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Abstract

We give an exact characterization of permutation polynomials mod-
ulo n = 2%, w > 2: a polynomial P(z) = ap + ayx + - - - + agz? with
integral coefficients is a permutation polynomial modulo 7 if and only
if ay is odd, (a2 + a4 + ag + ---) is even, and (az + a5 + a7 + ---) is
even. We also characterize polynomials defining latin squares mod-
ulo n = 2%, but prove that polynomial multipermutations (that is, a
pair of polynomials defining a pair of orthogonal latin squares) modulo
n = 2" do not exist.
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1 Introduction

A polynomial P(z) = ag + a1z + - + aqz? is said to be a permutation

polynomial over a finite ring R if P permutes the elements of R.

Permutation polynomials have been extensively studied; see Lidl and
Niederreiter[4, Chapter 7] for a survey. Permutation polynomials have nu-
merous applications, including cryptography[7]. Indeed, the RSA cryptosystem][13]
is one such application.

Most studies have assumed that R is a finite field. See, for example, the
survey of Lidl and Mullen[5, 6].

In this paper we consider the case that R is the ring (Z,,, +, ) where n is
a power of two: n = 2¥. Modern computers perform computations modulo
2% efficiently (where w = 8,16,32, or 64 is the word size of the machine),
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and so it is of interest to study permutation polynomials modulo a power of
two.

We note that the RC6 block cipher[12] makes essential use of the fact
that the polynomial z(2z + 1) is a permutation polynomial modulo n = 2",
where w is the word size of the machine.

2 Characterizing Permutation Polynomials

In this section we give a simple characterization of permutation polynomials
modulo n = 2%.

Our result stands in surprising contrast to the situation for finite fields,
where the problem of determining whether a given input polyomial is a
permutation polynomial is quite challenging, and has not yet been shown
to be in P. There are, however, efficient probabilistic algorithms for this
problem[17, 8].

We assume for convenience that P is an integral polynomial; that is,
its coefficients are integers, rather than elements of Z,. This assumption
allows us to talk about the same polynomial with different values of n. In
particular, our proof will work by induction on w, where n = 2%,

2.1 The case n =2
The case n =2 (w = 1) is trivial:
Lemma 1 A polynomial P(z) = ag + a1z + - - - + aqz?® with integral coeffi-

cients is a permutation polynomial modulo 2 if and only if (a1 +as+---+aq)

18 odd.

Proof: Trivial, since 0° =0 and 1° = 1 modulo 2 for i > 1. ||

2.2 Thecasen=2" w>1

Lemma 2 Let P(x) = ag + a1z + - -+ + aqgz? be a polynomial with integral
coefficients and let n = 2m, where m is an even positive integer. If P(x) is
a permutation polynomial modulo n, then a1 is odd.

Proof: If a; were even, then then a; -0 = a; - m’ =0 (mod n) for i > 1,
implying that P(0) = P(m), a contradiction with the assumption that P is
a permutation polynomial modulo n. |}
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Lemma 3 Let P(z) = ag + a1z + - - + agz? be a polynomial with integral
coefficients, let n = 2%, where w > 0, and let m = 2*~!1 = n/2. If P(x) is
a permutation polynomial modulo n then P(x) is a permutation polynomial
modulo m.

Proof: Clearly, P(x +m) = P(z) (mod m), for any x.

Assume that P(z) is a permutation polynomial modulo n. If P is not a
permutation polynomial modulo m, then there are two distinct values z, =’
modulo m such that P(z) = P(z') =y (mod m), for some y. This collision
means there are four values {z, z+m,z', ' +m} modulo n that P maps to a
value congruent to ¥ modulo m. But there can only be two such values if P
is a permutation polynomial, since there are only two values in Z,, congruent
to y modulo m. |

Lemma 4 Let P(z) = ag + a1z + - -- + agz? be a polynomial with integral
coefficients, and let n = 2m, If P(x) is a permutation polynomial modulo n,
then P(z +m) = P(z) +m (mod n) for all x € Z,.

Proof: This follows directly from Lemma 3, since the only two values mod-
ulo n that are congruent modulo m to P(z) are z and P(z) +m. |}

Lemma 5 Let P(x) = ag + a1z + - -+ + aqz? be a polynomial with integral
coefficients, and let n = 2m, where m is even, If P(x) is a permutation
polynomial modulo m, then P(x) is a permutation polynomial modulo n if
and only if (a3 + a5 + a7+ --+) is even.

Proof: By Lemma 2, a is odd. Since P(z +m) = P(z) (mod m) for any
x, and since P is a permutation polynomial modulo m, the only way P could
fail to be a permutation polynomial modulo n would be if P(z+m) = P(m)
(mod n) for some z.

Since m = n/2 is even,

(z 4+ m)" = 2" +imz'™" (mod n)
for ¢ > 1. Therefore

ai(z +m)' = a;z’ (mod n)
unless a; is odd and either

e ;=1or

e ;> 1 and both z and ¢ are odd,
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in which cases . .
ai(x +m)" = a;z' +m (mod n) .

