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Abstract

Preneel, Govaerts, and Vandewalle [7] considered the 64 most basic ways to construct a
hash function H : {0, 1}∗ → {0, 1}n from a block cipher E: {0, 1}n × {0, 1}n → {0, 1}n. They
regarded 12 of these 64 schemes as secure, though no proofs or formal claims were given. The
remaining 52 schemes were shown to be subject to various attacks. Here we provide a formal
and quantitative treatment of the 64 constructions considered by PGV. We prove that, in a
black-box model, the 12 schemes that PGV singled out as secure really are secure: we give
tight upper and lower bounds on their collision resistance. Furthermore, by stepping outside of
the Merkle-Damg̊ard approach to analysis, we show that an additional 8 of the 64 schemes are
just as collision resistant (up to a small constant) as the first group of schemes. Nonetheless,
we are able to differentiate among the 20 collision-resistant schemes by bounding their security
as one-way functions. We suggest that proving black-box bounds, of the style given here, is a
feasible and useful step for understanding the security of any block-cipher-based hash-function
construction.
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1 Introduction

Background. The most popular collision-resistant hash-functions (eg., MD5 and SHA-1) iterate
a compression function that is constructed from scratch (i.e., one that doesn’t use any lower-level
cryptographic primitive). But there is another well-known approach, going back to Rabin [8],
wherein one makes the compression function out of a block cipher. This approach has been less
widely used, for a variety of reasons. These include export restrictions on block ciphers, a pre-
ponderance of 64-bit block lengths, problems attributable to “weak keys”, and the lack of popular
block ciphers with per-byte speeds comparable to that of MD5 or SHA-1. Still, the emergence of
the AES has somewhat modified this landscape, and now motivates renewed interest in finding
good ways to turn a block cipher into a cryptographic hash function. This paper casts some fresh
light on the topic.

The PGV paper. We return to some old work by Preneel, Govaerts, and Vandewalle [7] that con-
sidered turning a block cipher E: {0, 1}n ×{0, 1}n → {0, 1}n into a hash function H: ({0, 1}n)∗ →
{0, 1}n using a compression function f : {0, 1}n × {0, 1}n → {0, 1}n derived from E. For v a fixed
n-bit constant, PGV considers all 64 compression functions f of the form f(hi−1,mi) = Ea(b)⊕ c
where a, b, c ∈ {hi−1, mi, hi−1 ⊕mi, v}. Then define the iterated hash of f as:

function H (m1 · · ·m�)
for i← 1 to � do hi← f (hi−1,mi)
return h�

Here h0 is a fixed constant, say 0n, and |mi| = n for each i ∈ [1..�]. Of the 64 such schemes, the
authors of [7] regard 12 as secure. Another 13 schemes they classify as backward-attackable, which
means they are subject to an identified (but not very severe) potential attack. The remaining 39
schemes are subject to damaging attacks identified by [7] and others.

Some missing results. The authors of [7] focused on attacks, not proofs. All the same, it seems
to be a commonly held belief that it should be possible to produce proofs for the schemes they
regarded as secure. Indeed [7] goes so far as to say that “For each of these schemes it is possible
to write a ‘security proof’ based on a black box model of the encryption algorithm, as was done
for the Davies-Meyer scheme [by Winternitz [11]]”. This latter paper uses a black-box model of a
block cipher—a model dating back to Shannon [9]—to show that the scheme we will later call H5

is secure in the sense of preimage-resistance. Specifically, [11] shows that any algorithm (with E
and E−1 oracles) that always finds a preimage under H5 for a fixed value y ∈ {0, 1}n will necessarily
make at least 2n−1 expected oracle queries.

The approach introduced by Winternitz for analyzing block-cipher-based hash functions didn’t
get used much in subsequent work. Merkle [6] assumes this model and provides constructions
intended for it, though no actual theorems are given. The black-box model of a block cipher has
found use in other contexts, such as [4, 5]. But, prior to the current work, we are unaware of any
proof in the literature, under any formalized model, for the collision-resistance of any block-cipher-
based hash-function.

Summary of our results. This paper takes a more proof-centric look at the schemes from
PGV [7], providing both upper and lower bounds for each. Some of our results are as expected,
while others are not.
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First we prove collision-resistance for the 12 schemes singled out by PGV as secure (meaning
those marked “�” or “FP” in [7]). We analyze these group-1 schemes, {H1, . . . ,H12}, within the
Merkle-Damg̊ard paradigm. That is, we show that for each group-1 scheme Hı its compression
function fı is already collision resistant, and so Hı must be collision resistant as well.

PGV’s backward-attackable schemes (marked “B” in [7]) held more surprises. We find that
eight of these 13 schemes are secure, in the sense of collision resistance. In fact, these eight group-2
schemes, {H13, . . . ,H20}, are just as collision-resistant as the group-1 schemes.

Despite having essentially the same collision-resistance, the group-1 and group-2 schemes can
be distinguished based on their security as one-way functions: we get a better bound on inversion-
resistance for the group-1 schemes than we get for the group-2 schemes. Matching attacks (up to
a constant) demonstrate that this difference is genuine and not an artifact of the security proof.

The remaining 44 = 64−20 hash functions considered by PGV are completely insecure: for these
group-3 schemes one can find a (guaranteed) collision with two or fewer queries. This includes five of
PGV’s backward-attackable schemes, where [7] had suggested a (less effective) meet-in-the-middle
attack (see Appendix A).

Other surprises emerged in the mechanics of carrying out our analyses. Unlike the group-1
schemes, we found that the group-2 schemes could not be analyzed within the Merkle-Damg̊ard
paradigm; in particular, these schemes are collision resistant even though their compression func-
tions are not. We also found that, for one set of schemes, the “obvious attack” on collision resistance
needed some subtle probabilistic reasoning to rigorously analyze.

The security of the 64 PGV schemes is summarized in Figures 1 and 2, which also serve to
define the different hash functions Hı and their compression functions fı. Figure 3 gives a more
readable description of f1, . . . , f20. A high-level summary of our findings is given by the following
chart. The model (and the meaning of q) will be described momentarily.

PGV Category Our Category Collision Bound OWF Bound

�or FP (12 schemes) group-1: H1..12 (12 schemes) Θ(q2/2n) Θ(q/2n)
group-2: H13..20 (8 schemes) Θ(q2/2n) Θ(q2/2n)

B (13 schemes)

group-3 (44 schemes) Θ(1) Θ(1)
F, P, or D (39 schemes)

Black-box model. Our model is the one dating to Shannon [9] and used for works like [4, 5, 11].
Fix a key-length κ and a block length n. An adversary A is given access to oracles E and E−1

where E is a random block cipher E: {0, 1}κ × {0, 1}n → {0, 1}n and E−1 is its inverse. That
is, each key k ∈ {0, 1}κ names a randomly-selected permutation Ek = E(k, ·) on {0, 1}n, and the
adversary is given oracles E and E−1. The latter, on input (k, y), returns the point x such that
Ek(x) = y.

For a hash function H that depends on E, the adversary’s job in attacking the collision resistance
of H is to find distinct M,M ′ such that H(M) = H(M ′). One measures the optimal adversary’s
chance of doing this as a function of the number of E or E−1 queries it makes. Similarly, the
adversary’s job in inverting H is to find an inverse under H for a random range point Y ∈ {0, 1}n.
(See Section 2 for a justification of this definition.) One measures the optimal adversary’s chance
of doing this as a function of the total number of E or E−1 queries it makes.
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ı  hi = CR low-bnd CR up-bnd IR low-bnd IR up-bnd

1 Emi(mi) ⊕ v 1 1 a

2 Ehi−1(mi) ⊕ v 1 1 b

13 3 Ewi(mi) ⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

4 Ev(mi) ⊕ v 1 1 a

5 Emi(mi) ⊕ mi 1 1 a

1 6 Ehi−1(mi) ⊕ mi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

9 7 Ewi(mi) ⊕ mi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

8 Ev(mi) ⊕ mi 1 1 a

9 Emi(mi) ⊕ hi−1 1 1 f

10 Ehi−1(mi) ⊕ hi−1 1 1 b

11 11 Ewi(mi) ⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

12 Ev(mi) ⊕ hi−1 1 1 b

13 Emi(mi) ⊕ wi 1 1 f

3 14 Ehi−1(mi) ⊕ wi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

14 15 Ewi(mi) ⊕ wi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

16 Ev(mi) ⊕ wi 1 1 f

15 17 Emi(hi−1) ⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

18 Ehi−1(hi−1) ⊕ v 1 1 a

16 19 Ewi(hi−1) ⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

20 Ev(hi−1) ⊕ v 1 1 a

17 21 Emi(hi−1) ⊕ mi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

22 Ehi−1(hi−1) ⊕ mi 1 1 b

12 23 Ewi(hi−1) ⊕ mi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

24 Ev(hi−1) ⊕ mi 1 1 b

5 25 Emi(hi−1) ⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

26 Ehi−1(hi−1) ⊕ hi−1 1 1 a

10 27 Ewi(hi−1) ⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

28 Ev(hi−1) ⊕ hi−1 1 1 a

7 29 Emi(hi−1) ⊕ wi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

30 Ehi−1(hi−1) ⊕ wi 1 1 b

18 31 Ewi(hi−1) ⊕ wi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

32 Ev(hi−1) ⊕ wi 1 1 b

Figure 1: Summary of results. Column 1 is our number ı for the function (we write fı for the compression
function and Hı for its induced hash function). Column 2 is the number from [7] (we write f̂ and Ĥ).
Column 3 defines fı(hi−1, mi) and f̂(hi−1, mi). We write wi for mi⊕hi−1. Columns 4–7 give our collision-
resistance and inversion-resistance bounds. Column 8 comments on collision-finding attacks: (a) H(M)
is determined by the last block only; two E queries; (b) Attack uses two E queries and one E−1 query;
(c) Attack uses q/2 E queries and q/2 E−1 queries; (d) Attack given by Theorem 5.1; (e) Attack given
by Theorem 5.3; (f) H(M) independent of block order; two E queries; (g) Attack uses (at most) two E
queries. We do not explore inversion resistance for schemes that are trivially breakable in the sense of
collision resistance.
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ı  hi = CR low-bnd CR up-bnd IR low-bnd IR up-bnd

