
White-Box Cryptography and an AES

Implementation?

S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

Cloakware Corporation, Ottawa, Canada, K2L 3H1
fstanley.chow, phil.eisen, harold.johnson, paulvg@cloakware.com

Abstract. Conventional software implementations of cryptographic al-
gorithms are totally insecure where a hostile user may control the ex-
ecution environment, or where co-located with malicious software. Yet
current trends point to increasing usage in environments so threatened.
We discuss encrypted-composed-function methods intended to provide
a practical degree of protection against white-box (total access) attacks
in untrusted execution environments. As an example, we show how aes

can be implemented as a series of lookups in key-dependent tables. The
intent is to hide the key by a combination of encoding its tables with ran-
dom bijections representing compositions rather than individual steps,
and extending the cryptographic boundary by pushing it out further
into the containing application. We partially justify our aes implemen-
tation, and motivate its design, by showing how removal of parts of the
recommended implementation makes the implementation less secure.

1 Introduction and Overview

There has been tremendous progress in the uptake of cryptography within com-
puter and network applications over the past ten years. Unfortunately, the attack
landscape in the real world has also changed. In many environments, the stan-
dard cryptographic model | assuming that end-points are trusted, mandating a
strong encryption algorithm, and requiring protection of only the cryptographic
key | is no longer adequate. Among several reasons is the increasing penetration
of commercial applications involving cryptography into untrusted, commodity
host environments. An example is the use of cryptography in content protection
for Internet distribution of e-books, music, and video. The increasing popularity
of the Internet for commercial purposes illustrates that users wish to execute,
and vendors will support, sensitive software-based transactions on physically
insecure system components and devices. This sets the stage for our work.

The problem we seek to address is best illustrated by considering the software
implementation of a standard cryptographic algorithm, such as rsa or aes [13],
on an untrusted host. At some point in time, the secret keying material is in
memory. Malicious software can easily search memory to locate keys, looking

? 16 August 2002. Revision to appear in the post-proceedings of the 9th Annual Work-
shop on Selected Areas in Cryptography (SAC'02), Aug. 15-16, 2002.



2 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

for randomness characteristics distinguishing keys from other values [23]. These
keys can then be e-mailed at will to other addresses, as illustrated by the Sircam
virus-worm [6]. An even easier attack in our context is to use a simple debugger
to directly observe the cryptographic keying material at the time of use. We seek
cryptographic implementations providing protection in such extremely exposed
contexts, which we call the white-box attack context or wbac (section 2). This
paper discusses methods developed and deployed for doing so.

A natural question is: if an attacker has access to executing decryption soft-
ware itself, why worry about preventing secret-key extraction | the attacker
could simply use the software and platform at hand to decrypt ciphertext or
access plaintext. The answer (see also section 2.2) is that our techniques are
targeted mainly at software-based cryptographic content protection for Internet
media, rather than at more traditional communications security. In such appli-
cations, the damage is relatively small if an attacker can make continued use
of an already-compromised platform, but cannot extract keying material allow-
ing software protection goals to be bypassed on other machines, or publish keys
or software sub-components allowing `global cracks' to defeat security measures
across large user-bases of installed software. Our solutions can also be combined
with other software protection approaches, such as node-locking techniques tying
software use to speci�c hardware devices.

Relevant applications. There are many applications for which our approach
is clearly inappropriate in its current form, including applications in which sym-
metric keys are changed frequently (such as secure e-mail or typical �le encryp-
tion applications which randomly select per-use keys). Our approach also results
in far slower and bulkier code than conventional cryptographic implementations,
ruling out other applications. Nonetheless, we have been surprised at the range of
applications for which slow speed and large size can be accommodated, through a
combination of careful selection of applications and crypto operations, and care-
ful application engineering. For example, key management involving symmetric
key-encrypting keys consumes only a negligible percentage of overall computa-
tion time, relative to bulk encryption, so use of white-box cryptography here has
little impact on overall performance. Examples of relevant applications include
copy protection for software, conditional access markets (e.g. set-top boxes for
satellite pay-TV and video-on-demand), and applications requiring distribution
control for protected content playback.

Limitations on expected security. In the face of such an extreme threat
environment, there are naturally limits to practically achievable security. In all

environments, however, our white-box implementations provide at least as much
security as a typical black-box implementation (see section 2.1). Moreover on
hostile platforms, for conventional (black-box) implementations of even the the-
oretically strongest possible algorithms, typically-claimed \crypto" levels of se-
curity (e.g. 2128 operations, 1020 years, etc.) fall essentially to zero (0) as the
key is directly observable by an attacker. Therefore when considering white-box
security, a useful comparison is the commercial use of cryptographic implementa-
tions on smartcards: an inexpensive circuit mounted on plastic, with embedded



White-Box Cryptography and an AES Implementation 3

secret keys, is widely distributed in essentially uncontrolled environments. This is
hardly wise from a security standpoint, and successful attacks on smart cards are
regularly reported. However for many applications smartcards provide a reason-
able level of added security at relatively low cost (vs. crypto hardware solutions),
and a practical compromise among cost, convenience, and security. (Such trade-
o�s have long been recognized: e.g., see Cohen [9].) Our motivation is similar: we
do not seek the ultimate level of security, on which a theoretical cryptographer
might insist, but rather to provide an increased degree of protection given the
constraints of a software-only solution and the hostile-host reality.

