
Cryptography

December 25, 2001

1 Introduction

“Cryptography” means literally “secret writing.” And indeed the common perception is that the field of
cryptography is concerned with private communication in the presence of eavesdroppers. But cryptography
has come to encompass a whole host of problem domains. This article seeks to survey several key areas
in cryptography giving a sense of the flavor of what is involved when designing, attacking, and using the
algorithms at the center of the science.

1.1 History

Historically, cryptography was primarily a military concern; obviously it is profoundly important to disallow
an enemy from obtaining information regarding the organization of troops, plans of attack, and so forth.
Therefore military groups sought to obscure the content of their communications in such a way that the re-
ceiver of these communications could understand their contents, but enemy eavesdroppers would be unable
to extract any useful information from them. The techniques used were–by today’s standards–quite simplis-
tic, consisting often of a simple shift of the alphabet. For example, the message “ATTACK AT DAWN”
might become the same sentence with each character shifted one place forward in the alphabet (and Z would
be replaced with A): “BUUBDL BU EBXO”. Of course the receiver simply shifts each character one place
backward to recover the original message.

Although the jumbled message looks meaningless at first glance, it is obviously not a difficult task for
an eavesdropper to figure out the amount of shift being used and to extract the meaning of the original
message. Such simple methods are completely ineffectual today, especially given the emergence of the
modern computer.

Up until the mid-1960’s, all popular and unclassified methods of private communication were relatively
easy to attack. Although reasonable levels of sophistication were reached by the Enigma designers during
World War II, even this method was eventually broken. In the modern era, the best methods have no known
exploitable weaknesses, when used properly.

1.2 Areas of Cryptography

In the modern era, “cryptography” means, broadly, the science of deliberate difficulty, often in the service of
communication in the presence of adversaries. This would include the scenario above as well as a whole host
of others. “Cryptanalysis” is the art of breaking, attacking, or analyzing cryptographic methods. Together
these two fields are called “cryptology” though often the term “cryptography” is used to mean this as well.

The science of “deliberate difficulty” sounds at first a bit paradoxical. After all, isn’t it a primary goal of
science to circumvent difficulty? A unique aspect of cryptography is that difficulty is often sought. We model
the world as having friends and enemies, and we desire to communicate with our friends using problems which
are intractable for our enemies.

1.2.1 Privacy

Privacy is perhaps the most well-known problem of cryptography. Informally, two parties, Alice and
Bob, wish to communicate over an insecure channel. There is an eavesdropper Eve who wishes to obtain
information about the content of this communication. The privacy problem is to provide Alice and Bob with

1

a method of communication such that (1) Alice and Bob can recover the contents of their messages with
little computational overhead, and yet (2) Eve has no reasonable way of obtaining much information about
the contents of these messages.

1.2.2 Authentication

Authentication is an equally-important cryptographic problem. Here Alice wishes to send a message to
Bob in such a way that Bob can be virtually certain that Alice was the originator of the message. In other
words, we wish to prevent an adversary from impersonating Alice and forging messages to Bob. An obvious
example for this application would occur in, say, the banking industry: Alice wishes to tell the Bank to
transfer 1,000 dollars from her account to Carl’s account; if an impersonator could convince the Bank that
he were Alice, he might send more or less money to Carl’s account (against Alice’s wishes) or he may divert
Alice’s money to another account under his own control.

1.2.3 Commitment Schemes

A commitment scheme is a method where Alice wishes to decide on a value (from some set of available
options) and send this decision to Bob in such a way that (1) Bob cannot determine what value Alice chose
and (2) Alice cannot change the value once it is in Bob’s possession. Later, at some agreed upon time, Alice
then sends Bob an additional piece of information to reveal to Bob the value she chose earlier. Commitment
schemes are trivial in the presence of a trusted third party, Phil, since Alice could just tell Phil what the value
is, and Phil would not divulge it to Bob until the proper moment. But in the absence of any trusted third
party, more involved methods are required. Commitment schemes are used in a whole host of cryptographic
applications, such as electronic voting.

1.2.4 Secret Sharing

Secret Sharing works as follows: suppose a group of people wish to share a secret by partitioning the secret
into pieces (called “shares”) in such a way that all of them must put their pieces together to reconstruct the
secret. A real-world example occurs when Alice wishes to store a precious gem at the Bank in a safety-deposit
box: the Bank issues Alice two keys, one to be held by Alice and one to be left at the Bank. The gem is
then deposited in the box and locked. The box cannot be opened without both keys.

If we instead had a piece of information we wished to share among two or more people, we could use
cryptographic methods to accomplish this. An example might be the launch codes for missiles: we would
not want to endow a single person with the power to launch missiles; instead we might wish to require at
least three of some five persons to submit their shares in order to induce a launch.

1.2.5 Random Number Generators

A random number generator is an old concept in computer science: randomness is used in a myriad of
domains from simulation, game playing, computer algorithms, and so forth. However, in some applications
a very strong random number generator is needed in the sense that the outputs are not only random but
unpredictable. That is, given a stream of outputs from a random number generator, it should be infeasible
to predict what the next output value will be. An example application of such an object might be this: say
Alice wants to prove to Bob that she waited until Sunday to send a particular email. Assume that the local
newspaper (which is immune to outside influence) publishes the 100-digit output of some random number
generator each day. Alice could include Sunday’s number with her email to prove that she did not send the
message before Sunday.

In reality, random number generators are theoretical objects, existing only abstractly. In practical circum-
stances we create an algorithm which attempts to approximate a random number generator; the outputs are
then called pseudorandom numbers and the generator is called a pseudorandom number generator.

1.2.6 A Host of Other Problems

Many other problems are within the domain of cryptography: digital cash, entity authentication, flipping a
coin on the telephone, zero-knowledge proof systems, and so on. The common theme in all cryptographic

2

solutions to these problems is the idea that difficulty is designed into a system in order to foil attempts at
defeating the proposed goals of the system.

