[25, 31]
Q66 = Q62 + Q−2 Q66[−25, 26, 31]
Q67 = Q63 + Q−1 Q67[25,−31]

Figure 5: The Differential Characteristics for the First Block

22

Step The output wi si ∆wi The output in the i-th step for M ′

1

in i-th step
for M1

IV aa0[31], dd0[25, 31],
cc0[−25, 26, 31], bb0[25,−31]

0 Q0 (a1) m0 7 Q0[25,−31]
1 Q1 (d1) m1 12 Q1[5, 25,−31]
2 Q2 (c1) m2 17 Q2[−5,−6, 7,−11, 12,

−16, . . . ,−20, 21,−25, . . . ,−29, 30,−31]
3 Q3 (b1) m3 22 Q3[1, 2, 3,−4, 5,−25, 26,−31]

4 Q4 (a2) m4 7 231 Q4[0,−6, 7, 8,−9,−10,−11, 12, 31]
5 Q5 (d2) m5 12 Q5[16,−17, 20,−21, 31]
6 Q6 (c2) m6 17 Q6[6, 7, 8,−9, 27,−28,−31]
7 Q7 (b2) m7 22 Q7[−15, 16,−17, 23, 24, 25,−26,−31]
8 Q8 (a3) m8 7 Q8[−0, 1,−6,−7,−8, 9,−31]
9 Q9 (d3) m9 12 Q9[12,−31]
10 Q10 (c3) m10 17 Q10[−31]

11 Q11 (b3) m11 22 −215 Q11[−7, 13, 14, 15, 16, 17, 18,−19,−31]
12 Q12 (a4) m12 7 Q12[−24, . . . ,−29, 30, 31]
13 Q13 (d4) m13 12 Q13[31]

14 Q14 (c4) m14 17 231 Q14[3, 15, 31]
15 Q15 (b4) m15 22 Q15[−29, 31]
16 Q16 (a5) m1 5 Q16[31]
17 Q17 (d5) m6 9 Q17[31]

18 Q18 (c5) m11 14 −215 Q18[17, 31]
19 Q19 (b5) m0 20 Q19[31]
20 Q20 (a6) m5 5 Q20[31]
21 Q21 (d6) m10 9 Q21[31]
22 Q22 (c6) m15 14 Q22[31]

23 Q23 (b6) m4 20 231 Q23[31]
24 Q24 (a7) m9 5 Q24

25 Q25 (d7) m14 9 231 Q25

26 Q26 (c7) m3 14 Q26

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

33 Q33 (d9) m8 11 Q33

34 Q34 (c9) m11 16 −215 Q34[±31]

35 Q35 (b9) m14 23 231 Q35[±31]
36 Q36 (a10) m1 4 Q36[±31]

37 Q37 (d10) m4 11 231 Q37[±31]
38 Q38 (c10) m7 16 Q38[±31]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

48 Q48 (a13) m0 6 Q48[31]
49 Q49 (d13) m7 10 Q49[−31]

50 Q50 (c13) m14 15 231 Q50[31]
51 Q51 (b13) m5 21 Q51[−31]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

58 Q58 (c15) m6 15 Q58[31]
59 Q59 (b15) m13 21 Q59[31]

60 Q60 (a16) m4 6 231 Q60[31]

61 Q61 (d16) m11 10 −215 Q61[31]
62 Q62 (c16) m2 15 Q62[31]
63 Q63 (b16) m9 21 Q63[31]

Q64 = Q60 + Q−4 Q64

Q65 = Q61 + Q−3 Q65

Q66 = Q62 + Q−2 Q66

Q67 = Q63 + Q−1 Q67

Figure 6: The Differential Characteristics for the Second Block

23