Theoretical feasibility of obfuscation. The theoretical literature on
software obfuscation appears somewhat contradictory. The np-hardness results
of Wang [24] and pspace-hardness results of Chow et al. [8] provide theoreti-
cal evidence that code transformations can massively increase the diÆculty of
reverse-engineering. In contrast, the impossibility results of Baraket al. [2], essen-
tially show that a software virtual black box generator, which can protect every
program's code from revealing more than the program's input-output behavior
reveals, cannot exist. Of greater interest to us is whether this result applies to
programs of practical interest, or whether cryptographic components based on
widely-used families of block ciphers are programs for which such a virtual black
box can be generated. Lacking answers to these questions, we pursue practical
virtual boxes which are, so to speak, a usefully dark shade of gray.

It seems safe to conjecture that no perfect long-term defense against white-
box attacks exists. We therefore distinguish our goals from typical cryptographic
goals: we seek neither perfect protection nor long-term guarantees, but rather
a practical level of protection in suitable applications, suÆcient to make use of
cryptography viable under the constraints of the wbac. The theoretical results
cited above leave room for software protection of signi�cant practical value.

Overview of white-box aes approach. This paper describes generation of
wbac-resistant aes components, with sub-components analogous in some ways
to the encrypted-composed-functions of the recent literature [21, 22]. This con-
verts aes-128 into a series of lookups in key-dependent tables. The key is hidden
by (1) using tables for compositions rather than individual steps; (2) encod-
ing these tables with random bijections; and (3) extending the cryptographic
boundary beyond the crypto algorithm itself further out into the containing ap-
plication, forcing attackers (reverse engineers) to understand signi�cantly larger
code segments to achieve their goals.

Organization of the paper. We discuss white-box cryptography and the
white-box attack context (wbac) in section 2, including wbac-resistance at the
cryptographic interface (section 2.2). Section 3 describes methods for hiding
details of cryptographic operations, and their application to aes-128; size and
performance are briey addressed in subsection 3.6. Section 4 includes security
comments, including partial justi�cation showing how removing portions of our
design has severe impacts. Concluding remarks are in section 5.



4 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

2 White-Box Cryptography and Attack Context

Hosts may be untrusted for several reasons. Often software is distributed to
servers where access control enforcement cannot be guaranteed, or sites beyond
the control of the distributor. This happens for mobile code [21, 22], and where
software tries to constrain what end-users' may do with content | as in digital
rights management for software-based web distribution of books, periodicals,
music, movies, news or sports events. This may allow a direct attack by an
otherwise legitimate end-user with hands-on access to the executing image of
the target software. Hosts may also be rendered e�ectively hostile by viruses,
worm programs, Trojan horses, and remote attacks on vulnerable protocols.
This may involve an indirect attack by a remote attacker or automated attack
tools, tricking users into opening malicious e-mail attachments, or exploiting
latent software aws such as bu�er overow vulnerabilities. Online shopping,
Internet banking and stock trading software are all susceptible to these hazards.
This leads to what we call the white-box attack context (wbac) and white-box

cryptography (i.e., cryptography designed for wbac-resistance). First we briey
review black-box and gray-box approaches.

2.1 Black-box, gray-box, and white-box attack contexts

In traditional black-box models (as in: black-box testing), one is restricted to
observing input-output or external behavior of software. In the cryptographic
context, progressive levels of black-box attacks are known. Passive attacks are re-
stricted to observation only (e.g. known-plaintext attacks, exhaustive key search);
active attacks may involve direct interaction (e.g. chosen-plaintext attacks);
adaptive attacks may involve interaction which depends upon the outcome of
previous interactions (e.g. chosen plaintext-ciphertext attacks).

True black-box attacks are generic and do not rely on knowing internal de-
tails of an algorithm. More advanced attacks appear to be `black-box' at the
time of execution, but in fact exploit knowledge of an algorithm's internal de-
tails. Examples include linear and di�erential cryptanalysis (e.g. see [13]). These
have remnants of a gray-box attack. Other classes of cryptographic attacks that
have a `gray' aspect are so-called side-channel attacks or partial-access attacks,
including timing, power, and fault analysis attacks [1, 3{5, 10, 11, 16, 17]. These
clearly illustrate that even partial access or visibility into the inner workings,
side-e�ects, or execution of an algorithm can greatly weaken security.

White-box attack context. The white-box attack context (wbac), in con-
trast, contemplates threats which are far more severe. It assumes that:

1. fully-privileged attack software shares a host with cryptographic software,
having complete access to the implementation of algorithms;

2. dynamic execution (with instantiated cryptographic keys) can be observed;
3. internal algorithm details are completely visible and alterable at will.

The attacker's objective is to extract the cryptographic key, e.g. for use on a
standard implementation of the same algorithm on a di�erent platform. wbac



White-Box Cryptography and an AES Implementation 5

includes the previously studied malicious host attack context [21, 22] and the
hazards of unwittingly importing malicious software (e.g., see Forrestet al. [14]).
The black-box attack model and its gray-box variations are far too optimistic
for software implementations on untrusted hosts.

Security requirements for wbac-resistance are greater than for resistance to
gray-box attacks on smartcards. The wbac assumes the attacker has complete
access to the implementation, rendering typical smartcard defenses insuÆcient,
and typical smartcard attacks obsolete. For example, an attacker has no interest
in the power pro�le of computations if computations themselves are accessible,
nor any need to introduce hardware faults if software execution can be modi�ed
at will. The smartcard experience highlights that when the attacker has internal
information about a cryptographic implementation, choice of implementation is

the sole remaining line of defense [4, 5, 7, 10, 11, 18, 19] | and this is precisely
what white-box cryptography pursues.