1.3 Modern Cryptography

Modern cryptography is a branch of cryptography which is intimately tied with computation complexity
theory, information theory, probability theory, computational number theory, and several other branches of
mathematics. The central theme of modern cryptography is that, if at all possible, one should rigorously
prove the security of the cryptographic methods being used. This is a fairly recent idea.

Historically, cryptographic methods were constructed by trial-and-error. Typically a method would be
proposed, and after a time it would be broken. Often, the proposer would then suggest a “patch” or a “fix”
that specifically addressed the attack which broke his proposed method. Then, after a time, it would be
broken once more. Sometimes this process would “converge” to a method which seemed to work, and other
times the proposer would simply give up on the idea and move on.

The modern approach seeks to avoid this process and proposes that we prove our methods have a certain
level of security. The approach works like this: first, we state a model in which we are working. Then we
state our assumptions. Then we exhibit a proof that the cryptographic system we are proposing meets a
given level of security, in our model and given our assumptions.

Although modern cryptography is now widely-practiced by researchers, it is still not demanded by the
user community at large. This is despite the fact that methods which use the historical approach are still
broken regularly. This situation is likely to change in the future.

1.4 Cryptography in Practice

Given the wide range of cryptographic problems above, it is obviously undesirable to start from scratch in
designing solutions for each one. Putting forth a different solution for each of these problems and then hoping
or expecting that each solution would be without any serious flaws is unrealistic. Instead cryptographers
have developed a toolbox of cryptographic primitives. These primitives solve a set of basic problems;
they are then used as subroutines by higher-level protocols. Examples of both primitives and protocols are
given shortly.

Oftentimes we are unable to prove the security of the primitives, but we are able to prove the security
of the protocols under the assumption that the primitives are secure. This means that the security of the
collection of cryptographic methods we employ rests upon the security of a handful of primitives. Although
this strategy means that a break of one of the primitives often means the failure of all protocols which
employ that primitive, most cryptographers believe that this is the proper way to build cryptographic
systems because it allows them to focus on a handful of relatively simply algorithms rather than a wide
variety of complex ones.

1.4.1 Performance

Although most cryptographic problems have good solutions available, it is still not generally true that
cryptographic methods are widely employed. Certainly cryptography is used in virtually all highly-secret
military communications in most countries, and it is certainly used between banks over their communications
networks. Users commonly see the padlock icon when using a secure web-browser to make purchases via
credit-card over the world-wide web. But other types of communications such as email, chat rooms, general
web usage, etc., are largely without cryptographic protections. To some extent, this is because security was
not built in to the system from the outset of the creation of the Internet (as it should have been). And to
some extent it is because designers often consider the cost of cryptography, in terms of computing power, to
be prohibitive. Therefore many researchers have focused on developing primitives and protocols which are
both secure and fast. This thrust is likely to continue in the coming years.

3

2 Privacy

Privacy is perhaps the most well-known cryptographic goal. An informal description appeared in the intro-
duction; we now explore some of the details.

2.1 The Model

Our model is as follows: Alice and Bob wish to communicate over a public channel. An eavesdropper, Eve,
sees all communication between Alice and Bob, but we desire that she learns little to nothing about the
content of the communication.

If we stop at this point in describing our model, the problem is unsolvable. There is nothing to stop Eve
from learning everything Alice tells Bob over the public channel, and nothing to stop Eve from impersonating
Bob to Alice in communications. We therefore must augment our model further. How we do this depends
on whether we wish to use the symmetric-key or asymmetric-key model.

In the symmetric-key model, we enter the domain of private-key cryptography, and in the asymmetric-
key model we use public-key cryptography. We explore the symmetric-key model first.

In the symmetric-key model, we assume that Alice and Bob both have a copy of some secret random
bit string K which we call the key. It is further assumed that Eve has no information about K other than
perhaps its length. We now ask, “is there any way that Alice and Bob can communicate over their public
channel without imparting any useful information to Eve?”

In the asymmetric-key model, we do not assume Alice and Bob have a shared secret key; instead they
must produce whatever secret information they require in plain view of Eve. It is, however, assumed that
Eve will not inject messages on to the public channel in order to foil the exchanges between Alice and Bob.
This requirement is perhaps unrealistic in some settings and therefore we address other models later on
which do not have this requirement.

We now explore both private-key cryptography and public-key cryptography, providing solutions in their
respective models.

2.2 Symmetric-Key Cryptography

The oldest solution to the privacy problem in the symmetric-key model is called the one-time pad or
Vernam Cipher. We begin with a description of this solution.

2.2.1 The One-Time Pad

Suppose Alice wishes to send Bob one bit of information; that is, she either wishes to send P = 0, or P = 1
to Bob. Alice and Bob have pre-determined some key K which consists of a single bit, randomly chosen,
which is also 0 or 1. (Perhaps the key was determined by physically flipping a coin and writing K = 0 if
the coin came up heads, or K = 1 if the coin came up tails.) Alice now computes P + K mod 2, calling this
result C. In other words, she adds P to K and writes C = 1 if the sum is 1 and C = 0 otherwise. Now she
sends C to Bob over the public channel. If Eve views C what can she learn?

Eve learns two things: (1) Alice sent something to Bob; (2) the length of the message was at most 1 bit.
Eve learns nothing beyond this; in particular, she learns nothing about the value of P the probability that
P = 0 given the value of C is exactly the same as the probability that P = 1 given the value of C. (In either
case, the probability is 1/2.)

There is a problem with the one-time pad, however, which makes it impractical for most situations. If
Alice now wishes to send another bit P ′ = 0 or P ′ = 1 to Bob, she cannot simply compute P ′ + K mod 2,
calling this C ′, and then send C′. The problem is that Eve will then be able to determine something about
the content of the communication she has viewed: she will realize that C = C ′ implies P = P ′. This is more
than we want to allow Eve to know, and therefore means we must use a new key for each bit we wish to
send.