19 33 Emi(wi) ⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

34 Ehi−1(wi) ⊕ v 1 1 b

35 Ewi(wi) ⊕ v 1 1 g

36 Ev(wi) ⊕ v 1 1 b

20 37 Emi(wi) ⊕ mi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

4 38 Ehi−1(wi) ⊕ mi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

39 Ewi(wi) ⊕ mi 1 1 g

40 Ev(wi) ⊕ mi 1 1 g

8 41 Emi(wi) ⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

42 Ehi−1(wi) ⊕ hi−1 1 1 b

43 Ewi(wi) ⊕ hi−1 1 1 g

44 Ev(wi) ⊕ hi−1 1 1 b

6 45 Emi(wi) ⊕ wi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

2 46 Ehi−1(wi) ⊕ wi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

47 Ewi(wi) ⊕ wi 1 1 g

48 Ev(wi) ⊕ wi 1 1 g

49 Emi(v) ⊕ v 1 1 a

50 Ehi−1(v) ⊕ v 1 1 a

51 Ewi(v) ⊕ v 1 1 g

52 Ev(v) ⊕ v 1 1 a

53 Emi(v) ⊕ mi 1 1 a

54 Ehi−1(v) ⊕ mi 1 1 b

55 Ewi(v) ⊕ mi 1 1 g

56 Ev(v) ⊕ mi 1 1 a

57 Emi(v) ⊕ hi−1 1 1 f

58 Ehi−1(v) ⊕ hi−1 1 1 a

59 Ewi(v) ⊕ hi−1 1 1 g

60 Ev(v) ⊕ hi−1 1 1 a

61 Emi(v) ⊕ wi 1 1 f

62 Ehi−1(v) ⊕ wi 1 1 b

63 Ewi(v) ⊕ wi 1 1 g

64 Ev(v) ⊕ wi 1 1 b

Figure 2: Summary of results, continued. See the caption of Figure 1 for an explanation of the entries in
this table.
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Figure 3: The compression functions f1, . . . , f20 for the 20 collision-resistant hash functions H1, . . . , H20. A
hatch marks the location for the key.
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Discussion. As with [7], we do not concern ourselves with MD-strengthening [3, 6], wherein strings
are appropriately padded so that any M ∈ {0, 1}∗ may be hashed. Simple results establish the
security of the MD-strengthened hash function H∗ one gets from a secure multiple-of-block-length
hash-function H. All of our attacks work just as well in the presence of MD-strengthening.

It is important not to read too much or too little into black-box results. On the one hand, attacks
on block-cipher-based hash-functions have usually treated the block cipher as a black box. Such
attacks are doomed when one has strong results within the black-box model. On the other hand,
the only structural aspect of a block cipher captured by the model is its invertibility, so one must be
skeptical about what a black-box-model result suggests when using a block cipher with significant
structural properties, such as weak keys. With a block cipher like AES, one hopes for better.
We point out that the black-box model is considerably sharper than treating the block cipher as a
random function E: {0, 1}κ+n → {0, 1}n. Such a model should be avoided because many attacks on
block-cipher-based hash-functions do use the adversary’s ability to compute E−1

k . Overall, we see
the black-box model as an appropriate first step in understanding the security of block-cipher-based
hash-functions. Of course it would be nice to make due with standard assumptions, such as the
block cipher being a pseudorandom function, but that assumption is insufficient for our purposes,
and no sufficient assumption has been proposed.

Future directions. Though we spoke of AES as rekindling interest in block-cipher-based hash-
function designs, we do not address what we regard as the most interesting practical problem in
that vein: namely, how best to use an n-bit block cipher to make a hash function with output
length larger than n bits. (Many people see n = 128 bits as an inadequate output length for a hash
function, particularly in view of [10].) The current work does not answer this question, but it does
lay the groundwork for getting there.

2 Definitions

Basic notions. Let κ, n ≥ 1 be numbers. A block cipher is a map E: {0, 1}κ × {0, 1}n → {0, 1}n
where, for each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is a permutation on {0, 1}n. If E is a block
cipher then E−1 is its inverse, where E−1

k (y) is the string x such that Ek(x) = y. Let Bloc(κ, n) be
the set of all block ciphers E: {0, 1}κ×{0, 1}n → {0, 1}n. Choosing a random element of Bloc(κ, n)
means that for each k ∈ {0, 1}κ one chooses a random permutation Ek(·).

A (block-cipher-based) hash function is a map H: Bloc(κ, n) × D → R where κ, n, c ≥ 1,
D ⊆ {0, 1}∗, and R = {0, 1}c. The function H must be given by a program that, given M , computes
HE(M) = H(E,M) using an E-oracle. Hash function f : Bloc(κ, n) × D → R is a compression
function if D = {0, 1}a × {0, 1}b for some a, b ≥ 1 where a + b ≥ c. Fix h0 ∈ {0, 1}a. The iterated
hash of compression function f : Bloc(κ, n) × ({0, 1}a × {0, 1}b) → {0, 1}a is the hash function
H: Bloc(κ, n) × ({0, 1}b)∗ → {0, 1}a defined by HE(m1 · · ·m�) = h� where hi = fE(hi−1,mi).
Set HE(ε) = h0. If the program for f uses a single query E(k, x) to compute fE(m,h) then f (and
its iterated hash H) is rate-1. We often omit the superscript E to f and H.

We write x
$← S for the experiment of choosing a random element from the finite set S and

calling it x. An adversary is an algorithm with access to one or more oracles. We write these as
superscripts.

Collision resistance. To quantify the collision resistance of a block-cipher-based hash func-
tion H we instantiate the block cipher by a randomly chosen E ∈ Bloc(κ, n). An adversary A is

6



given oracles for E(·, ·) and E−1(·, ·) and wants to find a collision for HE—that is, M,M ′ where
M �= M ′ but HE(M) = HE(M ′). We look at the number of queries that the adversary makes and
compare this with the probability of finding a collision.

Definition 2.1 (Collision resistance of a hash function) Let H be a block-cipher-based hash
function, H: Bloc(κ, n)×D → R, and let A be an adversary. Then the advantage of A in finding
collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$← Bloc(κ, n); (M,M ′) $←AE,E−1
: M �= M ′ & HE(M) = HE(M ′)

]
♦

For q ≥ 1 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is taken over all adver-
saries that ask at most q oracle queries (ie, E-queries + E−1 queries). Other advantage functions
are silently extended in the same way.

We also define the advantage of an adversary in finding collisions in a compression func-
tion f : Bloc(κ, n) × {0, 1}a × {0, 1}b → {0, 1}c. Naturally (h,m) and (h′,m′) collide under f
if they are distinct and fE(h,m) = fE(h′,m′), but we also give credit for finding an (h,m) such
that fE(h,m) = h0, for a fixed h0 ∈ {0, 1}c. If one treats the hash of the empty string as the
constant h0 then fE(h,m) = h0 amounts to having found a collision between (h,m) and the empty
string.

Definition 2.2 (Collision resistance of a compression function) Let f be a block-cipher-
based compression function, f : Bloc(κ, n)×{0, 1}a ×{0, 1}b → {0, 1}c. Fix a constant h0 ∈ {0, 1}c
and an adversary A. Then the advantage of A in finding collisions in f is the real number

Advcomp
f (A) = Pr

[
E

$← Bloc(κ, n); ((h,m), (h′,m′)) $←AE,E−1
:

((h,m) �= (h′,m′) ∧ fE(h,m) = fE(h′,m′)) ∨ fE(h,m) = h0

] ♦

Inversion resistance. Though we focus on collision resistance, we are also interested in the
difficulty of inverting hash functions. We use the following measure for the difficulty of inverting a
hash function at a random point.

Definition 2.3 (Inverting random points) Let H be a block-cipher-based hash function,
H: Bloc(κ, n) × D → R, and let A be an adversary. Then the advantage of A in inverting H
is the real number

Advinv
H (A) = Pr

[
E

$← Bloc(κ, n); σ
$←R; M ←AE,E−1

(σ) : HE(M) = σ
]

♦

The PGV hash functions. Figure 1 and Figure 2 serve to define fı[n]: Bloc(κ, n) × {0, 1}n ×
{0, 1}n → {0, 1}n and f̂[n]: Bloc(κ, n)× ({0, 1}n ×{0, 1}n)→ {0, 1}n for ı ∈ [1..20] and  ∈ [1..64].
These compression functions induce hash functions Hı[n] and Ĥ[n]. Usually we omit writing
the [n].

Discussion. The more customary formalization for a one-way function speaks to the difficulty of
finding a preimage for the image of a random domain point (as opposed to finding a preimage of a
random range point). But a random-domain-point definition becomes awkward when considering
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a function H with an infinite domain: in such a case one would normally have to partition the
domain into finite sets and insist that H be one-way on each of them. For each of the functions
H1, . . . ,H20, the value HE

ı (M) is uniform or almost uniform in {0, 1}n when M is selected uniformly
in ({0, 1}n)m and E is selected uniformly in Bloc(n, n). Thus there is no essential difference between
the two notions in these cases. This observation justifies defining inversion resistance in the manner
that we have. See Appendix B.