On the other hand, implementations addressing the wbac such as the white-
box aes implementation proposed herein, are less constrained, in the sense that
implementations may employ resources far more freely than in smartcard envi-
ronments, including exibility in processing power and memory. Among other
available approaches, wbac-resistant cryptographic components can also (and
are often recommended to) employ a strategy of regular software updates or
replacements (see related work by Jakobsson and Reiter [15]). When appropri-
ate, such a design requires that protection need only withstand attacks for a
limited period of time | thus counterbalancing the extreme threats faced, and
the resulting limits on the level of protection possible.

2.2 WBAC-Resistance at the Cryptographic Interface

Any key input by a cryptographic implementation is completely exposed to priv-
ileged attack software sharing its host. Two ways to avoid such exposure follow.
(1) Fixed key approach: embed the key(s) in the implementation by partial evalu-
ation with respect to the key(s), so that key input is unnecessary. This approach
is adequate in many applications (but far from all | as discussed earlier), and
is the subject of the remainder of the paper. Since such key-customized software
implementations can be transmitted wherever bits can, keys may still be changed
with reasonable frequency. (2) Dynamic key approach: input encrypted and/or
otherwise encoded key(s). This is the subject of ongoing research.

A potential problem with the �xed-key approach is that a key-speci�c imple-
mentation might be extracted and used instead of its key, permitting an adver-
sary to encrypt or decrypt any message for which the legitimate user had such
capabilities. However, cryptography is seldom stand-alone; it is typically a com-
ponent of a larger system. Our solution is to have this containing system provide
the input to the cryptographic component in a manipulated or encoded form (see
section 3.5) for which the component is designed, but which an adversary will
�nd diÆcult to remove. Further protection is provided by producing the output
in another such form, replacing a key-customized encryption function EK by the
composition E0

K = GÆEK ÆF
�1. Here F and G are input and output encodings



6 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

(see section 3.2), both randomly selected bijections independent of K. E0

K no
longer corresonds to encryption with key K; this protects against key-extraction
as no combination of implementation components computes EK for any key K.
When possible, some prior and subsequent computational steps (e.g. xors, bi-
nary shifts, and bit-�eld extractions and insertions, conveniently representable
as linear operations on binary vectors) of the system are composed with the
initial and �nal operations implementing E0

K . This adds further protection by
arranging that no precise boundary for E0

K exists within the containing system
(boundaries lie in the `middle' of table lookups).

An obvious question is: can such use of F and G weaken the ordinary black-

box security of EK? This seems unlikely | if with any signi�cant probability,
these key-independent, random bijections render GÆEK ÆF

�1 weaker than EK ,
then intuitively one expects the cipher E itself is seriously awed for key K.

3 WBAC-Resistant AES

Since in the white-box context each cryptographic step might leak information,
we inject randomness into each step to introduce `ambiguity'. Our aes imple-

mentation generator program takes as input an aes key and a random source,
and outputs a key-customized wbac-resistant aes implementation. Generating
implementations which di�er both in time (at a single site), and in space (across
sites), o�ers protection by diversity [9, 14], helping foil pre-packaged attacks on
speci�c instances. Implementation details are discussed next.

Broadly, our strategy is to compose each step in the aes algorithm with
randomly chosen bijections. (These internal encodings are in addition to the
external encodings F and G above.) We inject randomness into each step, in a
form intended to make it diÆcult to separate from the step itself. The idea is
that since the bijections are random, given an encoded step there are many pos-
sible (key,bijection) combinations from which the same composed function could
arise. To facilitate such encoding, we represent each aes component as a lookup
table (an array of 2m n-bit vectors, mapping m-bit inputs to n-bit outputs).
Composition of lookup tables is straightforward and done by the implementa-
tion generator. The resulting implementation consists entirely of encoded lookup
tables (with functionalities shown in Fig. 1; see section 4 discussion).

Taken to an unrealistic extreme, one could use a single lookup table of about
5:4 � 1039 bytes representing the 128 � 128 bit aes bijection from plaintext
to ciphertext for a given key. This could be attacked only as a black box. We
attempt to approximate this with tables of very much smaller size.

3.1 Partial Evaluation with Respect to the AES Key

Using standard terminology [13, 20], aes consists of Nr rounds; Nr = 10 for
aes-128. A basic round has four parts: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. An AddRoundKey step occurs before the �rst round; the Mix-

Columns step is omitted from the last round. We generate key-customized in-
stances of aes-128. We integrate the key into the SubBytes transformation by



White-Box Cryptography and an AES Implementation 7

128 x 8

matrix

4−bit

input

4−bit

input

Type I

4−bit

encoding

output

4−bit

encoding

output

4−bit

encoding

output

decoding decoding

4−bit
input
decoding

4−bit
input
decoding

8x8
mixing
bijection

r

i,jT

4−bit

encoding
output

4−bit

encoding
output

4−bit

encoding
output

Type II

32 x 8
matrix

4−bit

input

4−bit

input

4−bit

encoding

output

4−bit

encoding

output

4−bit

encoding

output

matrix

32 x 8

Type III

decoding decoding

4−bit

input

decoding

4−bit

input

decoding

4−bit

encoding

output

xor

Type IV

Fig. 1. Functionality of four table types in our AES implementation.



8 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

creating 160 (one per cell per round) 8� 8 lookup tables, denoted Tr
i;j :

Tr
i;j(x) = S(x� kr�1

i;j ) i = 0; : : : ; 3; j = 0; : : : ; 3; r = 1; : : : ; 9:

Here S is the aes S-box (an invertible 8-bit mapping), and kri;j is the subkey
byte in position i; j at round r. These \T-boxes" compose the SubBytes step
with the previous round's AddRoundKey step.