This problem means that if Alice wishes to send n bits to Bob, she must have already established n
random key bits with Bob in advance. Moreover, once these key bits have been used, they cannot be re-used
in any future communications. Despite this rather significant practical drawback, the one-time pad is still

4

Input Block Values
000 001 010 011 100 101 110 111

Key = 00 001 010 100 101 110 000 011 111
Key = 01 111 101 010 011 110 100 001 000
Key = 10 010 101 001 011 111 000 100 110
Key = 11 110 111 101 000 100 010 001 011

Figure 1: Example of a Block Cipher. To encipher plaintext P ∈ {0, 1}3 under key K ∈ {0, 1}2, look up the
entry in the row corresponding to key K and the column corresponding to input block P . Notice that each
row is a permutation of all possible input blocks: each 3-bit string occurs exactly once. This is one of the
(23!)2

2
= 2642908293365760000 possible 3-bit block ciphers with a 2-bit key.

useful for extremely sensitive communications. It was rumored to be the method of choice for protecting the
communications between Washington and Moscow, for a time.

The one-time pad, as given, handles only a single bit. It can be extended to handle bit-strings of any
length in a straightforward manner. But before we explain how this is done, we define a few terms.

The bit-string which Alice wishes to send to Bob is called the plaintext. The process by which Alice
converts the plaintext into another form for public viewing is called encryption. The encryption of the
plaintext produces the ciphertext. When Bob receives the ciphertext he recovers the plaintext using
decryption.

Given an n-bit plaintext message P and an n-bit key K, Alice computes the function given above for
each bit in turn; that is, she computes Ci = Pi + Ki mod 2 for 1 ≤ i ≤ n, where Si denotes the i-th bit of a
bit-string S numbering the bits from left-to-right starting at 1. This operation is also known as the “bitwise
exclusive OR” of P and K, denoted P ⊕K.

2.2.2 Toward a Practical Solution

Given the drawbacks listed above, we might prefer a more practical solution to our problem. The cryp-
tographic primitive known as a block cipher is intended for precisely this scenario. A block cipher is a
function E : {0, 1}k × {0, 1}n → {0, 1}n such that, for any fixed value K ∈ {0, 1}k, the function E(K, ·)
is a permutation on {0, 1}n. In other words, a block cipher is a function E with two inputs, a key and a
block, and one output, a block. The idea is this: when a key is fixed, the input block is enciphered to the
output block. Saying the function is a permutation on {0, 1}n means that each input block corresponds to
exactly one output block, under any given key. This requirement ensures we can decipher an output block,
ie, recover the original input block.

Figure 1 shows an example block cipher with 3-bit blocks and a 2-bit key. To encipher P = 001 under
key K = 01, we simply look it up in the table to obtain C = 101.

Of course this table is very small; the small block size allows an eavesdropper to quickly build a dictionary
of input and output values, and the small key size allows an attacker to exhaustively try all keys. The shift
cipher, mentioned in the introduction, can also be viewed as a block cipher where the key is the amount
of shift employed; that cipher has a similar problem: the number of keys and the block size are simply
too small. Exhaustive key search and using statistical information (such as the frequency counts on the
characters of the plaintext in whatever natural language is being used) will quickly defeat encryption based
on such a weak block cipher. As an aside, it is important to note that in all of our solutions we insist only
on the secrecy of the key and not of the method. Experience has shown that trying to provide security by
hiding the algorithm as well as the key does not work: the algorithm is eventually discovered.

Real block ciphers have much larger block sizes and key lengths. In the mid-1970’s, the National Bureau
of Standards of the United States (now the National Institute of Standards and Technology) standardized
the Data Encryption Standard (DES) as their standard block cipher. DES has a 64-bit block size and
a 56-bit key length. Of course DES is not described via a table as we did above since the table would be
astronomically large and DES would be impossible to write down; instead DES is an algorithm which induces
such a table via a small finite number of steps.

5

Despite much scrutiny, no known practical break of DES was ever successful beyond exhaustive key
search. A “break” can mean several things; an informal and often-used definition is as follows: we break
DES if we can recover the key K in some “reasonable” amount of time, given some “reasonable” number of
plaintext/ciphertext pairs under the key K. Another definition of “break” requires that the output of DES
under some key and various distinct inputs can be distinguished from distinct random outputs.

Exhaustive key search is the only known way to break DES. Since there are 256 possible DES keys, about
half of them, or 255 ≈ 3.6× 1016 need to be searched for such an attack. This was largely infeasible in the
mid 1970’s, but with the advances made in CPU speeds, is quite possible for a modest budget. (A machine
which finds a DES key in an expected 3.5 hours can be built for about $100,000 US.)

In 2001, DES was officially supplanted by the Advanced Encryption Standard (AES), an algorithm
originally called “Rijndael” created by two Belgian cryptographers. AES has a block length of 128 bits and
key length of 128, 192, or 256 bits. To search attack AES with a key length of 128 bits would mean testing an
expected 2127 keys; this is considered well beyond what is possible for even the most sophisticated computers
today. (To give an idea of the magnitude of this number, there are an estimated 277 atoms in the known
universe, a number far smaller than the number of 128-bit keys.)

Although Rijndael is now the official standard for NIST, it has not received the scrutiny of DES since
it is relatively young. Although widely thought to be secure, there will undoubtedly be many interesting
aspects of its operation discovered in the coming years.

2.2.3 CBC Encryption

The block ciphers we described above are useful for transforming a plaintext block P ∈ {0, 1}n to a ciphertext
C ∈ {0, 1}n under a key K ∈ {0, 1}k, but we are left with several problems. Firstly, this transformation
does not meet the requirements for any of the standard notions of encryption; a block cipher is sufficient
for enciphering but not encrypting. Secondly, message lengths might be something other than n bits, and
we therefore need a solution which handles messages of any bit-length. There are several ways of remedying
these problems; we now examine one such method.