Since a; is odd, ai(z +m) = a1z +m (mod n) for all z. Thus P(z+m) =

P(z) +m (mod n) for all even x € Z,, and P(z +m) = P(x) + (a1 + a3 +

as + a7 +---)m (mod n) for all odd x € Z,. The lemma follows directly. |l
The previous lemmas can now be combined to give our main theorem.

Theorem 1 Let P(z) = ag+ a1z ++ - +aqz? be a polynomial with integral
coefficients. Then P(x) is a permutation polynomial modulo n = 2%, w > 2,
if and only if a1 is odd, (az+ a4 +ag +---) is even, and (a3 + a5+ a7+ --)
s even.

Proof: If P(x) is a permutation polynomial modulo n, then a; is odd by
Lemma 2. Furthermore, P(z) is also a permutation polynomial modulo
m = n/2, by application of Lemma 3, and so (a3 + a5 + a7 +---) is even, by
Lemma 5. Finally, by repeated application of Lemma 3 as necessary, P(x)
is a permutation polynomial modulo 2, and so (a; + a3 + a3+ ---) is odd by
Lemma 1. The “if” direction of the proof is then complete.

Conversely, if a1 is odd, (ag+a4+ag+--+) is even, and (az+as+a7z+---) is
even, then P(z) is a permutation polynomial modulo n = 2%, by induction
on w, using Lemma 1 for the base case (w = 1) and Lemma 5 for the
inductive step. ||

Examples. The following are permutation polynomials modulo n = 2%,
w > 1:

e z(a + br) where a is odd and b is even.
o 7+ 2%+ 2.

el +z+ 2>+ -+ 2% where d = 1 (mod 4). (If we work over
GF(p*), where p is odd, instead of modulo 2%, Matthews[9] shows
that this polynomial is a permutation polynomial if and only if d = 1

(mod p(p* —1)).)

After the first draft of this paper was written, we became aware of the
paper by Mullen and Stevens[10], in which it is stated that “It is a direct
consequence of Theorem 123 of [3] that f(x) in (2.2) permutes the elements
of Z/p"Z if and only if it permutes the elements of Z/pZ and f'(a) #Z 0
(mod p) for every integer a.” [Here the reference number has been changed
to match our bibliography, and (2.2) refers to the polynomial representation



PERMUTATION POLYNOMIALS MODULO 2% 5

of f in terms of factorial powers.] An alternate (and slightly simpler) deriva-
tion of our main theorem can be obtained using this characterization; details
are omitted here. Mullen and Stevens also give a (somewhat complicated)
formula for counting the number of polynomials that represent permutations
modulo m = p".

3 Latin Squares and Multipermutations

A function f : S? — S on a finite set S of size n > 0 is said to be a latin
square (of order n) if for any value a € S both functions f(a,-) and f(-,a)
are permutations of S. Latin squares exist for all orders n—e.g. consider
addition modulo n.

A pair of functions fi(-,-), fo(-,-) is said to be orthogonal if the pairs
(f1(z,y), fo(z,y)) are all distinct, as 2 and y vary. Orthogonal latin squares
were first studied by Euler[1] in 1782, who called them graeco-latin squares.
For an overview of orthogonal latin squares see Lidl and Niederreiter[4, sec-
tion 9.4] or Hall[2, Chapter 13]. Orthogonal latin squares exist for all orders
except n =2 or n = 6.

Shannon[15] observed that latin squares are useful in cryptography; more
recently Schnorr and Vaudenay[14, 16] applied pairs of orthogonal latin
squares (which they called multipermutations) to cryptography.

Since the focus of this paper is on polynomials, we now restrict attention
to latin squares and multipermutations defined by bivariate polynomials
modulo n = 2%.

Since the conditions in Theorem 1 depend only on the parity of the coef-
ficients, it is easy to state necessary and sufficient conditions for a bivariate
polynomial to represent a latin square of order n = 2. For convenience,
these conditions are stated in terms of conditions on derived univariate poly-
nomials. The proof is omitted.

Theorem 2 A bivariate polynomial P(z,y) = i aijxiyj represents a
latin square modulo n = 2%, where w > 2, if and only if the four uni-
variate polynomials P(x,0), P(x,1), P(0,y), and P(1,y) are all permutation
polynomials modulo n.

Mullen[11] has derived necessary and sufficient conditions for a bivariate
polynomial to be a latin square modulo a prime p; these conditions turn out
to be rather more complicated than the conditions given here for n = 2%.
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For example, here is a second-degree polynomial representing a latin
square modulo n = 2":

y+1)+y

2zy +x+y T -
= y-2r+1)+x.

Sadly, however, the situation is different for orthogonal latin squares
modulo 2%, as shown by the following theorem.

Theorem 3 There are no two polynomials Py(x,y), Pa(z,y) modulo 2% for
w > 1 that form a pair of orthogonal latin squares.

Proof: Lemma 4 implies that P(z + m) = P(z) + m (mod m) for any
permutation polynomial modulo n = 2m. Thus

Pi(z +m,y+m) = Pi(z+m,y)+m (modn)
= Pi(z,y) +2m (mod n)
= Pi(z,y) (modn)

Therefore (P (z,y), P2(z,y)) = (Pi(z+m,y+m), Pa(x+m,y+m)), and the
pair (Py, P,) fails (rather badly) at being a pair of orthogonal latin squares.
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