Definition 2.3 might be understood as giving the technical meaning of preimage resistance.
However, a stronger notion of preimage resistance also makes sense, where the range value σ is a
fixed point, not a random one, and one maximizes over all such points. Similarly, the usual, random-
domain-point notion for a one-way function (from the prior paragraph) might be understood as a
technical meaning of 2nd preimage resistance, but a stronger notion makes sense, where the domain
point M is a fixed string, not a random one, and one must maximize over all domain points of
a given length. A systematic exploration of different notions of inversion resistance is beyond the
scope of this paper.

Conventions. For the remainder of this paper we assume the following significant conventions.
First, an adversary does not ask any oracle query in which the response is already known; namely,
if A asks a query Ek(x) and this returns y, then A does not ask a subsequent query of Ek(x) or
E−1

k (y); and if A asks E−1
k (y) and this returns x, then A does not ask a subsequent query of E−1

k (y)
or Ek(x). Second, when a (collision-finding) adversary A for H outputs M and M ′, adversary A
has already computed HE(M) and HE(M ′), in the sense that A has made the necessary E or
E−1 queries to compute HE(M) and HE(M ′). Similarly, we assume that a (collision-finding)
adversary A for the compression function f computes fE(h,m) and fE(h′,m′) prior to outputting
(h,m) and (h′,m′). Similarly, when an (inverting adversary) A for H outputs a message M , we
assume that A has already computed HE(M), in the sense that A has made the necessary E
or E−1 queries to compute this value. These assumption are all without loss of generality, in that
an adversary A not obeying these conventions can easily be modified to given an adversary A′

having similar computational complexity that obeys these conventions and has the same advantage
as A.

3 Collision Resistance of the Group-1 Schemes

The group-1 hash-functions H1, . . . ,H12 can all be analyzed using the Merkle-Damg̊ard paradigm.
Our security bound is identical for all of these schemes.

Theorem 3.1 [Collision resistance of the group-1 hash functions] Fix n ≥ 1 and ı ∈ [1..12]. Then
Advcoll

Hı[n](q) ≤ q(q + 1)/2n for any q ≥ 1. �

The proof combines a lemma showing the collision-resistance of f1, . . . , f12 with the classical result,
stated for the black-box model, showing that a hash function is collision resistant if its compression
function is. For completeness, the proof of the following is given in Appendix C.1.

Lemma 3.2 [Merkle-Damg̊ard [3, 6] in the black-box model] Let f be a compression function
f : Bloc(n, n)×{0, 1}n×{0, 1}n → {0, 1}n and let H be the iterated hash of f . Then Advcoll

H (q) ≤
Advcomp

f (q) for all q ≥ 1. �
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Algorithm SimulateOracles(A,n)
Initially, i← 0 and Ek(x) = undefined for all (k, x) ∈ {0, 1}n × {0, 1}n
Run A?,?, answering oracle queries as follows:

When A asks a query (k, x) to its left oracle:
i← i + 1; ki← k; xi← x; yi

$←Range(Ek); Ek(x)← yi; return yi to A
When A asks a query (k, y) to its right oracle:

i← i + 1; ki← k; yi← y; xi
$←Domain(Ek); Ek(xi)← y; return xi to A

When A halts, outputting a string out:
return ((x1, k1, y1), ..., (xi, ki, yi), out)

Figure 4: Simulating a block-cipher oracle. Domain(Ek) is the set of points x where Ek(x) is no longer
undefined and Domain(Ek) = {0, 1}n−Range(Ek). Range(Ek) is the set of points where Ek(x) is no longer
undefined and Range(Ek) = {0, 1}n −Range(Ek).

Lemma 3.3 [Collision resistance of the group-1 compression functions] Fix n ≥ 1 and ı ∈ [1..12].
Then Advcomp

fı[n] (q) ≤ q(q + 1)/2n for any q ≥ 1. �

Proof of Lemma 3.3: Fix a constant h0 ∈ {0, 1}n. We focus on f = f1; assume that case.
Let A?,? be an adversary attacking the compression function f . Assume that A asks its oracles
a total of q queries. We are interested in A’s behavior when its left oracle is instantiated by
E

$← Bloc(n, n) and its right oracle is instantiated by E−1. That experiment is identical, from
A’s perspective, to the one defined in Figure 4. Define ((x1, k1, y1), . . . , (xq, kq, yq), out) by running
SimulateOracles(A,n). If A is successful it means that A outputs (k,m), (k′,m′) such that one of the
following holds: (k,m) �= (k′,m′) and f(k,m) = f(k′,m′), or else f(k,m) = h0. By our definition
of f this means that Ek(m)⊕m = Ek′(m′)⊕m′ for the first case, or Ek(m)⊕m = h0 for the
second. By our conventions at the end of Section 2, either there are distinct r, s ∈ [1..q] such that
(xr, kr, yr) = (m, k,Ek(m)) and (xs, ks, ys) = (m′, k′, Ek′(m′)) and Ekr(mr)⊕mr = Eks(ms)⊕ms

or else there is an r ∈ [1..q] such that (xr, kr, yr) = (m, k, h0) and Ekr(xr) = h0. We show that this
event is unlikely.

In the execution of SimulateOracles(A,n), for any i ∈ [1..q], let Ci be the event that yi ⊕ xi = h0

or that there exists j ∈ [1..i − 1] such that either yi ⊕ xi = yj ⊕ xj. In carrying out the simulation
of A’s oracles, either yi or xi was randomly selected from a set of at least size 2n − (i − 1), so
Pr[Ci] ≤ i/(2n − i). By the contents of the previous paragraph, we thus have that Advcomp

f [n] (A) ≤
Pr[C1 ∨ . . . ∨ Cq] ≤

∑q
i=1 Pr[Ci] ≤

∑q
i=1

i
2n−(i−1) ≤ 1

2n−2n−1

∑q
i=1 i if q ≤ 2n−1. Continuing, our

expression is at most 1
2n−1

q(q+1)
2 = q(q+1)

2n . Since the above inequality is vacuous when q > 2n−1,
we may now drop the assumption that q ≤ 2n−1. We conclude that Advcomp

f [n] (q) ≤ q(q + 1)/2n.

The above concludes the proof for the case of f1. Compression functions f2..12 are similar.

4 Collision Resistance of the Group-2 Schemes

We cannot use the Merkle-Damg̊ard paradigm for proving the security of H13..20 because their
compression functions are not collision-resistant. Attacks for each compression function are easy
to find. For example, one can break f17(h,m) = Em(h)⊕m as a compression function by choosing
any two distinct m,m′ ∈ {0, 1}n, computing h = E−1

m (m) and h′ = E−1
m′ (m′), and outputting (h,m)
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and (h′,m′). All the same, hash functions H13..20 enjoy almost the same collision-resistance upper
bound as H1..12.

Theorem 4.1 [Collision resistance of the group-2 hash functions] Fix n ≥ 1 and ı ∈ [13..20].
Then Advcoll

Hı[n](q) ≤ 3q(q + 1)/2n for all q ≥ 1. �

Proof of Theorem 4.1: Fix constants h0, v ∈ {0, 1}n. We prove the theorem for the case of H13,
where f(h,m) = f13(h,m) = Eh ⊕ m(m)⊕ v.

We define a directed graph G = (VG, EG) with vertex set VG = {0, 1}n × {0, 1}n × {0, 1}n and an
arc (x, k, y)→ (x′, k′, y′) in EG if and only if k′ ⊕ x′ = y ⊕ v.

Let A?,? be an adversary attacking H13. We analyze the behavior of A when its left oracle is
instantiated by E

$← Bloc(n, n) and its right oracle is instantiated by E−1. Assume that A asks
its oracles at most q total queries. We must show that Advcoll

H13[n](A) ≤ 3q(q + 1)/2n. Run the
algorithm SimulateOracles(A,n). As A executes with its (simulated) oracle, color the vertices of G
as follows:

Initially, each vertex of G is uncolored.
When A asks an E-query (k, x) and this returns a value y, or when A asks an E−1-query of
(k, y) and this returns x, then: if x⊕ k = h0 then vertex (x, k, y) gets colored red ; otherwise
vertex (x, k, y) gets colored black.

According to the conventions at the end of Section 2, every query the adversary asks results in
exactly one vertex getting colored red or black, that vertex formerly being uncolored.

We give a few additional definitions. A vertex of G is colored when it gets colored red or black.
A path P in G is colored if all of its vertices are colored. Vertices (x, k, y) and (x′, k′, y′) are said
to collide if y = y′. Distinct paths P and P ′ are said to collide if all of their vertices are colored
and they begin with red vertices and they end with colliding vertices. Let C be the event that, as
a result of the adversary’s queries, there are formed in G some two colliding paths.

Claim 4.2 Advcoll
H13[n](A) ≤ Pr[C] .

Claim 4.3 Pr[C] ≤ 3q(q + 1)/2n.

Claim 4.2 is proven in Appendix C.2 while Claim 4.3 is proven in Appendix C.3. The result for H13

now follows by combining the two claims. The proofs for H14..20 can be obtained by adapting the
proof we have just given (including the contents of the Appendices C.2 and C.3) with the help of
Figure 5.

5 Matching Attacks on Collision Resistance

In this section we show that the security bounds given in Sections 3 and 4 are tight: we devise
and analyze attacks that achieve advantage close to the earlier upper bounds. Our results are as
follows.