Take some block cipher, like AES, which accepts 128-bit blocks and a 128-bit key. Suppose Alice and
Bob share a 128-bit key K and Alice has a message M whose length is a multiple of 128 bits in length
which she wishes to send to Bob. Alice first writes M as a sequence of j 128-bit blocks M1M2 · · ·Mj .
Next, Alice generates some uniform random 128-bit string called the Initialization Vector (IV). Now she sets
C0 = IV and computes Ci = AES(K, Mi⊕Ci−1) for each 1 ≤ i ≤ j. Finally, she transmits the ciphertext
C = C1C2 · · ·Cj and the IV to Bob. Bob uses the IV and the key K to recover M from C. This commonly-
used scheme is called “CBC Mode Encryption with Random IV,” where CBC stands for “Cipher Block
Chaining.” It can be proven that, in our model, this scheme is “secure” provided that AES is “secure.” Note
that our encryption scheme now handles only messages which are a multiple of the block size; this deficiency
can be easily remedied by padding the message (adding some additional bits in a well-defined way).

2.2.4 Notions of Security for Symmetric-Key Cryptography

In the previous section we used the term “secure” without a clear idea of what it means. There are several
standard attack models within the symmetric-key model given above:

• Ciphertext-Only Attack Model

• Known-Plaintext Attack Model

• Chosen-Plaintext Attack Model

• Chosen-Ciphertext Attack Model

In the Ciphertext-Only model, the attacker (also known as the adversary) sees some amount of cipher-
text, but does not know the corresponding plaintext. This is the attack model typically used against a class
of ciphers called “stream ciphers.” In the Known-Plaintext model, the adversary is given some number of
plaintexts along with their corresponding ciphertexts (all under the same key). In the Chosen-Plaintext

6

model the adversary is allowed to select plaintexts of her choosing and is then given the corresponding ci-
phertext. Finally, the Chosen-Ciphertext model allows the adversary to both encrypt and decrypt messages
of her choice. Obviously, the list above gives models in order of increasing adversarial power.

The adversary is given the corresponding powers according to the model above. It must then be asked,
“what is her goal?” That is, what must she accomplish in order to have “broken” the encryption scheme?
This varies according to the attack model, and even within each model there are several possible goals;
consider the following example.

Consider CBC Mode Encryption with Random IV in the Chosen-Plaintext Attack Model. Consider the
following “game” which the adversary is asked to play: we supply the adversary two black boxes which are
outwardly indistinguishable. Each box accepts messages M of any length provided it is a multiple of 128.
Each box has an identical copy of a randomly-generated k-bit key K. When Box #1 is given a message M ,
it generates a random IV and outputs the CBC Encryption of M under this IV using block cipher E under
key K. When Box #2 is given a message M , it discards M and replaces it with a random string M ′ of the
same length as M . It then generates a random IV and outputs the CBC Encryption of M ′ under this IV
using block cipher E under key K.

The adversary is given both boxes, but not told which is Box #1 or Box #2. She is allocated some
amount of computational resources. Then the adversary encrypts messages of her choice (thus using the
Chosen-Plaintext Attack Model as claimed), up to some maximum number of messages allowed, and her
goal is to announce which is Box #1 and which is Box #2. If she does this with probability significantly
better than 1/2, she has succeeded in “breaking” the encryption scheme. In good encryption schemes, such
as the CBC Mode described here, the probability of her breaking the scheme is very closely related to her
ability to break the underlying block cipher.

The above definition of secure encryption immediately implies that any encryption system must use
randomness in order be secure. For example, any system that encrypts a message M twice under the same
K and always outputs the same ciphertext C both times, cannot be secure since the adversary trivially wins
the above game.

Though we do not describe the adversarial goals for the Chosen-Ciphertext Attack Model, suffice to say
that our scheme is not secure in this setting.

2.2.5 Other Modes of Operation for Symmetric-Key Encryption

CBC Mode is by no means the only method for secure symmetric-key encryption. Counter Mode Encryption
with Random IV (CTR Mode), selects a random IV, and then invokes the underlying block cipher E with
inputs E(K, IV), E(K, IV + 1), E(K, IV + 2), · · ·. The outputs are used as a one-time pad to encrypt a
message M . One nice advantage CTR Mode enjoys over CBC Mode is that it is highly-parallelizable: if
parallelism is available, it can be well-exploited since we can compute the block-cipher invocations at the
same time. CBC Mode, on the other, requires left-to-right processing for encryption and therefore cannot
be parallelized to any significant degree; CBC Mode decryption is, however, fully parallelizable.

Other standard modes for encryption are the Electronic CodeBook mode (ECB), the Output FeedBack
mode (OFB), and the Cipher FeedBack mode (CFB). The security of all of these modes, except for ECB,
can be rigorously demonstrated.

2.3 Cryptographic Hash Functions

Before studying Public-Key Cryptography in the next section, it is interesting to introduce the notion of a
cryptographic hash function.

A hash function is a function h : {0, 1}∗ → {0, 1}c where {0, 1}∗ means “strings of any bit-length” and
c is some fixed constant, defined as part of the scheme. Note that there is no mention of a key here: these
hash functions are keyless. A cryptographic hash function is a hash function with two properties:

• Collision Resistance: It is “infeasible” to find distinct bit-strings M1 and M2 such that h(M1) =
h(M2). (Two such strings are said to “collide” under h.)

• Onewayness: Given an output value y, it is “infeasible” to find an input value m such that h(m) = y.

7

The above discussion does not constitute a definition, and indeed it does not seem possible to give a
proper definition of these objects in any meaningful way. Cryptographers have gotten around this difficulty
by defining a model where all parties have access to a “random oracle” (a publically-available random
function) and then replaced this oracle with a cryptographic hash function. Despite this difficulty, the above
does capture the intuition we seek, and cryptographic hash functions have myriad uses as a primitive in
various cryptographic protocols.