The round 10 T-boxes also absorb the post-whitening key as follows:

T10
i;j(x) = S(x� k9i;j)� k10sr(i;j)

where sr(i; j) denotes the new location of cell i; j after the ShiftRows step.
note Of itself, partial evaluation provides essentially no security: the key

is easily recovered from T-boxes because the S-box is publicly known. Further
encoding as next described is used to make this partial evaluation useful.

3.2 Simple, Concatenated, Networked, and Min-Loss Encoding

input and output encoding Let X be a transformation from m to n bits.
Choose an m-bit bijection F and an n-bit bijection G. Call X 0 = G ÆX Æ F�1

the encoded version of X . F is the input encoding and G is the output encoding.
To avoid huge tables, we can construct an input or output encoding as the

concatenation of smaller bijections. Consider bijections F1; F2; : : : ; Fk of sizes
n1; n2; : : : ; nk, where n1 + n2 + : : :+ nk = n. Using k for vector concatenation,
de�ne the function concatenation F1kF2k : : : kFk as that bijection F such that
F (b) = F1(b1; : : : ; bn1)kF2(bn1+1; : : : ; bn1+n2)k : : : kFk(bn1+:::+nk�1+1; : : : ; bn) for

any n-bit vector b = (b1; b2; : : : ; bn). Plainly, F
�1 = F�1

1 kF�1
2 k : : : kF�1

k .
Since encodings are arbitrary, results are meaningful only if the output en-

coding of one step matches the input encoding of the next. For example, if step
X is followed by step Y (i.e. we compute Y ÆX), they are encoded as

Y 0 ÆX 0 = (H Æ Y ÆG�1) Æ (G ÆX Æ F�1)

= H Æ (Y ÆX) Æ F�1

so that Y Æ X is properly computed. The steps are separately represented as
tables corresponding to Y 0 and X 0, so that F , G, and H are hidden.

min-loss encoding If X is an n �m transformation (mapping m bits to
n bits), m � n, it will lose at least (and possibly exactly) m � n bits of input
information. However, if there are only 2n�k possible outputs, X drops m�n+k
bits: i.e., X loses k excess bits of input information. We can replace the table for
X 0 with a table forX 00 which does not lose these excess bits, and arrange that the
input encodings of successors to X 00 interpret multiple encoded values as having
the same decoded signi�cance where appropriate. We can continue this process
through the network, so that each lookup table carries as much information
as its input and output widths allow. In this fashion, we hide such loss points
in a lookup table network, delaying losses to later points in computation. The
motivation is that for certain attacks, this increases the size of the attacker's
search space for encodings. We call such concealment min-loss encoding.

For further discussion related to the security of these encodings, see section 4.



White-Box Cryptography and an AES Implementation 9

3.3 Non-Linear Encoding of Large Linear Transformations

Practical considerations limit our table sizes. SubBytes is not problematic, but
to handle the wide function (32-bit) MixColumns step, we use its linearity over
GF(2):MixColumns is represented using four copies of a binary matrixMC32�32.

We consider MC `strips' (see Fig. 2): we block MC into four 32� 8 sections,
MC 0;MC 1;MC 2;MC 3. Multiplication of a 32-bit vector x = (x0; x1; : : : ; x31)
by MC can be considered as four separate multiplications of the 8-bit vector
(x4i; : : : ; x4i+7) by MCi (yielding four 32-bit vectors y0; y1; y2; y3), followed by
three 32-bit binary additions (xors) giving the �nal 32-bit result y. We further
subdivide the additions into twenty-four 4-bit xors with appropriate concatena-
tion (e.g. ((y00 ; y

1
0 ; y

2
0 ; y

3
0)+(y01 ; y

1
1; y

2
1 ; y

3
1))k((y

4
0 ; y

5
0 ; y

6
0; y

7
0)+(y41; y

5
1 ; y

6
1 ; y

7
1))k : : : ).

Using these strips and subdivided xors, each such step is represented by a small
lookup table. In particular, y0; y1; y2; y3 are computed using four 8 � 32 tables
Ty0; T y1; T y2; T y3, while the 4-bit xors become twenty-four 8� 4 tables.

We note that the xor tables, regardless of the order in which they are used,
take in 4 bits from each of two previous computations. Since the output encodings
of these computations must be matched by the input encodings for the xor

tables, we require that all encodings be 4-bit bijections.1 In particular, we use
concatenated encodings both for the 32-bit output encodings to Tyi and the
8-bit input encodings to the xor tables.

The need to use 4-bit encodings imposes a similar limitation on the input
encodings for the T-boxes, since the MixColumns outputs feed into the T-box
step. In theory, we could use true 8-bit output encodings for the T-boxes, but
by composing the T-boxes with the Tyi's, an adversary could easily cancel these
encodings out. Therefore, we perform this composition ourselves, creating new
Tyi's which compute the SubBytes and AddRoundKey transformations as well
as part of MixColumns. This saves both space (to store the T-boxes) and time
(to perform the table lookups).

With this composition, our implementation now resembles the implementa-
tion in section 5 of the Rijndael proposal [12], with the added bene�t of wbac-
protection (at the price of being much larger and slower).

3.4 Mixing Bijections

So far, we have used only encodings which are non-linear with high probability.
Considering encodings as encipherments of intermediate values in aes, such en-
codings are confusion steps. We now introduce linear transformations as di�usion
steps, to further disguise the underlying operations.

We use the term mixing bijection to describe a linear bijection, especially
one used in the above sense. Generally, we think of mixing bijections as matrices
over GF(2), and use corresponding terminology.