10



ı hi = (x, k, y) → (x′, k′, y′) if (x, k, y) red if (x, k, y), (x′, k′, y′) collide if

13 Ewi(mi) ⊕ v y ⊕ v = x′ ⊕ k′ x⊕ k = h0 y = y′

14 Ewi(mi) ⊕ wi k ⊕ y = x′ ⊕ k′ x⊕ k = h0 k ⊕ y = k′ ⊕ y′

15 Emi(hi−1) ⊕ v y ⊕ v = x′ x = h0 y ⊕ v = x′

16 Ewi(hi−1) ⊕ v y ⊕ v = x′ x = h0 y ⊕ v = x′

17 Emi(hi−1) ⊕ mi k ⊕ y = x′ x = h0 k ⊕ y = k′ ⊕ y′

18 Ewi(hi−1) ⊕ wi k ⊕ y = x′ x = h0 k ⊕ y = k′ ⊕ y′

19 Emi(wi) ⊕ v y ⊕ v = x′ ⊕ k′ x⊕ k = h0 y = y′

20 Emi(wi) ⊕ mi k ⊕ y = x′ ⊕ k′ x⊕ k = h0 k ⊕ y = k′ ⊕ y′

Figure 5: Rules for the existence of arcs, the coloring of a vertex red, and when vertices are said to collide.
These notions are used in the proof of Theorem 4.1.

Theorem 5.1 [Finding collisions in H1..4] Let ı ∈ [1..4] and n ≥ 1. Then

Advcoll
Hı[n](q) ≥ 0.039(q − 1)(q − 3)/2n

for any even q ∈ [1..2(n−1)/2]. �

Let Perm(n) be the set of all permutations on {0, 1}n. Let Pq({0, 1}n) denote the set of all q-
element subsets of {0, 1}n. The proof of Theorem 5.1 uses the following technical lemma whose
proof appears in Appendix C.4.

Lemma 5.2 Fix n ≥ 1. Then

Pr
[
π

$← Perm(n); Q
$←Pq({0, 1}n) : ∃x, x′ ∈ Q such that x �= x′ and

π(x)⊕ x = π(x′)⊕ x′
]
≥ .039(q − 1)(q − 3)/2n

for any even q ∈ [1..2(n−1)/2]. �

Proof of Theorem 5.1: Consider the case HE = HE
1 and fix h0 ∈ {0, 1}n. Let A be an adversary

with the oracles E,E−1. Let A select m1, . . . ,mq
$←{0, 1}n and compute yj = Eh0(mj)⊕mj ,

j ∈ [1..q]. If A finds r, s ∈ [1..q] such that r < s and yr = ys then it returns (mr,ms); otherwise
it returns (m1,m1) (failure). Let π = Eh0 . By definition π is a uniform element in Perm(n), so
we can invoke Lemma 5.2 to see that the probability that A succeeds to find a collision among
m1, . . . ,mq under H is at least .039(q − 1)(q − 3)/2n.

This attack and analysis extends to H2..4 by recognizing that for each scheme and distinct one-block
messages m and m′ we have HE(m) = HE(m′) if and only if π(x)⊕ x = π(x′)⊕ x′ where π = Eh0

and x, x′ are properly defined. For example, for HE
2 define x = h0 ⊕m and x′ = h0 ⊕m′.

Analysis of collision-finding attacks on H5..20 is considerably less technical than for H1..4. The
crucial difference is that in each of H5..20 the block cipher is keyed in the first round by either the
message m, or m⊕ h0, where h0 is a fixed constant. Hence when A hashes q distinct one-block
messages it always observes q random values. See Appendix C.5 for a proof of the following.

Theorem 5.3 [Finding collisions in H5..20] Let ı ∈ [5..20] and n ≥ 1. Then Advcoll
Hı[n](q) ≥

0.3q(q − 1)/2n for any q ∈ [1..2n/2]. �
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6 Security of the Schemes as OWFs

From the perspective of collision resistance there is no reason to favor any particular scheme from
H1..20. However, in this section we show that these schemes can be separated based on their strength
as one-way functions. In particular, for an n-bit block cipher, an adversary attacking a group-1
hash function requires nearly 2n oracle queries to do well at inverting a random range point, while
an adversary attacking a group-2 hash function needs roughly 2n/2 oracle queries to do the same
job.

We begin with the theorem establishing good inversion-resistance for the group-1 schemes.
The theorem is immediate from the two lemmas that follow it. The first result is analogous to
Lemma 3.2. The second result shows that f1..12 have good inversion-resistance. All omitted proofs
can be found in the appendices.

Theorem 6.1 [OWF security of the group-1 hash functions] Fix n ≥ 1 and ı ∈ [1..12]. Then
Advinv

Hı[n](q) ≤ q/2n−1 for any q ≥ 1. �

Lemma 6.2 [Merkle-Damg̊ard for inversion resistance] Let f be a compression function having
signature f : Bloc(n, n) × {0, 1}n × {0, 1}n → {0, 1}n and let H be the iterated hash of f . Then
Advinv

H (q) ≤ Advinv
f (q) for all q ≥ 1. �

Lemma 6.3 [Inversion resistance of the group-1 compression functions] Fix n ≥ 1 and ı ∈ [1..12].
Then Advinv

fı[n](q) ≤ q/2n−1 for any q ≥ 1. �

Proof of Lemma 6.3: Fix a constant h0 ∈ {0, 1}n. We focus on compression function fE = fE
1 ;

assume that case. Let A be an adversary with oracles E,E−1 and input σ. Assume that A asks its
oracles q total queries.

Define ((x1, k1, y1), . . . , (xq, kq, yq), out) by running SimulateOracles(A,n). By our conventions at
the end of Section 2, if A outputs (h,m) such that E(h,m) ⊕m = σ then (m,h,E(h,m)) =
(xi, ki, yi) for some i ∈ [1..q]. Let Ci be the event that (xi, ki, yi) is such that xi ⊕ yi = σ. In
carrying out the simulation of A’s oracles, either xi or yi was randomly assigned from a set of at
least size 2n − (i − 1), so Pr[Ci] ≤ 1/(2n − (i − 1)). Thus Pr[(h,m)←AE,E−1

(z) : E(h,m) ⊕m =
σ] ≤ Pr[C1 ∨ . . . ∨ Cq] ≤

∑q
i=1 Pr[Ci] ≤

∑q
i=1

1
2n−(i−1) ≤ q

2n−2n−1 if q ≤ 2n−1. Continuing, our
expression is at most q

2n−1 . Since the above inequality is vacuous when q > 2n−1, we may now drop
the assumption that q ≤ 2n−1.

The above concludes the proof for the case of f1. Compression functions f2..12 are similar.

We cannot use Lemma 6.2 to prove the security of the group-2 schemes because the associated
compression functions are not inversion-resistant. An attack for each is easy to find. For example,
consider f13(h,m) = E(h ⊕m,m)⊕ v. For any point σ, the adversary fixes k = 0, computes
m = E−1

0 (σ ⊕ v), and returns (m,m), which is always a correct inverse to σ. Still, despite these
compression functions being invertible with a single oracle query, there is a reasonable security
bound for the group-2 schemes.

Theorem 6.4 [OWF security of the group-2 hash functions] Fix n ≥ 1 and ı ∈ [13..20]. Then
Advinv

Hı[n](q) ≤ 9(q + 3)2/2n for any q > 1. �
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The proof of Theorem 6.4 appears in Appendix C.7 and makes use of the following lemma, which
guarantees that, up to a constant, for messages of length greater than n-bits, the bounds we have
computed for collision resistance hold for inversion resistance as well.

Lemma 6.5 [Collision resistance ⇒ inversion resistance] Fix ı ∈ [1..20] and n ≥ 1. Let H̃ = Hı[n]
restricted to domain Bloc(n, n) ×⋃

i≥2{0, 1}in. Then Advinv
�H (q) ≤ 3Advcoll

H (q + 2) + q/2n−1 for
any q ≥ 1. �

For the proof of Lemma 6.5 see Appendix C.8.
Finally, we prove that the security bounds given in Theorems 6.1 and 6.4 are tight, by describing

adversaries that achieve advantage very close to the upper bounds. The analysis falls into three
groupings.

Theorem 6.6 [Attacking H1..4 as OWFs] Fix n ≥ 1 and ı ∈ [1..4]. Then Advinv
Hı[n](q) ≥ 0.4q/2n

for any q ∈ [1..2n−2]. �

Theorem 6.7 [Attacking H5..12 as OWFs] Fix n ≥ 1 and ı ∈ [5..12]. Then Advinv
Hı[n](q) ≥ 0.6q/2n

for any q ∈ [1..2n − 1]. �

Theorem 6.8 [Attacking H13..20 as OWFs] Fix n ≥ 1 and ı ∈ [13..20]. Then Advinv
Hı[n](q) ≥

0.15q2/2n for any even q ∈ [2..2n/2]. �

The proofs for the above three theorems are found in Appendices C.9, C.10, and C.11, respectively.
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A Fatal Attacks on Five of PGV’s B-Labeled Schemes

In [7] there are a total of 13 schemes labeled as “backward attackable.” We have already shown
that eight of these, H13..20, are collision resistant. But the remaining five schemes are completely
insecure; each can be broken with two queries. Consider, for example, H = Ĥ39, constructed by
iterating the compression function f = f̂39 defined by fE(hi−1,mi) = Emi ⊕ hi−1

(mi ⊕ hi−1)⊕mi.
For any c ∈ {0, 1}n the strings (h0 ⊕ c) ‖ (Ec(c) ⊕ h0) hashes to h0, and so it so it takes only two
queries to produce a collision. Variants of this attack, break the schemes Ĥ40, Ĥ43, Ĥ55 and Ĥ59

defined in Figure 1. See Figure 6 for the attacks.