Although cryptographic hash functions are most-often considered a primitive, they can be constructed
from block ciphers. There are several constructions known to be secure; we examine one of them called the
MMO scheme after its inventors (Matyas, Meyer, and Oseas). Assume a block cipher E with block size
n-bits and key length k = n bits. Given any message M whose length is a multiple of n, break M into j
bit-strings M1M2 · · ·Mj each with length n. Set h0 = 0 and compute hi = E(hi−1, Mi) for each 1 ≤ i ≤ j.
Set h(M) = hj.

It is believed that the MMO scheme has the two properties asserted above when used with a secure block
cipher such as AES. However, this scheme is significantly slower in practice than other methods which were
designed specifically as primitives rather than as schemes which utilitize primitives. The most well-known
and often-used algorithm is called the Secure Hash Algorithm (SHA-1). SHA-1 accepts messages of any bit-
length and produces a 160-bit output. The best-known attack on SHA-1 (in an attempt to find a collision, as
defined above) requires an expected 280 invocations of SHA-1, which is most-likely infeasible into the distant
future.

2.4 Public-Key Cryptography

As mentioned above, public-key cryptography uses the asymmetric-key model which does not assume that
each party already possesses a copy of some random key. Instead the parties must establish the key in plain
view of the eavesdropper. This is quite a task: how is one to design such a scheme? Indeed, for many years
it was thought to be impossible to do so; only in recent times (1970’s) did cryptographers begin to propose
that it could in fact be done. Witfield Diffie and Martin Hellman, along with ideas independently proposed
by Ralph Merkle, proposed systems which achieved exactly this aim. A more versatile system, RSA, was
quickly discovered soon thereafter by Ron Rivest, Adi Shamir, and Len Adleman. (The British intelligence
agency has since announced that it knew of the RSA system before it was published in the open literature.)

We did not explore the internal workings of the block ciphers discussed in the previous section. They
are invariably written as “confusion/diffusion” primitives meaning that their internals attempt to “mix”
together the input bits and key bits in highly inter-dependent ways so that the output blocks “look random”
for any input and any key. This is the way that difficulty is designed into block ciphers. Public-key systems,
however, tend to use different types of difficult problems to achieve their goal. They draw from hard problems
in number theory, group theory, and various other algebraic domains.

2.4.1 A Hard Problem from Number Theory: Factoring

Number theory is a fertile area for finding hard problems. Perhaps the simplest to state is the factoring
problem. The idea is this: while it is a relatively simple procedure to multiply two distinct prime numbers
p and q (a prime number is an integer greater than 1 which is divisible only by itself and 1) together to
produce their product n, it may not be simple to recover p and q given just n. In fact, it seems that the
larger p and q are, the more difficult it is to find them when presented only with their product. The best
known methods require time proportional to ec

√
ln n ln ln n for the number n, where c is a constant. (Actually

there is now a class of algorithms which does slightly better than this.) This is prohibitively expensive for
large values of n; for example, if we generate two random distinct 1000-bit primes p and q and then give the
product n = pq to the best known factoring algorithm, the algorithm would not, in all likelihood, find p and
q within our lifetimes.

Many public-key techniques are based on the presumed difficulty of the factoring problem. And just
saying that the best known algorithms take too long does not mean that better algorithms do not exist.
Indeed, no one has been able to prove a superpolynomial lower bound on factoring, so it is entirely possible
that there does exist an efficient algorithm for factoring despite our inability to discover one. Of course, the

8

discovery of such an algorithm would quickly render ineffective most of the public-key cryptosystems in use
today.

2.4.2 Quantum Computers

Quantum computers (machines which use the properties of quantum mechanics to create computational
and informational computing systems) have few known applications at present. It seems that they are far
more difficult to design and engineer than conventional computers, and indeed none yet exists outside of
research labs, (and even these machines are not much use yet, beyond the uses of researchers). But one very
important advantage they enjoy over conventional computers is the ability to solve the factoring problem
efficiently. This means that when they do exist in an affordable form with enough speed to factor large
numbers, they will require public-key cryptosystems to cease using the factoring problem as their underlying
hardness assumption. (Such cryptosystems already do exist, it should be noted.) Many experts believe that
quantum computers will reach this stage, though most likely not for the next 10 or 20 years.

2.4.3 The RSA Primitive

Perhaps the most important and well-known public-key primitive is the RSA primitive (named after its
inventors, Rivest, Shamir, and Adleman). It works as follows: suppose Alice wishes to send a message M to
Bob, but Alice and Bob do not share any secret key. Bob does the following:

• He randomly chooses two large distinct primes p and q.

• He sets n equal to their product pq.

• He chooses some odd number e which shares no prime factors with φ = (p− 1)(q − 1).

• He computes the unique number d such that ed = 1 mod φ.

• He sends (n, e) to Bob, in plain view of the adversary, but hides d, p, q, and φ, and keeps them private.

In the description above, we call (n, e) the public key of Bob; (n, d) is called the private key of Bob.
Now Alice receives Bob’s public key (n, e) provided no adversary intercepts it on the way to Alice (this is an
entirely different problem, but an important one to be addressed later). Alice computes C = M e mod n and
sends C to Bob. Finally, Bob computes Cd mod n which recovers M . (Proving this requires some grounding
in elementary number theory which is beyond the scope of this article.)

This description is quite simplistic, and several assumptions have been made here. First, M has been
treated as an integer here whereas we previously treated it as a bit-string. This is a minor issue, however,
since it is a simple matter to convert bit-strings into integers provided the bit-strings are sufficiently short.
The integer M must lie in the range 0 ≤M < n for the above scheme to work properly. We see once again
that, like block cipher primitives, the RSA primitive is useful as a building block but does not immediately
handle messages of any bit-length.