1 We can ignore linearity: there are 2n! n-bit bijections, of which 2n
Q

n�1

i=0
(2n � 2i)

are aÆne, so there are 16! � 2:09� 1013 4-bit bijections of which 322,560 (less than
.000002%) are aÆne.



10 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

MC 3MC 2MC 1MC 0

x7

x8

x15

x16

x23

x24

x31

32

8888

x0

y0
0
1
0y

y2
0

y3
0

y7
0

y6
0

y5
0

0y4

y0
0
1
0y

y2
0

y3
0

y7
0

y6
0

y5
0

0y4

y0
0
1
0y

y2
0

y3
0

y7
0

y6
0

y5
0

0y4

y0
0
1
0y

y2
0

y3
0

y7
0

y6
0

y5
0

0y4

y

Fig. 2. Multiplication by MC



White-Box Cryptography and an AES Implementation 11

We use 8� 8 mixing bijections to di�use the inputs of the T-boxes (techni-
cally, the inputs to the combined T-box/MixColumns step). By combining the
inversion of the mixing bijections with MC through ordinary matrix multiplica-
tion, we di�use the inversion step over several table lookups, making it hard to
remove.

Moreover, we further multiply MC by a 32 � 32 mixing bijection, MB . We
choose MB as a non-singular matrix with 4 � 4 submatrices of full rank (see
Xiao and Zhou [25] for a way to generate such matrices), ensuring that the
encoded components of MB 0 will carry maximum information and maximizing
information di�usion among those components.

Of course, we must invert MB . This requires an extra set of tables, similar in
form to the ones used to calculate MC , in order to calculate MB�1. While this
is detrimental to size and speed, it appears to be outweighed by MB 's security
bene�ts.

Thus, a round of aes is implemented by encoding four pairs of two tables.
The �rst table combines the T-boxes with input mixing bijections, MC , and
MB . The second combines MB�1 with the inverse of the input mixing bijections
for the subsequent round's T-boxes.

3.5 Input and Output Data Manipulations

As described in subsection 2.2, our implementation takes input in a manipulated
form, and produces output in a di�erently manipulated form, thereby making
the wbac-resistant aes diÆcult to separate from its containing application. In
the previous sections, we have described techniques to handle both small non-
linear steps and large linear steps securely, and so our manipulation can combine
linear and non-linear components in a variety of ways.

The idea is to have the �rst steps of the implementation undo the manip-
ulation which is performed elsewhere in the program. Thus, while it is more
straightforward to describe what these �rst steps of aes might look like, keep
in mind that it is actually the inverse of steps done earlier in the program, and
similarly the last steps will be undone at a later stage. The net result is an e�ec-
tively standard, and wbac-resistant, aes computation, obtained by embedding
a non-standard aes in a correspondingly non-standard usage context.

The following is one suggestion for data manipulation. We insert a 128� 128
mixing bijection IDM prior to the �rst T-box calculation, and another 128�128
mixing bijection ODM after the last T-box calculation. We compose IDM with
the inverted input mixing bijections for T1. We can then block and encode
these matrices in the usual way, where we ensure that the output encodings
on the IDM addition tables are matched by the input encodings of the �rst
round transformation. (This also determines the input encodings for the prior
manipulation, which are matched by the output encodings on IDM addition.)
We also compose T10 with the tables for computing the ODM strips.



12 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

3.6 Size and Performance

We now have an implementation of aes which consists entirely of table lookups.
The only operation left unchanged is ShiftRows, which is performed simply by
providing the appropriate shifted inputs to the tables. We begin with a mixing
bijection over the full state, then perform a series of lookups computing the eight
matrices necessary for the round transformation. We end with a combined �nal
round and output mixing bijection. Every step is input- and output-encoded
using simple or concatenated 4-bit encodings in a networked fashion, with min-
loss encoding employed to hide excess information loss for components su�ering
from this weakness prior to encoding.

The total size of the lookup tables is 770048 bytes2, and there are 3104
lookups during each execution3. A fair comparison is the aes implementation
of Daemen and Rijmen [12], which requires 4352 bytes for lookup tables, and
requires approximately 300 operations (lookups and xors) in total. We feel that
wbac-protection is vital in potentially hostile environments, but it does come
at quite a substantial price. Thus careful choices must be made as to where, and
how, to employ white-box aes (see section 1).

4 Preliminary Security Comments

4.1 White-Box Analogs of Keyspace

Keyspace provides an upper bound on the security of a cryptographic algorithm.
Analogously, if encodings `encrypt' implementation steps, we can count the pos-
sible encoded steps. We call this metric white-box diversity. The white-box di-
versity of a given table type (see Fig. 1) counts how many distinct constructions
exist for a table of that type. (This exceeds the number of distinct tables.)

A far more important metric is the white-box ambiguity of a table, which
counts the number of distinct constructions which produce exactly the same

table of that type.
White-box diversity measures variability among implementations, useful in

foiling pre-packaged attacks [14], whereas white-box ambiguity is a measure of
the number of alternative interpretations or meanings of a speci�c table, among
which an attacker must disambiguate in cracking one of our aes instances.

We will assume that the encodings are random and independent, except for
the ones which are inverses of each other. (Choosing the encodings is one-time
per implementation work, and thus quality should outweigh eÆciency in the
selection of a source of randomness.)

2 T-box/MixColumns strips: 9 � 2 � 4 � 4 = 288 8 � 32 tables = 294912 bytes,
MixColumns additions: 9� 2� 4� 8� 3 = 1728 8� 4 tables = 221184 bytes, IDM
and T-box/ODM strips: 2�16 = 32 8�128 tables = 131072 bytes, IDM and ODM
additions: 2� 32� 15 = 960 8� 4 tables = 122880 bytes.