B Two Notions of Inversion Resistance

We defined Advinv
H by giving the adversary a random range point σ ∈ {0, 1}n and asking the

adversary to find an H-preimage for σ. The usual definition for a one-way function has one choose
a random domain point M , apply H, and ask then ask the adversary to invert the result.

14



Definition B.1 (Conventional definition of a OWF) Let H be a block-cipher-based hash
function, H: Bloc(κ, n) × D → R, and let � be a number such that {0, 1}� ⊆ D. Let A be an
adversary. Then the advantage of A in inverting H on the distribution induced by applying H to
a random �-bit string is the real number

Advowf
H (A, �) = Pr

[
E

$← Bloc(κ, n); M
$← ({0, 1}n)�; σ←HE(M);

M ′←AE,E−1
(σ) : HE(M ′) = σ

] ♦

For q ≥ 0 a number, Advowf
H (q, �) is defined in the usual way, as the maximum value of Advowf

H (A, �)
over all adversaries A that ask at most q queries.

Though the Advowf and Advinv measures can, in general, be far apart, it is natural to guess
that they coincide for “reasonable” hash-functions like H1..20. In particular, one might think that
the random variable HE

ı (M) is uniformly distributed in {0, 1}n if M
$← {0, 1}n� and E

$← Bloc(n, n).
Interestingly, this is not true. For example, experiments show that when E

$← Bloc(2, 2) and
M

$←{0, 1}4 the string HE
1 (M) takes on the value 00 more than a quarter of the time (in fact,

31.25% of the time) while each of the remaining three possible outputs (01, 10, 11) occur less than
a quarter of the time (each occurs 22.916% of the time). Still, for H1..20, the two notions are close
enough that we have used Definition 2.3 as a surrogate for Definition B.1. The result is as follows.

Lemma B.2 Fix n ≥ 1 and ı ∈ [1..20]. Then for any q, � ≥ 1,∣∣∣Advinv
Hı[n](q)−Advowf

Hı[n](q, �)
∣∣∣ ≤ �/2n−1 ♦

Proof of Lemma B.2: Consider the case for H = H1. The proof is a “game argument,” as in [5].
Consider Games 1 and 2, both defined in Figure 7. The probability that A outputs 1 in game 1
is exactly Advinv

H (A), while the probability that A outputs 1 in game 2 is exactly Advowf
H (A).

Furthermore, Games 1 and 2 are identical except for the statement that follows the conditional
setting of bad to true. Thus |Advinv

H (A)−Advowf
H (A)| is at most the probability that bad gets set

to true in Game 1. This value is at most 2�/2n. The result follows, and extends in the natural way
for the other hash functions.

C Proofs

C.1 Proof of Lemma 3.2

Let A be a collision-finding adversary for H that takes two oracles, E,E−1. We construct from A
a collision-finding adversary B for f . Adversary B also takes oracles E,E−1. Let B run A.
When A makes an E (resp., E−1) query, B forwards it to E (resp., E−1) and returns to A the
result. For i ∈ [1..q], we say that the ith triple is (xi, ki, yi) if A’s ith oracle query was an E-
query of (ki, xi) and this returned yi, or else A’s ith oracle query was an E−1-query (ki, yi) and
this returned xi. Algorithm B records the list of triples. Eventually A halts with an output
(M,M ′) = (m1 · · ·ma,m

′
1 · · ·m′

b).
Have B compute H(M) and H(M ′). According to our conventions, all of the necessary queries

for B to use in this computation are already recorded in B’s list of triples, so no new oracle calls
are needed to compute H(M) and H(M ′).
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Initialization:

for all (k, x) ∈ {0, 1}n × {0, 1}n do E(k, x)← undefined

bad← false; m1, . . . ,m�−1
$←{0, 1}n

for i← 1 to �− 1 do
if E(hi−1,mi) = undefined then E(hi−1,mi)

$←Range(E(hi−1, ·))
hi←E(hi−1,mi)⊕mi

σ
$←{0, 1}n; m�

$←{0, 1}n
if E(h�−1,m�) �= undefined then

bad← true [output previously determined]
if Game2 then σ←E(h�−1,m�)⊕m�

if there is an i ∈ [1..�− 1] where E(hi−1,mi) = σ ⊕m� then
bad← true [output uniform over reduced set]
if Game2 then σ

$←Range(E(hi−1, ·))
h�←E(h�−1,m�)← σ ⊕m�

Adversarial execution:

Run A?,?(σ):
• When A asks a query (k, x) to its left oracle:

if E(k, x) = undefined then y
$← Range(E(k, ·)), E(k, x)← y;

else y←E(k, x)
return y to A.

• When A asks a query (k, y) to its right oracle:
if ∃ z such that E(k, z) = y then x← z

else x
$←Domain(E(k, ·)); E(k, x)← y;

return x to A.
• Eventually A halts, outputting string M ′ = m′

1m
′
2 · · ·m′

�′
Testing:

for i = 1 to �′ do hi← E(hi−1,m
′
i)⊕m′

i

if h�′ = σ then return 1 else return 0

Figure 7: Definition of Game 1 (when Game2 = false) and Game 2 (when Game2 = true).

Adversary B inspects its list of triples to see if there exists distinct (x, k, y) and (x′, k′, y′). If
so, B outputs this pair of points. Otherwise, B inspects its list of triples to see if there exists a
triple (x, k, h0). If so, B outputs (k, x), (k, x).

We claim that B succeeds whenever A succeeds. By symmetry, we can assume without loss of
generality that a ≥ b. If H(M) = H(M ′), then ha = f(ha−1,ma) = f(h′

b−1,m
′
b) = h′

b. (Primed
variables are understood to be associated to H(M ′).) If ha−1 �= h′

b−1, or ma �= m′
b, then we is done.

Otherwise, ha−1 = f(ha−2,ma−1) = f(h′
b−2,m

′
b−1) = h′

b−1. Again, if ha−2 �= h′
b−2 or ma−1 �= mb−1,

then we are done. Proceeding in this way, we must find some values α ∈ [1, a] and β ∈ [1, b] such
that either hα = f(hα−1,mα) = f(h′

β−1,m
′
β) = h′

β , or hα = h0.
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C.2 Proof of Claim 4.2

Suppose that the adversary A outputs colliding messages M = m1 · · ·ma and M ′ = m′
1 · · ·m′

b;
that is, HE(M) = HE(M ′) for the simulated oracle E. We show that, necessarily, there are two
colliding paths.

Let P = (x1, k1, y1) → · · · → (xa, ka, ya) where, for each i ∈ [1..a], xi = mi, ki = hi−1 ⊕ xi,
yi = Eki

(xi), and hi = yi ⊕ v. (Recall that h0 and v are fixed constants.) Similarly, let P ′ =
(x′

1, k
′
1, y

′
1)→ · · · → (x′

b, k
′
b, y

′
b) where, for each i ∈ [1..b], x′

i = m′
i, k′

i = h′
i−1 ⊕ x′

i, y′i = Eki
(x′

i), and
h′

i = y′i ⊕ v, and where h′
0 = h0. We claim that P and P ′ are colliding paths.

According to our conventions, A makes all of the queries necessary to compute H(M) and
H(M ′). So, for each i ∈ [1..a], A must have made either an E-query (ki, xi) or an E−1-query
(ki, yi). Similarly, for each i ∈ [1..b], A must have made either an E-query (k′i, x

′
i) or an E−1-query

(k′
i, y

′
i). We can conclude then that P and P ′ are colored. Moreover, x1 ⊕ k1 = h0 and x′

1 ⊕ k′
1 = h′

0

so each of P and P ′ starts with a red node.
If a �= b, then clearly P and P ′ are distinct. Consider a = b and M �= M ′. (If M = M ′, then M

and M ′ do not collide.) There is some i ∈ [1..a] such that mi �= m′
i, and so (xi, ki, yi) �= (x′

i, k
′
i, y

′
i).

Finally, if M and M ′ collide we have ha = h′
b, and hence ya = y′b. This completes the proof of

the Claim.

C.3 Proof of Claim 4.3

Let Ci be the event that C occurs by the i-th query. Define C0 be the null event. Then Pr[C] =∑q
i=1 Pr[Ci|Ci−1∧ . . .∧C0]. Given Ci−1∧ . . .∧C0, the event Ci occurs in one of four ways. To make

the discussion of these cases more clear, we define a little more notation. Let Arc(i, j) be the event
that there exists in G vertices (xi, ki, yi) and (xj , kj , yj), and yi ⊕ v = xj ⊕ kj . Let Red(i) be the
event that there exists in G vertex (xi, ki, yi) and xi ⊕ ki = h0. Let Collide(i, j) be the event that
there exists in G vertices (xi, ki, yi) and (xj , kj , yj), and yi = yj.

Case 1: A vertex (xi, ki, yi) is colored on the i-th query, and there exists in G arcs (xr, kr, yr) →
(xi, ki, yi) and (xi, ki, yi) → (xj , kj , yj), where (xr, kr, yr) and (xj, kj , yj) were colored on the r-th
and j-th queries, r, j < i, respectively.