Although the RSA primitive will properly recover M as described above, provided M lies in the proper
range, it is also possible that M is so small that M e does not exceed n and therefore the modulus is never
used in the computation. In this case, it is quite easy to recover M without knowledge of the secret numbers
d, p, q, and φ. We will shortly see how to remedy this problem.

If the adversary is able to factor n, that is, find p and q, then she will be able to find d and thus recover
M given C. It is therefore of paramount importance that n be sufficiently large to prevent attackers from
successfully factoring it. The current record for factoring a large number was set in 1999 when researchers
successfully factored a 512-bit integer using an algorithm called the General Number Field Sieve. Using a
large number of computers in parallel, they were able to harness a huge amount of computing power (8000
MIPS-years) over a few months’ time. Some have taken this as an indication that 512-bit RSA moduli should
be considered insufficient and have recommended using 1024-bit moduli instead, especially if one wishes to
retain security into the near future.

It is an extremely compelling question to ask whether factoring n is the best attack against RSA. This is
currently unknown, though it remains a vigorous area of research.

9

2.4.4 Public-Key Encryption with RSA

The RSA primitive must be handled very carefully in order to produce a secure public-key encryption scheme.
RSA has many properties which are exploitable if the primitive is misused, and therefore extreme care must
be employed when building protocols on top of it. For example, the primes p and q must not only be of
sufficient size, they should also be of similar size (to avoid certain factoring algorithms), and they should be
sufficiently far apart (to avoid other factoring algorithms). Some experts recommend they have additional
properties (the so-called “strong prime” property). Also they should not be one more than any multiple of
3 if the encryption exponent e is 3. This is only a partial list of rules to be observed.

Unlike the simple modes of operation given above, public-key encryption with RSA (or any other public-
key primitive) requires a great deal of expertise to implement correctly. We therefore do not treat the topic
in depth in this article but refer the reader to more specialized sources listed at the end of the article. The
typical methods used for public-key encryption schemes are provably-secure in the Chosen-Ciphertext Attack
Model, a stronger model than was used in the symmetric-key setting.

2.5 Integrating Private-Key and Public-Key Cryptosystems

Public-Key primitives are invariably much slower than block ciphers, but are more flexible in that no shared
key is required. To exploit the best parts of this trade-off in practice, it is common to use a public-key scheme
to select and encrypt (under the appropriate public key) a block cipher key K. Once this is accomplished, the
parties then use a symmetric-key encryption scheme to communicate further. This method is used commonly
in several network protocols, for example Transport Layer Security (TLS, also known as Secure-Socket Layer
or SSL), the protocol used for secure web transactions.

Here, in brief, is how TLS works: consider a web server named “Alice” and a client named “Bob.” The
parties wish to establish a secure connection so that Bob can send his credit-card number to Alice without
fear of its being stolen. The protocol proceeds as follows:

1. Bob acquires Alice’s public key

2. Bob selects a random key K for use with some symmetric-key algorithm such as CBC Mode with
Random IV

3. Bob encrypts K using Alice’s public key yielding ciphertext C

4. Bob sends C to Alice, who decrypts C using her secret key

5. Bob and Alice now share K and can communicate efficiently using a secure symmetric-key algorithm

The above protocol is over-simplified; the actual TLS algorithm provides public-key certification and
message authentication, each of which will be explained shortly. But the main point to appreciate here is
that the public-key scheme is used only to distribute another key (often called a session key) for later use
with a symmetric-key algorithm.

3 Authentication

An equally-important cryptographic problem is authentication. Here Alice wishes to send a message to
Bob in such a way that Bob can be virtually certain that Alice sent the message. As with the privacy
problem, we have two models: the symmetric-key model and the asymmetric-key model. In the symmetric-
key model the algorithms are called Message Authentication Codes (or MACs), and in the asymmetric-key
model the algorithms are called Digital Signatures. Both MACs and digital signatures are widely-used in
virtually every secure communications protocol yet invented. In fact, many experts believe that encryption
without authentication achieves at best marginal communications security.

10

3.1 Message Authentication Codes

Message Authentication Codes (MACs) work as follows: Alice and Bob share some random secret key K.
Alice wishes to send message M to Bob in such a way that Bob can be virtually certain that M was actually
from Alice. Alice computes a function σ = MAC(K, M) where MAC is a function from {0, 1}∗ to {0, 1}t.
We call σ the tag and t is the tag length. Alice now sends M and σ to Bob; note that no mention is made
of encryption here: authentication is a completely different goal, and it is quite reasonable that Alice cares
nothing about privacy in this setting. In fact, our current example has Alice sending M in the clear!

Bob receives M ′ and σ′ and wishes to verify that Alice was the originator. It could be that M or σ were
modified in transit, and therefore M ′ and σ′ are used to indicate that what Bob receives may not be what
Alice sent. Although the verification step can be different from the MAC-generation step that Alice used,
it most often is the same: Bob re-computes the MAC tag and checks for a match. That is, he checks if
σ′ = MAC(K, M ′). If yes, Bob accepts M ′ as valid; if no, Bob rejects the message as an attempted forgery.

3.1.1 The Model

The attack model most-often used for MACs is called the Adaptive Chosen Message Attack Model (ACMA).
In this model, we once again provide the adversary with an oracle. This oracle has embedded within it a
randomly-chosen key K which is inaccessible to the adversary. The adversary is given some amount of
computational resources and is allowed to make some number of queries to the oracle. The adversary’s goal
is to make queries m1, m2, · · · , mq receiving back MAC tags σ1, σ2, · · · , σq and then produce a new message
m∗ different from every previously queried message along with a valid tag σ∗. If she succeeds, she is said to
have “forged.” A good MAC algorithm denies even the best adversary much of a chance at success.