3 T-box/MixColumns strips: 288 lookups, MixColumns additions: 1728 lookups, IDM
and T-box/ODM strips: 32 � 4 = 128 lookups, IDM and ODM additions: 960
lookups.



White-Box Cryptography and an AES Implementation 13

White-Box Diversity There are four table types in our implementation, with
the functionality shown in Fig. 1. Type I tables compute the strips in IDM and
ODM , and represent a pair of 4-bit decodings, followed by an 128� 8 matrix,
then thirty-two 4-bit encodings. Type II tables compute the strips in the �rst
half of a round transformation. These represent two 4-bit decodings, then an
8� 8 mixing bijection, followed by a T-box, then an 32� 8 matrix, and �nally
eight 4-bit encodings. Type III tables compute the strips in the second half of
a round transformation, representing two 4-bit decodings, followed by a 32� 8
matrix, and then eight 4-bit encodings. Lastly, type IV tables compute the GF(2)
additions, representing two 4-bit decodings, the known xor operation, and a 4-bit
output encodings.

The white-box diversity for the various kinds of tables is:

{ Type I - (16!)2 � 2016064 � (16!)32 � 22419:7, where there are 20160 nonsin-
gular 4� 4 matrices over GF(2).

{ Type II - (16!)2 � 256� 262:2 � 2256 � (16!)8 � 2768:7. The number of 8� 8
mixing bijections is roughly 262:2. The actual number of type II tables is
slightly lower, because not every 8�32 matrix can be produced as a product
of MC and mixing bijections.

{ Type III - (16!)2 � 2256 � (16!)8 � 2698:5.
{ Type IV - (16!)2 � 16! � 2132:8.

White-Box Ambiguity The white-box ambiguity for a given table is the num-
ber of distinct constructions which could produce exactly that same table. By
this measure, type IV tables are by far the weakest point.

Finding a rigorous way to compute white-box ambiguity remains a central
open problem. Meanwhile, we have made estimates by extrapolating from smaller
tables preserving our basic structure. (Also, we are assuming that the construc-
tions are equiprobable, which is only approximately true.)

For type I tables, we considered both 4 � 4 and 6 � 4 matrices, with 2-bit
input/output encodings. As we see later, the white-box ambiguity appears to be
connected with the ranks of the matrix blocks, which would enforce the need
to consider larger matrices (or to use min-loss encoding: see subsection 3.2).
However, by construction, all matrix blocks for type I tables have full rank,
which results in a more regular behavior, hopefully captured using 2� 2 blocks.

We enumerated by simply exhausting over every possibility, counting distinct
results. We conclude: given a type I table, its two input encodings, and one of
the of the two 4� 4 blocks in each set of four rows, are unconstrained, but these
choices uniquely determine the other block in each set of rows and all of the
output encodings. Therefore, the number of components which can generate a
given type I table is (16!)2 � 2016032 � 2546:1.

Type II and III tables are more complex: the matrix blocks may not have
full rank. We can ameliorate this problem using min-loss encoding, but to ensure
conservative estimation, we ignore such encodings.

With this modi�cation, the rank of each block can be directly determined
from the table. Consider the components needed to compute a single, �xed nibble



14 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

of each entry in a type III table. We have two 4-bit input decodings, each of which
feeds into a 4� 4 block, and �nally a 4-bit output encoding. If we consider the
outputs in a 16 � 16 array, we �nd the e�ect of the �rst input decoding is to
permute the rows of the array, while the second input decoding permutes the
columns of the array. Likewise, the rank of the �rst block can be determined
by counting the number of distinct entries in any column, and the rank of the
second block by counting distinct entries in a row, where the rank is the base-2
logarithm of the resulting count.

The simplest sub-case to analyze is one where both blocks have rank 0. Here,
the resulting table reveals no information about the input encodings (as any
row and column permutation of a single entry table will look identical) and
also reveals no information about the output encoding of any value except 0.
Therefore, the number of components which could have produced such a table
is (16!)2 � 15! � 2128:8. Of course, it is entirely possible that the other blocks in
the 32� 8 matrix reveal more information about the encodings.

For full-rank blocks, the blocks uniquely determine the output encodings.
Since there are at most 201602 possible such blocks, an upper bound for the
number of components which could produce a given table is (16!)2 � 201602 �
2117. In other cases, we could construct similar upper bounds (taking into account
parts of the output encoding that cannot be determined).

The type IV tables have the smallest white-box ambiguity by far. Given one
input decoding and the value to which 0 decodes for the other input decoding,
we uniquely determine the remaining encodings. Therefore, the number of com-
ponents which generate a given type IV table is 16!� 16 � 248:2. Exhaustion of
such tables is certainly feasible, which is a threat if the attacker can �nd a way
to decide whether an alternative is correct. It is not yet clear how to do this.

However, assume that an eÆcient means of performing this disambiguation
on type IV tables exists. We still argue that: (1) our defense is intended only
for a period of time, and (2) malware performing work anywhere near 248 steps
(about three days work at 1 GHz) cannot be stealthy. So for malware-resistance,
it is likely to be adequate. Even amalicious host would need signi�cant resources
to perform a crack: and each crack would be only good for an interval (say, for
part of a book or movie).

Of course, keyspace-like security measures are appropriate only in the absence
of eÆcient attacks which bypass much of the search space. We now consider what
form such an attack might take.

4.2 A Generic Square-Like Attack

We �rst describe a generic attack which assumes that the input decodings to a
set of four type II tables, corresponding to a round transformation for a single
column, have been removed. Later, we will show how this assumption can be
realized for certain weakened variants.