This event requires Arc(r, i) ∧ Arc(i, j) be true. If Ci occurs via an E-query (ki, xi), then yi is a
random value from a set of size at least 2n − (i− 1). Then

Pr[Arc(r, i) ∧ Arc(i, j)] = Pr[Arc(i, j)|Arc(r, i)] Pr[Arc(r, i)]

≤ Pr[Arc(i, j)|Arc(r, i)] ≤ i− 1
2n − (i− 1)

Alternatively, if Ci occurs in this case via an E−1-query (ki, yi), then xi is a random value from a
set of size at least 2n − (i− 1). Then

Pr[Arc(i, j) ∧ Arc(r, i)] = Pr[Arc(r, i)|Arc(i, j)] Pr[Arc(i, j)]

≤ Pr[Arc(r, i)|Arc(i, j)] ≤ i− 1
2n − (i− 1)

.

Case 2: A vertex (xi, ki, yi) is colored red on the i-th query, and there exists in G an arc
(xi, ki, yi)→ (xj , kj , yj), where (xj , kj , yj) was colored on the j-th query, j < i.
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This event requires that Arc(i, j) and Red(i). If this occurs via an E-query (ki, xi), then yi is a
random value from a set of size at least 2n − (i− 1). Then

Pr[Arc(i, j) ∧ Red(i)] = Pr[Arc(i, j)|Red(i)] Pr[Red(i)]

≤ Pr[Arc(i, j)|Red(i)] ≤ i− 1
2n − (i− 1)

.

Alternatively, if Ci occurs in this case via an E−1-query (ki, yi), then xi is a random value from a
set of size at least 2n − (i− 1). Then

Pr[Arc(i, j) ∧ Red(i)] = Pr[Red(i)|Arc(i, j)] Pr[Arc(i, j)]

≤ Pr[Red(i)|Arc(i, j)] ≤ i− 1
2n − (i− 1)

.

Case 3: A vertex (xi, ki, yi) is colored on the i-th query, and there exists in G an arc (xj , kj , yj)→
(xi, ki, yi) and a vertex (xr, kr, yr), where (xj , kj , yj) and (xr, kr, yr) were colored on the j-th and
r-th queries, r, j < i, respectively, and (xi, ki, yi) agrees with (xr, kr, yr).

This event requires that Arc(j, i) and Collide(i, r). If this occurs via an E-query (ki, xi), then yi is
a random value from a set of size at least 2n − (i− 1). Then

Pr[Arc(j, i) ∧ Collide(i, r)] = Pr[Collide(i, r)|Arc(j, i)] Pr[Arc(j, i)]

≤ Pr[Collide(i, r)|Arc(j, i)] ≤ i− 1
2n − (i− 1)

.

Alternatively, if Ci occurs in this case via an E−1-query (ki, yi), then xi is a random value from a
set of size at least 2n − (i− 1). Then

Pr[Arc(j, i) ∧ Collide(i, r)] = Pr[Arc(j, i)|Collide(i, r)] Pr[Collide(i, r)]

≤ Pr[Arc(j, i)|Collide(i, r)] ≤ =
i− 1

2n − (i− 1)
.

Case 4: A vertex (xi, ki, yi) is colored red on the i-th query, and there exists in G an arc
(xi, ki, yi)→ (xi, ki, yi).

This event requires that Red(i) ∧ Arc(i, i) is true. If this occurs via an E-query (ki, xi), then yi is
a random value from a set of size at least 2n − (i− 1). Then

Pr[Red(i) ∧ Arc(i, i)] = Pr[Arc(i, i)|Red(i)] Pr[Red(i)]

≤ Pr[Arc(i, i)|Red(i)] ≤ 1
2n − (i− 1)

.

Alternatively, if Ci occurs via an E−1-query (ki, yi), then xi is a random value from a set of size
at least 2n − (i− 1). Then

Pr[Red(i) ∧ Arc(i, i)] = Pr[Red(i)|Arc(i, i)] Pr[Arc(i, ])

≤ Pr[Red(i)] ≤ 1
2n − (i− 1)

.

Combining all cases, we have

Pr[C] ≤
q∑

i=1

3(i− 1)
2n − (i− 1)

+
1

2n − (i− 1)
≤ 3

q∑
i=1

i

2n − (i− 1)
≤ 3q(q + 1)

2n
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C.4 Proof of Lemma 5.2

Before beginning the proof we sketch the ideas involved. The basic idea is to lower-bound the
probability that two distinct input blocks m1 and m2 will collide under the function π(m)⊕m
(ie, π(m1)⊕m1 will equal π(m2)⊕m2) where π is a random permutation. The straightforward
approach is to write out an experiment where we let the message blocks be 0, 1, 2, . . . written as
n-bit strings, and then incrementally fill-in the permutation π by choosing range values which
observe the permutivity requirements on π (cf. SimulateOracles(·, ·)). Then one would hope to
count up the minimum number of collisions in π(mi)⊕mi for each i ∈ [1..q]. If this worked, it
would provide a straightforward solution to our problem, but unfortunately there is a technical
problem where the pool of consumed range points might have a nonempty intersection with the
collection of points which would cause a collision, thereby lowering the chance of a collision (because
some collision-causing values cannot be chosen as our next range point).

This difficulty greatly increases the complexity of the proof. So instead of the above approach
we do the following: instead of choosing the one-block messages 0, 1, 2, . . ., we choose random input
blocks, and then lower-bound the probability that at least half of these inputs will not cause the
problem mentioned above. We then restrict our attention to these inputs and use a straightforward
counting argument to obtain a lower bound for them, yielding an overall lower bound.

In order to make the following argument more digestible, we extract some of the key steps into
four lemmas, which are stated and proven first. Then we present the proof of the main lemma,
using the prior four.

Lemma C.1 Let r be a positive even integer and let E1, · · · ,Er be r independent events where
Pr[Ei] ≥ 1/2 for all i ∈ [1..r]. Let H be the event that at least r/2 of the events E1, · · · ,Er occur.
Then Pr[H] ≥ 1/2. �

Lemma C.2 Let D and E be events with Pr[D | E] ≤ p and Pr[E] ≥ 1/2. Then Pr[D] ≤ (p + 1)/2.
�

Proof of Lemma C.2: Let h = Pr[E]. We have

Pr[D] = Pr[D | E] Pr[E] + Pr[D | E] Pr[E] ≤ ph + (1− h) = 1 + h(p− 1).

And since h ≥ 1/2 and (p − 1) is nonpositive, we know that h(p − 1) is maximized for h = 1/2.
Therefore 1 + h(p− 1) ≤ 1 + (p− 1)/2 = (p + 1)/2.

Lemma C.3 Fix positive integers N and q ≤ √2N with q even. Define a function t: [0..q − 1]×
{0, 1} → � as

t(i, j) =

{
N−2i
N−i if j = 1
1 if j = 0

For any binary sequence J = (j0, j1, · · · , jq−1) in {0, 1}q , define a function T : {0, 1}q → � as
T (J) =

∏q−1
i=0 t(i, ji). Then T (J) is maximum for J = (j0, · · · , jq−1) where ji = 1 for i ∈ [0..q/2− 1]

and ji = 0 when i ∈ [q/2..q − 1]. Furthermore T (J) ≤ 1− 0.079q(q − 2)/N . �
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Proof of Lemma C.3: The lemma states that if we write out the product

N

N
· N − 2
N − 1

· N − 4
N − 2

· · · N − 2q + 2
N − q + 1

and we then would like to maximize the product after eliminating exactly half of the terms listed,
we should eliminate the right-most half. This follows immediately from the fact that the terms
above strictly decrease from left to right. That is, (N − 2a)/(N − a) > (N − 2b)/(N − b) whenever
a < b and a, b ∈ [0..q − 1]. Since we must choose exactly q/2 terms to include in our product,
choosing any but the first q/2 terms would not maximize the product since we could remove a
smaller term and replace it with a larger term, increasing the overall product.

To obtain the upper bound stated in the last sentence of the lemma, we use the fact that for
x ∈ [0, 1] we have e−x ≥ 1− x and (1− 1/e)x ≤ 1− e−x. Let T =

∏q/2−1
i=0 (N − 2i)/(N − i), which

we have already shown to be the maximum value of T (J). Using the first fact above we have that

T ≤
q/2−1∏
i=0

e−i/(N−i) ≤
q/2−1∏
i=0

e−i/N = e−
�q/2−1

i=0 i/N = e−q(q−2)/8N .

Using the second fact above along with the fact that q ≤√2N gives us that

e−q(q−2)/8N ≤ 1−
(

1− 1
e

)
q(q − 2)

8N
≤ 1− 0.079q(q − 1)

N
.

This completes the proof.

Lemma C.4 Fix integers n > 0 and i > 0 with i ≤ 2(n−1)/2. Let U = [0..2n − 1]. Let A =
{a1, · · · , ai} and X = {x1, · · · , xi} be any subsets of U each with i elements. Let B = {ak ⊕ xk: k ∈
[1..i]} = {b1, · · · , bm}, where m ≤ k. Finally, let C = {aj ⊕ bk : j ∈ [1..i], k ∈ [1..m]}. Then

Pr
x ∈ U\X

[x ∈ C] ≤ 1/2. ♦

Proof of Lemma C.4: Since each bk is formed by ak ⊕ xk with k ∈ [1..i], we know there are at
most i2 possible values in C. Now say bk is formed by ak ⊕ xk with k ∈ [1..i]; notice that any value
in C formed by ak ⊕ bk = ak ⊕ (ak ⊕ xk) = xk will not be hit by x since xk �∈ U\X. Therefore we
may bound the probability above by noticing that there are at most i2− i values of x which might
be contained in C. This gives us the bound

i2 − i

|U\X| =
i2 − i

2n − i
≤ 2n−1 − 2(n−1)/2

2n − 2(n−1)/2

where the last step follows from the fact that i ≤ 2(n−1)/2. Next we cancel above and below by
2(n−1)/2 and use the fact that (a− 1)/(b − 1) < a/b, whenever a and b are positive with a < b, to
obtain

2n−1 − 2(n−1)/2

2n − 2(n−1)/2
=

2(n−1)/2 − 1
2(n+1)/2 − 1

<
2(n−1)/2

2(n+1)/2
= 1/2.