3.1.2 MAC Algorithms

There are several well-known MAC algorithms. One of the most-commonly used methods is called HMAC.
HMAC employs a cryptographic hash function (Section 2.3) to do virtually all of the cryptographic work,
and therefore is quite simple to describe. Let h be our cryptographic hash function, such as SHA-1, let K
be the MAC key, and let M be the message to MAC. Then we write HMAC as

HMACK(M) = h(K ‖ p1 ‖ h(K ‖ p2 ‖M))

where p1 and p2 are repeated constants used to pad the inputs to h to the proper size, and ‖ denotes string
concatenation. The security of HMAC is directly related to the security of the underlying hash function.

Another common MAC algorithm is the CBC MAC. Given a block cipher E with block size n and key
K, we MAC a message M (whose length is a multiple of n) by computing the CBC Mode Encryption with
IV=0 and then use the final block as the MAC tag (Section 2.2.3). It is important to note that the CBC
MAC is secure only when the message length is fixed for any given key; that is, for any key K we must fix
a constant � such that every message to be MACed has length �n, no more and no less. Although this is
certainly an inconvenience in practice, there are several well-known ways to extend the CBC MAC to accept
messages of varying lengths.

3.1.3 High-Performance MAC Algorithms

MACs are needed in virtually all secure communications protocols, including those used on the Internet. High
volume servers might be required to process extremely large packet rates while, at the same time, producing
MACs on the packet contents. Therefore several researchers have sought very efficient MAC algorithms. In
software the best MACs are the so-called Carter-Wegman MACs which employ a novel idea: rather than
processing the input message M with a cryptographic algorithm (as both HMAC and CBC MAC do), use
a non-cryptographic hash function to shrink M to short string, then use a cryptographic primitive on this
resulting short string. The advantage is that the non-cryptographic hash function can be very simple and
very efficient, more efficient than cryptographic primitives tend to be.

11

3.2 Integrated Privacy and Authentication in the Symmetric-Key Model

Symmetric-key encryption and MACs often are done together, so it is natural to ask whether algorithms
could be devised which yield both encryption and authentication simultaneously with performance better
than the sum of the two tasks done separately. Recently several researchers have been exploring this domain
resulting in several new schemes to achieve this objective. It is likely that in the coming years one or more
of these primitives will be widely-used in high-performance secure communications systems.

3.3 Digital Signatures

A digital signature scheme provides authentication in the asymmetric-key model. The setting is completely
analogous to the above setting for MACs except here Alice and Bob do not have a shared key. Alice would
like to send a message M to Bob such that Bob can be virtually certain that Alice is the originator of
M . Therefore, as in the case for public-key encryption (Section 2.4), a public-key and a private-key are
generated. However this time it is Alice who generates these keys, and she designates the private-key as
her “signing key” and the public-key as her “verification key.” Once again she sends her verification key to
Bob but keeps her signing key secret. To sign a message M she computes some signature function using
her signing key to yield a signature σ and sends M and σ to Bob. Bob receives M ′ and σ′ and computes
some verification algorithm using the verfication key of Alice; the verification algorithm outputs VALID or
INVALID.

Since public-key primitives are typically quite slow, it is inefficient to actually compute the signature on
M as just described. More common is to first apply a cryptographic hash function (Section 2.3) to M and
then generate a signature on the hash output. This is provably just as good as signing M itself, assuming
the cryptographic hash function is secure.

3.3.1 Signature Schemes

As with public-key encryption (Section 2.4), signature schemes are quite delicate and must be implemented
with care. Instead of giving a detailed description of any one scheme, we explore the general framework of
one scheme: RSA signatures.

RSA was introduced as a public-key encryption primitive (Section 2.4.3). But the primitive can also be
used to generated signatures as follows: Alice generates an RSA public key (e, n) and private key (d, n) as
before. To sign a message M , she RSA encrypts M under her private key. In other words, she computes
σ = Md mod n. To verify the signature, Bob decrypts with the public key of Alice; that is, when receiving
M ′ and σ′, Bob checks if σ′ = M ′e mod n. If yes, he accepts M ′ as a valid signed message, else he rejects
M ′ as an attempted forgery. Once again, M must be treated as a number in the range 0 ≤ M < n, and,
as noted above, M is usually the hash of a message rather than the message itself. This description of RSA
signatures is quite oversimplified, but the crux idea is that the RSA public-key primitive is quite well-suited
for use as a signature primitive as well.

Notice that, because of the manner in which public-key cryptosystems work, a signature of M by Alice
can be verified by not only by Bob but by any party in possession of Alice’s public key. This flexibility is
endowed in particular because of the minimal setup requirements in public-key cryptography.

Another well-known and widely-used algorithm is the Digital Signature Algorithm (DSA). DSA is a
type of ElGamal Signature which uses a different type of difficulty called the Discrete Logarithm Problem
(DLP). The DLP is as follows: we start with a prime p and a generator α (a generator is a number between
1 and p− 1 such that p− 1 is the smallest positive integer such that αp−1 is one more than a multiple of p).
Now it is quite a simple matter given any x between 0 and p to compute the value αx mod p. However, if
we are instead given a number β with 1 ≤ β ≤ p− 1, it is difficult (in general) to find a power x such that
αx = β mod p. The “onewayness” of the DLP is what is exploited in ElGamal signatures to obtain their
security.

3.4 Certificates and Key Distribution

Although the primitives and protocols described in the previous sections all have very interesting properties
and are secure in their models, there remains a significant problem alluded to earlier. When describing

12

TLS (Section 2.5), the first step was for Bob to acquire Alice’s public key. The obvious problem here is
this: what if, in an attempt to acquire Alice’s public key, Bob is fooled into accepting the public key of an
impersonator instead? This impersonator would submit his own public key in place of Alice’s (and of course
he has the corresponding private key in his possession). If Bob then encrypted a random session key under
the impersonator’s public key, the impersonator would then enter into a communication with Bob where
Bob falsely believed he was talking with Alice.