We can send chosen texts through these tables, in the sense that we can
consider the inputs to be direct (unencoded) inputs to the AddRoundKey and



White-Box Cryptography and an AES Implementation 15

SubBytes steps. However, we cannot consider the outputs in the same way,
because of the MB transformation, as well as the output encoding.

Consider the value of a cell after the two-part round transformation. Its
encoding consists of an 8-bit mixing bijection and two concatenated 4-bit random
bijections. Such an encoding is local to the cell, and therefore has an important
property | two texts which have the same encoded value in that cell, have the

same unencoded value in that cell. In other words, while we cannot in general
determine the unencoded xor di�erence of two texts, we can identify when it is
zero.

Our goal is to �nd two 32-bit texts which have a non-zero input di�erence in
each cell, and have a zero output di�erence in all but one cell. This can be recog-
nized as the strategy in the �rst round of the Square attack on aes [12]. Suppose
we �nd such texts, denoted w = (w0; w1; w2; w3) and x = (x0; x1; x2; x3). Let
the key which is embedded in the type II tables be k = (k0; k1; k2; k3). Let
y = (y0; y1; y2; y3) be the mod 2 di�erence between the two texts after the Sub-
Bytes transformation, i.e.

yi = S(wi � ki)� S(xi � ki):

Then we have

01(y0)� 02(y1)� 03(y2)� 01(y3) = 00

01(y0)� 01(y1)� 02(y2)� 03(y3) = 00

03(y0)� 01(y1)� 01(y2)� 02(y3) = 00

or some variant thereof, depending on which cells match and which cell di�ers.
The above system has the solution

y0 = ec(y3)

y1 = 9a(y3)

y2 = b7(y3)

Thus, the choice-count for k has been signi�cantly reduced, to an upper bound
of 256. At this point, we could simply exhaust to determine k. Alternatively, we
could make a guess for k and choose texts as in the Square attack, and look for
three-cell collisions as above.

Based on collision probability (about 2�22), expected work to �nd an entire
round key is about 213 one-round encryptions for this weakened variant.

4.3 Applying the Square-Like Attack to a Weakened Variant

Let us consider the variant of ourwbac-resistant aes without input/output data
manipulation. As well as vulnerability to direct capture during transmission,
such a variant has no input encoding for the �rst set of Type II tables, and is
vulnerable to the attack in subsection 4.2.



16 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

Unless more eÆcient attacks are found, removal of data manipulation re-
quires exhaustion of a type I table. Their high white-box ambiguity makes this
infeasible.

The mixing bijections serve a critical role in the intermediate steps of the
cipher. Consider an implementation in which the T-boxes were not pre-mixed,
and in which MB was not used (meaning that it would not have to be inverted).
Such an implementation would have modi�ed type II tables (and no type III
tables), consisting of two 4-bit decodings, followed by a T-box, then a known
32�8 matrix, and �nally eight 4-bit encodings. In particular, we note that two of
the 8� 8 blocks are simply the identity matrix (corresponding to multiplication
by 01), and thus by considering only a portion of the table output, we can ignore
the matrix altogether.

Partial evaluation of the key and the 4-bit input/output encodings, do not
alter the distributions of nibbles in the rows and columns of the aes S-box. E.g.,
the high-order nibble of column 3 has six values appearing twice, four values
appearing once, and six values which do not appear, and is the only column
with such a distribution. Arranging the appropriate portion (corresponding to
the identity matrix) of the modi�ed type II table, we �nd an identical distribution
in the high-order nibble. Continuing in this way, we �nd a 1-1 mapping between
the rows and columns of the S-box and T-box.

Since the key rearranges the rows and columns of the S-box in an unknown
fashion, the above mapping only determines the input encodings up to a guess
of key. However, every choice of key yields an identical result for the output

encoding (i.e., the output encoding is key-independent). Thus, we can uniquely
determine a set of output encodings, which are inverted by the input decodings
of the next round's tables. We have thus met the conditions necessary to launch
the Square-like attack.

The mixing bijections thwart this attack by di�using the distribution over
the nibbles and over the set of T-boxes, and min-loss encoding foils attacks based
on eÆciently guessing mixing bijections by locating tables with excess bit-loss.

5 Conclusions and Future Work

We consider the white-box attack context (wbac), reecting both the capabil-
ities of an adversary who can introduce malicious code, and the demands on
mobile or commodity software cryptography due to the economics and logis-
tics of the Internet. Traditional implementations of cryptographic algorithms,
including aes, are completely wbac-insecure. As with smartcards, the security
of a cipher is as dependent on its environment and implementation as on its
mathematical underpinnings.

As a proposal for pragmatically acceptable wbac-resistance, we present a
new way of implementing aes using lookup tables representing encoded compo-
sitions. Such implementations are far larger and slower than reference code, but
arguably allow cryptographic computation to take place with a useful degree of
security, for a period of time, even in the presence of an adversary who can ob-



White-Box Cryptography and an AES Implementation 17

serve and modify every step. As a bonus feature, aside from white-box strength,
generated aes instances provide a diversity defense against pre-packaged attacks
on particular instances of executable software.

Further security analysis is needed, and we encourage the wider cryptographic
community to participate. Combinatoric properties of white-box attacks are far
from understood. In this paper, we consider the diÆculty of component exhaus-
tion and a Square-like attack. The issues of attacks on multiple components at
once, or on multiple implementations sharing a key, remain to be thoroughly
investigated. For example, white-box ambiguity for a sub-network of tables in
our implementation may di�er depending on where its boundaries lie.