This completes the proof.
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Proof of Lemma 5.2: Assume that q is an even integer. We view the contents of π and Q as
being incrementally determined during the process of the probabilistic experiment described in the
lemma statement. We will view Q as initially empty and π as initially undetermined, and then at
each step we will incrementally fill in these values until Q contains q elements and π(x) is determined
for every x ∈ Q. Let us state this more precisely. We will let Qi represent the intermediate state of
Q at the i-th step, and πi represent the function π at the i-th step. To begin, let Q0 be the empty
set and let π0(x) = undefined for all x ∈ U , where undefined is some distinguished value indicating
that we have not yet determined some range value. When X is a set, we write π(X) to mean the
set of values {π(x) : x ∈ X}.
At the i-th step of our procedure, 0 < i ≤ q, we choose a random xi ∈ U\Qi−1 and set Qi = Qi−1∪
{xi}. Then we choose a random ai ∈ U\πi−1(Qi−1) and define πi as πi−1 with the modification
that πi(xi) = ai. At the end of this procedure we have that Q = Qq is a cardinality q subset of
Pq({0, 1}n) and that πq is a permutation on the points Q, as required.

For any i ∈ [1..q], define Bi = {πi(xi)⊕ xi : xi ∈ Qi}. So Bi is the set of hash function outputs we
are concerned with here: we wish to bound the probability that no collisions will occur among the
elements of Bi. However, as we shall see shortly, a difficulty arises if, during the (i+1)-st step, any
elements in Bi and πi(Qi) XOR to xi+1. We avoid this difficulty by conditioning on the event that
this does not happen. For notational convenience, define the Boolean function bad(πi(Qi), Bi, xi+1)
to be true if there exists a value a ∈ πi(Qi) and b ∈ Bi such that a⊕ b = xi+1. Let’s now bound
the probability that bad(πi(Qi), Bi, xi+1) is true when choosing xi+1.

Let Ei be the event that bad(πi−1(Qi−1), Bi−1, xi) is true, and suppose we are at step i of our
procedure. But we are precisely in the setting of Lemma C.4, which tells us that Pr[Ei] ≤ 1/2, and
therefore Pr[Ei] ≥ 1/2. Since this is true for all i ∈ [1..q], we have q events, each with probability
1/2. Let event H denote the event that at least half of the Ei occur; we may invoke Lemma C.1 to
see that Pr[H] ≥ 1/2. Henceforth we condition on this event so that we may assume there exists a
set of q/2 indices I = {i1, · · · , iq/2} such that bad(πij−1(Qij−1), Bij−1, xij ) is false for all ij ∈ I.

We now focus on these values xij for ij ∈ I for which our bad function is false. We will upper-bound
the probability of a lack of collision on just these inputs to π by counting up the number of ways
a choice of xij could cause a collision in π(·)⊕ (·). The probability of no collision when xij was
chosen, given none had occurred so far, is now simple to compute: there were 2n−2ij values which
would not cause a collision when xij was chosen from a pool of 2n − ij values. And we know the
intersection between these sets is empty because we have assumed that bad(πij−1(Qij−1), Bij−1, xij )
was false. Therefore, the probability is simply (2n − 2ij)/(2n − ij).

We wish to upper-bound the overall probability that no collisions occur for Q under π(·)⊕ (·). Let
Di be the event that no collision occurred in the i-th step of our experiment above. We therefore
need to upper-bound Pr[Dq]. Let us first upper-bound Pr[Dq | H]. We know

Pr[Dq | H] = Pr[Dq | Dq−1 ∧H] · · ·Pr[D1 | H]

and the i-th term in the expansion is bounded either by (2n−2i)/(2n−i) or 1 depending on whether
or not i ∈ I. Since we wish an upper bound, Lemma C.3 tells us we may maximize the above by
taking I = {0, · · · , q/2− 1}. It further tells us that the maximum value attained by Pr[Dq | H] will
be at most 1 − 0.079q(q − 2)/2n. And since Pr[H] ≥ 1/2 we may now bound Pr[Dq] by invoking
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Lemma C.2 to see

Pr[Dq] ≤ (1− .079q(q − 2)/2n) + 1
2

≤ 1− .039
q(q − 2)

2n
.

Finally, we note that the probability of having a collision is at least one minus the above quantity,
thus

Pr[Dq] ≥ .039
q(q − 2)

2n
.

This completes the proof.

C.5 Proof of Theorem 5.3

Consider HE
5 and fix a constant h0 ∈ {0, 1}n. The total number of queries, q, is given. We

construct adversary A, which has oracles E,E−1, as follows. Let A compute yi = Ei(h0)⊕ h0,
i ∈ [1..q]. (Where necessary, regard i as an n-bit string.) If A finds i, j ∈ [1..q] such that yi = yj it
returns (mi,mj). If A is unable to find such an i then it returns (m1,m1) (failure).

We now analyze A so constructed. Notice that yi is a random value for each i ∈ [1..q]. Let p
be the probability that there is at least an i and a j such that 1 ≤ j < i ≤ q and either yi = yj,
or that there is an i ∈ [1..q] such that yi = h0. We wish to upperbound p. To do this we examine
the complementary quantity 1− p. Specifically, we define Di, i ∈ [1, . . . , q] be the event that there
does not exist an 1 ≤ j < i such that yi = yj. Note that Pr[D1] = 1, and that if Di occurs then
y1, . . . , yi are distinct. Then we have

Pr[Di+1|Di] =
2n − i

2n
= 1− i

2n
.

The probability of no collisions after the qth hash is

1− p = Pr[Dq] =
q−1∏
i=1

Pr[Di+1|Di] =
q−1∏
i=1

(
1− i

2n

)
We note that i/2n ≤ 1, and use the inequality 1 − z ≤ e−z for all 0 ≤ z ≤ 1 for each term in the
product, so that

1− p ≤
q−1∏
i=1

e−i/2n
= e−q(q−1)/2n+1

.

Since q ≤ 2n/2 we know that q(q − 1)/2n+1 ≤ 1. Using the fact that 1 − e−z ≥ (1 − e−1)z for all
0 ≤ z ≤ 1, we obtain after rearranging

p ≥
(

1− 1
e

)
· q(q − 1)

2n+1
.

This attack and analysis extends to the remaining schemes in H5..20 because in each case the block
cipher key in the first compression function call is either m or m⊕ h0 where h0 is a constant.
For example, to prove the bound for H6, the adversary A computes yi = Ei(h0 ⊕ i)⊕ h0 ⊕ i for
i ∈ [1..q] and returns values as described in the attack for HE

5 . The remaining schemes are handled
analogously.
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C.6 Proof of Lemma 6.2

Let A be an adversary for H: adversary A takes oracles E,E−1 and an input σ and, when successful,
it outputs M such that HE(M) = σ. We construct an adversary B for f : adversary B takes
oracles E,E−1 and an input σ and, when successful, it outputs (h,m) such that fE(h,m) = σ.
Adversary B works as follows. It runs A on σ. When A makes an E (resp., E−1) query, adversary B
forwards the query to its E (resp., E−1) oracle and returns to A the result. During this process, for
each i ∈ [1..q], we say that the ith triple is (xi, ki, yi) if A’s ith oracle query was an E-query of (ki, xi)
and this returned yi, or else A’s ith oracle query was an E−1-query (ki, yi) and this returned xi.
Adversary B records the list of triples. Eventually A halts with an output M = m1 · · ·ma. At
that point we have B compute HE(M): for i← 1 to a set hi← fE(hi−1,mi). According to our
conventions, all of the necessary Ek(x) values that B needs will already be in B’s list of triples—no
new oracle calls are needed to compute HE(M). Now if ha = fE(ha−1,ma) = σ then B outputs
(ha−1,ma) and wins its experiment; otherwise it outputs (h0,m1) and does not win. Clearly B
succeeds whenever A succeeds.

C.7 Proof of Theorem 6.4

Consider the case of HE = HE
13. Fix constants h0, v ∈ {0, 1}n. Let A be an adversary with oracles

E,E−1 and input σ. Assume that A asks these oracles at most q total queries and then inverts H at
σ. Suppose that the inverse provided by A is always a message M with more than two blocks. Then
by Lemma 6.5 and Theorem 4.1 we’d have that Advinv

H (q) ≤ 3Advcoll
H (q+2)+q/2n−1 ≤ 9(q+2)(q+

3)/2n + q/2n−1 ≤ 9(q +3)2/2n. So suppose instead that the inverse provided by A is always a mes-
sage M having a single block. Then run ((x1, k1, y1), . . . , (xq, kq, yq), out)← SimulateOracles(A,n)
and suppose that A returns an m ∈ {0, 1}n such that H(m) = σ then E(h0 ⊕m,m)⊕ v = σ. By
our convention, it must be the case that (m,h0 ⊕m,E(h0 ⊕m,m)) = (xi, ki, yi) for some i ∈ [1..q].
Let Ci be the event that (xi, ki, yi) is such that xi ⊕ ki = h0 and yi = σ ⊕ v.