To circumvent this problem, TLS mandates that the public key of Alice be digitally signed by some
“trusted” entity. Such an entity is called a Certification Authority (CA). The CA is an entity which is in
the business of digitally signing the public keys of other entities which wish to have validated public keys.
The idea here is that rather than expect Bob to already have a reliable copy of every public key of every
possible Alice he might interact with, he instead just has one widely-distributed, widely-known public key
from the CA. Then Alice must go to the CA and, after paying a fee, have her public key signed. The resulting
TLS protocol looks like this:

1. Bob acquires Alice’s public key with an accompanying signature from some CA

2. Bob verifies that Alice’s public key is properly signed by the CA

3. Bob selects a random key K for use with some symmetric-key algorithm such as CBC Mode with
Random IV; he also selects a key K ′ for use with some MAC algorithm

4. Bob encrypts K and K ′ using Alice’s public key yielding ciphertext C

5. Bob sends C to Alice, who decrypts C using her secret key

6. Bob and Alice now share keys K and K ′ and can communicate efficiently using a secure symmetric-key
algorithm and a secure MAC algorithm

This is, once again, quite an oversimplification. In practice there is more than one CA, and sometimes we
might see signatures on signatures, the so-called “Web of Trust.” Key distribution and identity authentication
remain fertile grounds of active research.

One final question perhaps remains after reading this section: how does Bob get the well-known public
key of the CA when he is, say, perusing the web? The answer is this: the public key of the CA is built in
to his web browser, which implements the TLS protocol. So how does Bob ensure that his web browser has
not been tampered with? Currently, he doesn’t.

4 Other Cryptographic Protocols

As we saw in the introduction, privacy and authentication are the most-important cryptographic problems
in some sense. But by no means does this complete the list of problems cryptographers work on. Other
very interesting protocols built using these protocols include digital cash, electronic voting, and many, many
others. We give an example of one further very useful protocol as an example of a cryptographic solution
which has a very different flavor to what we have seen thus far.

4.1 Secret Sharing

Suppose there is some private piece of information which is too sensitive for any one person to possess. (The
typical example is launch codes for nuclear missiles.) You may wish to partition this “secret” into pieces and
distribute these pieces to various different people in such a way that all these individuals must contribute
their pieces to reconstruct the original secret. This scheme can be realized quite easily. Consider an example:

Suppose we wish to share the secret “1131” among five world leaders: Halonen, Putin, Zemin, Toledo,
and Mbeki. First we would select some n > 1131, say 5000. Then we would choose 4 random numbers from
0 to n− 1 assigning one to each of the first 4 members, say

Halonen ← 1109

Putin ← 199

13

Zemin ← 4012

Toledo ← 2392

and then sum these mod5000 to get 2712, and finally assign Mbeki← 1131− 2712 = 3419. Notice that the
five pieces just dealt out sum to the secret, mod 5000. Therefore, if all 5 members of the group agree to
recover the shared secret, they would “pool their shares” by adding up their pieces mod 5000. Clearly this
can easily be generalized to any number of players and any size secret. Also, it should be obvious that if less
than 5 players contribute shares, absolutely no information about the secret is revealed (since the remaining
share could be any number from 0 to 4999 and each of these induces a different result mod 5000).

What are the drawbacks to the above scheme? There are several: (1) Requiring all players to contribute
their shares is often too strong a restriction (what if one of the players loses his share?), (2) What if a player
contributes a bad share? Then clearly the result is affected and there is no way to determine who the cheater
is! (3) What if the dealer is corrupt and gives out bad shares? Can we allow the players to verify the validity
of their shares without giving them any information?

The domain of Secret Sharing has addressed all of these questions. A particularly nice scheme for
addressing the first problem above was invented by Shamir in 1979.

4.1.1 Shamir’s Threshold Secret-Sharing Scheme

A far more reasonable access structure is called a k-out-of-� or “threshold” scheme. The idea is that the
secret is dealt to � players but any k of them can contribute their shares to recover the secret. And of course
if any k − 1 or fewer players contribute their shares, nothing is learned. The first scheme to achieve this
behavior was devised by Adi Shamir.

Shamir’s scheme is based on the “Fundamental Theorem of Algebra”: that a degree t − 1 univariate
polynomial f(x) is uniquely determined by t points (xi, yi), 1 ≤ i ≤ t where the xi are distinct. This
theorem is true in any algebraic field, including, in particular, the field of integers modulo some prime p. We
denote this field Zp. Shamir’s idea is as follows: suppose we would like to share a secret s with n players.
We choose some prime p > max(s, n) to induce a field Zp. We set a0 = s and select t − 1 random values
between 0 and p − 1; call these a1, · · ·at−1. Let f(x) = a0 + a1x + · · · + at−1x

t−1 over Zp. Now for each
player i from 1 to n we compute f(i) and hand (i, f(i)) to player i securely. Now if any t players pool their
shares, they can recover f(·) by a simple technique called LaGrange interpolation and then compute f(0) to
recover a0 = s. Computing in Zp we get

s =
t∑

i=1

ciyi, where cj =
∏

1≤j≤t,j �=i

xj

xj − xi
.

And again if t − 1 or fewer players contribute their shares, nothing is learned. This scheme is quite
elegant, and may suffice for many situations, but one can imagine even more flexible access structures or
requirements on the scheme, such as providing for the possible corruption of the various players. Secret
Sharing remains an area of on-going research.

5 Summary

Cryptography can be described as the domain of deliberate difficulty. Using the hardness of various problems,
cryptographers tackle problems such as protecting the privacy of information, authenticating entities on a
network, sharing a secret among various parties, electronic voting, digital cash, and much much more. As
these algorithms become more widely-used in a variety of settings, it becomes ever more important to ensure
the methods used are fast and secure. Much research continues in both the practical and theoretical areas
to extend ideas in this direction.

14