While the eÆciency of our generated aes implementations has been accept-
able for various commercial applications, the large size and low speed certainly
limits general applicability. EÆciency improvements would be most valuable.

Acknowledgements We thank Alexander Shokurov of ispras for suggesting
the ambiguity metric of section 4.1 in another context, and anonymous reviewers.

References

1. R.J. Anderson, M.G. Kuhn, Low Cost Attacks on Tamper-Resistant Devices,
pp. 125-136, 5th Int'l Workshop on Security Protocols (lncs 1361), Springer 1997.

2. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, Ke Yang, On the (Im)possibility of Obfuscating Programs, pp. 1-18,
Advances in Cryptology { Crypto 2001 (lncs 2139), Springer-Verlag, 2001.

3. Eli Biham, Adi Shamir, Di�erential Fault Analysis of Secret Key Cryptosystems,
pp. 513-525, Advances in Cryptology { Crypto '97 (lncs 1294), Springer-Verlag,
1997. Revised : Technion - C.S. Dept. - Technical Report CS0910-revised, 1997.

4. Eli Biham, Adi Shamir, Power Analysis of the Key Scheduling of the aes Candi-
dates, presented at the 2nd aes Candidate Conference, Rome, Mar. 22-23 1999.

5. D. Boneh, R.A. DeMillo, R.J. Lipton, On the Importance of Eliminating Errors in
Cryptographic Computations, J. Cryptology 14(2), pp. 101-119, 2001.

6. CERT Advisory CA-2001-22 W32/Sircam Malicious Code, 25 July 2001 (revised
23 August 2001), http://www.cert.org/advisories/CA-2001-22.html.

7. S. Chari, C. Jutla, J.R. Rao, P. Rohatgi, A Cautionary Note Regarding Evalua-
tion of aes Candidates on Smart-Cards, presented at the Second aes Candidate
Conference, Rome, Italy, March 22-23, 1999.

8. S. Chow, Y. Gu, H. Johnson, V.A. Zakharov, An Approach to the Obfuscation of
Control-Flow of Sequential Computer Programs, pp.144-155, Proceedings of ISC
2001 { Information Security, 4th International Conference (Malaga, Spain, 1-3
October 2001), lncs 2200, Springer-Verlag, 2001.

9. F. Cohen, Operating System Protection Through Program Evolution, Computers
and Security vol.12 no.6 (1 Oct. 1993), pp.565-584.

10. Joan Daemen, Vincent Rijmen, Resistance Against Implementation Attacks: A
Comparative Study of the aes proposals, presented at the Second aes Candidate
Conference, Rome, Italy, March 22-23, 1999.

11. Joan Daemen, Michael Peeters, Gilles van Assche, Bitslice Ciphers and Power
Analysis Attacks, pp. 134-149, 7th International Workshop on Fast Software En-
cryption { fse 2000 (lncs 1978), Springer-Verlag, 2000.



18 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

12. Joan Daemen, Vincent Rijmen, aes Proposal: Rijndael
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf, 1999.

13. Joan Daemen, Vincent Rijmen, The Design of Rijndael: AES { The Advanced
Encryption Standard, Springer, 2001.

14. Stephanie Forrest, Anil Somayaji, David H. Ackley, Building Diverse Computer
Systems, pp. 67-72, Proceedings of the 6th Workshop on Hot Topics in Operating
Systems, ieee Computer Society Press, 1997.

15. Markus Jakobsson, Michael K. Reiter, Discouraging Software Piracy Using Soft-
ware Aging, pp.1-12, Security and Privacy in Digital Rights Management { acm

ccs-8 Workshop drm 2001 (lncs 2320), Springer-Verlag, 2002.
16. Paul C. Kocher, Timing Attacks against Implementations of DiÆe-Hellman, RSA,

DSS, and Other Systems, pp. 104-113, Advances in Cryptology { Crypto '96
(lncs 1109), Springer-Verlag, 1996.

17. Paul Kocher, Joshua Ja�e, Benjamin Jun, Di�erential Power Analysis, pp. 388-
397, Advances in Cryptology { Crypto '99 (lncs 1666), Springer-Verlag, 1999.

18. Oliver K�ommerling, Markus G. Kuhn, Design Principles for Tamper-Resistant
Smartcard Processors, pp. 9-20, Proceedings of the usenixWorkshop on Smartcard
Technology (Smartcard '99), usenix Association, isbn 1-880446-34-0, 1999.

19. National Institute of Standards and Technology, Round 2 Discussion Issues for the
aes Development E�ort, November 1, 1999.
http://csrc.nist.gov/encryption/aes/round2/Round2WhitePaper.htm.

20. National Institute of Standards and Technology (NIST), Advanced Encryption
Standard (aes), fips Publication 197, 26 Nov. 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

21. Tomas Sander, Christian F. Tschudin, Towards Mobile Cryptography, pp. 215-224,
Proceedings of the 1998 ieee Symposium on Security and Privacy.

22. Tomas Sander, Christian F. Tschudin, Protecting Mobile Agents Against Malicious
Hosts, pp.44-60, Mobile Agent Security (lncs 1419), Springer-Verlag, 1998.

23. Nicko van Someren, Adi Shamir, Playing Hide and Seek with Keys, pp. 118-124,
Financial Cryptography '99 (lncs 1648), Springer-Verlag, 1999.

24. C. Wang, A Security Architecture for Survivability Mechanisms, Doctoral thesis,
University of Virginia, October 2000.

25. James Xiao, Yongxin Zhou, Generating Large Non-Singular Matrices over
an Arbitrary Field with Blocks of Full Rank, Cryptology ePrint Archive
(http://eprint.iacr.org), no. 2002/096.