In carrying out the simulation of A’s oracles either xi or yi is randomly assigned from a set
of at least size 2n − (i − 1), and so Pr[Ci] ≤ 1/(2n − (i − 1)). Consequently, Advinv

H[n](A) ≤
Pr[C1∨ . . .∨Cq] ≤

∑q
i=1 Pr[Ci] ≤

∑q
i=1

1
2n−(i−1) ≤ q

2n−2n−1 if q ≤ 2n−1. Continuing, our expression
is at most q/2n−1. Since the above inequality is vacuous when q > 2n−1, we may now drop the
assumption that q ≤ 2n−1. This bound is inferior to that obtained when M is two or more blocks.
The actual advantage of A is a weighted sum of the two advantages computed, which concludes
the proof for hash function H13. The remaining cases are similar.

C.8 Proof of Lemma 6.5

Let I be an adversary that attacks H̃ = H̃ı[n] in the inversion-resistance sense and assume that I
makes q oracle queries. We construct a collision-finding adversary A for H as follows. Let A select
M

$←{0, 1}2n and compute σ = H̃(M). By our assumption that H is rate-1, this requires 2 queries
to A’s left oracle, E. Adversary A now runs I on σ. When I makes a query to its left (resp., right)
oracle, adversary A forwards the query to its own left (resp., right) oracle, and returns to I the
result. When I halts with output M ′, adversary A returns (M,M ′).

We now analyze the advantage of adversary A. There are at most 2n−1 points σ ∈ {0, 1}n that
can have a unique preimage under H̃. Hence there are at least 22n− 2n + 1 messages M ∈ {0, 1}2n
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1. σ
$←{0, 1}n; win← false; for all x ∈ {0, 1}n do π(x)← undefined

2. for i = 1 to q do
3. xi

$←{0, 1}n; yi
$←{0, 1}n

4. if π(xi) �= undefined then y← π(xi) [maintain permutivity of π]
5. else if yi ∈ Range(π) then yi

$←Range(π) [maintain permutivity of π]
6. π(xi)← yi

7. zi← yi ⊕ xi [put a ball in bin labeled z]
8. if zi = σ then win← true [win if a ball goes in the desired bin]

Figure 8: Pseudocode for a game equivalent to that played by the adversary in the proof of Theorem 6.6. If
win is set to true then the adversary has succeeded in inverting the randomly-chosen range point σ under H1.

that hash to range points having at least two preimages. Let Nσ be the number of preimages of σ.
Since A has at least a 1/2 chance of inverting H̃ at σ when Nσ = 1, we have that

Advcoll
H (A) = Pr[M ′ �= M |Nσ ≥ 2] · Pr[Nσ ≥ 2] ·Advowf

�H (I)

≥ 1
2
· 2

2n − 2n + 1
22n

·Advowf
�H (I)

≥ 3
8
Advowf

�H[n]
(I)

where the last inequality is true because (22n− 2n +1)/22n is maximized when n = 1. Rearranging
terms, we conclude that Advowf

�H (q) ≤ 8/3 ·Advcoll
H (q + 2) ≤ 3Advcoll

H (q + 2). By Lemma B.2 we
conclude that Advinv

�H (q) ≤ 3Advcoll
H (q + 2) + q/2n−1.

C.9 Proof of Theorem 6.6

We consider the case of HE = HE
1 . Fix a constant h0 ∈ {0, 1}n. Let q > 0 be given. We

construct an adversary A with two oracles E,E−1, taking input σ, which works as follows. First A
chooses q random strings m1, . . . ,mq ∈ {0, 1}n. Then for each i ∈ [1..q], the adversary computes
yi = HE(mi) = Eh0(mi)⊕mi. If there is some i ∈ [1..q] such that yi = σ then A outputs mi;
otherwise, A outputs m1 (failure).

We now analyze the chance that A succeeds. Consider the following game which models exactly
the attack used by A against H. Let there be N = 2n bins labeled by strings in {0, 1}n. Choose
a permutation π uniformly from the set of all permutations on {0, 1}n. For i ∈ [1..q], select
x

$←{0, 1}n and place a ball in the bin labeled by π(x)⊕ x. Let D(N, q) be the expected number
of bins containing at least one ball at the end of this game. Then for a uniformly selected σ in
{0, 1}n, the probability that a ball is in the bin labeled by σ at the end of this game is D(N, q)/N .
Clearly, the chance that A inverts a uniformly chosen range point under H is exactly this, as well.

We claim that if q ≤ N/4 then D(N, q) ≥ 7q/16. To show this, we consider the pseudocode in
Figure 8.

Let us examine statements 2–7 more closely. Since q ≤ N/4, either of the then-clauses in
statements 4 or 5 is executed in any particular loop with probability at most 1/4 + 1/4 = 1/2, and
so an expected r ≥ q/2 of the values zi are uniform in {0, 1}n. Notice that executing statements 4
or 5 never decreases the number of distinct zi, and so for the purposes of lowerbounding D(N, q)
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we can consider the simplified code for j = 1 to q/2 do zj
$←{0, 1}n which places q/2 uniform

balls into N bins. At the time of the selection of bin zj for ball j there are already at most N/8
bins full. Hence, with probability at least 7/8 ball j goes into an empty bin (labeled zj), and so we
expect that at least 7q/16 bins contain a ball. We conclude then that Advinv

H (A) ≥ (7/16) q/2n.
The remaining cases H2..4 are handled analogously.

C.10 Proof of Theorem 6.7

We consider the case of HE = HE
5 . Fix a constant h0 ∈ {0, 1}n. Let q > 0 be given. We construct

an adversary AE,E−1
, taking input σ, which works as follows. For each i ∈ [1..q], the adversary

computes yi = Ei(h0)⊕ h0, where each i is taken as an n-bit string. If there is some i ∈ [1..q] such
that yi = σ then A outputs the string i; otherwise, A outputs the string 1 (failure).

Let Di be the event that yj �= σ for all j ∈ [1..i]. According to our block cipher model each yi is
an independently random value. Hence Pr[Di] = (1− 1/2n)i for each i ∈ [1..q]. We have then that
Advinv

H5[n](A) = 1−Pr[Dq] = 1−(1− 1/2n)q = 1−(1− 1/2n)2
nq/2n ≥ 1−e−q/2n ≥ (1−e−1)(q/2n) ≥

.6q/2n. where we have used the facts that (1−1/x)x < 1/e for all x > 0 and that 1−e−x ≥ (1−e−1)x
for all x ∈ [0, 1].

This proof approach works to prove the same bound for each of the schemes H5..12 because
in each of these the block-cipher key is distinct for each message hashed and therefore induces
independent random outputs as required by the analysis above.

C.11 Proof of Theorem 6.8

We consider the case HE = HE
13. For simplicity, we further consider the case where h0 = 0n (the

proof can be easily adapted for other values). We prove the bound by describing and analyzing a
meet-in-the-middle attack.

We construct an adversary A with two oracles E,E−1 and input σ. Adversary A executes as
follows: let A compute yi = Ei(i)⊕ v for i ∈ [1..q/2] (where i is encoded as an n-bit string). Let
F = {y1, . . . , yq/2}. Define a function g : {0, 1}n × {0, 1}n → {0, 1}n by g(k, y) = E−1

k (y ⊕ v)⊕ k.
Let A compute the set B = {g(q/2+1, σ), · · · , g(q, σ)} using q/2 further oracle queries. If A finds a
string s ∈ F∩B, where s = Ej(j) ⊕ v = E−1

� (σ ⊕ v)⊕ � for some j ∈ [1 .. q/2] and � ∈ [(q/2+1) .. q],
then treating j and � as strings, A outputs the two-block message (j ‖ Ej(j) ⊕ v ⊕ �) otherwise it
outputs the string 1 (failure). Notice that if s does exist in F ∩B that H(j ‖ Ej(j) ⊕ v ⊕ �) = σ.

We now analyze the probability that A will succeed by giving a lower-bound on the probability
that F ∩ B will be non-empty. Notice that while A runs, the keys for each invocation of E are
distinct. This means that in our model the values in sets F and B are uniform independent n-bit
strings. Therefore we need only lower-bound the probability that throwing q/2 blue balls and q/2
red balls randomly into 2n bins results in a red-blue collision.

Let C denote the event that after throwing all q balls we have a bin containing at least two
balls (regardless of color). Let CM denote the event that there are only monochromatic collisions
after throwing q balls (in other words, CM denotes the event that C has occurred but for any pair
of balls sharing a bin, they are either both blue or both red). Finally, let CB denote a bichromatic
collision (ie, the event that there is some red ball and some blue ball sharing the same bin). So C
is the disjoint union of CM and CB, or Pr[C] = Pr[CM] + Pr[CB].

Next we claim that for any even q > 1 we have Pr[CB] > Pr[CM]. This claim is justified by
a straightforward combinatorial argument: consider any configuration of q uncolored balls lying
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in 2n bins where two balls share a bin. If we color these two balls blue, then there are
( q−2
q/2−2

)
ways to color the remaining balls. However, if we color one ball red and the other blue, there
are

( q−2
q/2−1

)
ways to color the remaining balls. The latter number is larger than the former since

(q/2− 2)!(q/2)! > (q/2 − 1)!(q/2 − 1)!. This immediately implies our claim.
Since q ≤ 2n/2 we know Pr[C] ≥ .3q2/2n (for a proof see, for example, Appendix A of [1]).

Therefore Pr[CB] > Pr[CM] implies Pr[CB] > .15q2/2n, completing the proof.
Since the function g used in the proof above can be extracted from each scheme H13..20 by

examining the corresponding round function f13..20, and since the above proof did not depend on
the actual definition of g, we can extend the attack and analysis above to each of these schemes,
obtaining the same bound.
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