
Intercepting Mobile Communications:
The Insecurity of 802.11

Nikita Borisov
UC Berkeley

nikitab@cs.berkeley.edu

Ian Goldberg
�

Zero-Knowledge Systems

ian@zeroknowledge.com

David Wagner
UC Berkeley

daw@cs.berkeley.edu

ABSTRACT
The 802.11 standard for wireless networks includes a Wired Equiv-
alent Privacy (WEP) protocol, used to protect link-layer communi-
cations from eavesdropping and other attacks. We have discovered
several serious security flaws in the protocol, stemming from mis-
application of cryptographic primitives. The flaws lead to a num-
ber of practical attacks that demonstrate that WEP fails to achieve
its security goals. In this paper, we discuss in detail each of the
flaws, the underlying security principle violations, and the ensuing
attacks.

1. INTRODUCTION
In recent years, the proliferation of laptop computers and PDA’s
has caused an increase in the range of places people perform com-
puting. At the same time, network connectivity is becoming an
increasingly integral part of computing environments. As a re-
sult, wireless networks of various kinds have gained much popu-
larity. But with the added convenience of wireless access come
new problems, not the least of which are heightened security con-
cerns. When transmissions are broadcast over radio waves, inter-
ception and masquerading becomes trivial to anyone with a radio,
and so there is a need to employ additional mechanisms to protect
the communications.

The 802.11 standard [15] for wireless LAN communications intro-
duced the Wired Equivalent Privacy (WEP) protocol in an attempt
to address these new problems and bring the security level of wire-
less systems closer to that of wired ones. The primary goal of WEP
is to protect the confidentiality of user data from eavesdropping.
WEP is part of an international standard; it has been integrated
by manufacturers into their 802.11 hardware and is currently in
widespread use.

Unfortunately, WEP falls short of accomplishing its security goals.
Despite employing the well-known and believed-secure RC4 [16]1

�The work was done while Ian Goldberg was a student at UC
Berkeley
1A public description of the alleged RC4 algorithm can be found

cipher, WEP contains several major security flaws. The flaws give
rise to a number of attacks, both passive and active, that allow
eavesdropping on, and tampering with, wireless transmissions. In
this paper, we discuss the flaws that we identified and describe the
attacks that ensue.

The following section is devoted to an overview of WEP and the
threat models that it is trying to address. Sections 3 and 4 identify
particular flaws and the corresponding attacks, and also discuss the
security principles that were violated. Section 5 describes potential
countermeasures. Section 6 suggest some general lessons that can
be derived from the WEP insecurities. Finally, Section 7 offers
some conclusions.

2. THE WEP PROTOCOL
The Wired Equivalent Privacy protocol is used in 802.11 networks
to protect link-level data during wireless transmission. It is de-
scribed in detail in the 802.11 standard [15]; we reproduce a brief
description to enable the following discussion of its properties.

WEP relies on a secret key k shared between the communicating
parties to protect the body of a transmitted frame of data. Encryp-
tion of a frame proceeds as follows:

Checksumming: First, we compute an integrity checksum c(M)
on the message M . We concatenate the two to obtain a plain-
text P = hM; c(M)i, which will be used as input to the sec-
ond stage. Note that c(M), and thus P , does not depend on
the key k.

Encryption: In the second stage, we encrypt the plaintext P de-
rived above using RC4. We choose an initialization vector
(IV) v. The RC4 algorithm generates a keystream—i.e., a
long sequence of pseudorandom bytes—as a function of the
IV v and the key k. This keystream is denoted by R C4(v; k).
Then, we exclusive-or (XOR, denoted by �) the plaintext
with the keystream to obtain the ciphertext:

C = P �RC4(v; k):

Transmission: Finally, we transmit the IV and the ciphertext over
the radio link.

Symbolically, this may be represented as follows:

A! B : v; (P �R C4(v; k)) where P = hM; c(M)i:

The format of the encrypted frame is also shown pictorially in Fig-
ure 1.

in [17].

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOBILE 7/01 Rome, Italy
© 2001 ACM ISBN 1-58113-422-3/01/07�$5.OO

180

Message CRC

Plaintext

Keystream = RC4(v,k)

Ciphertext

XOR

v

Transmitted Data

Figure 1: Encrypted WEP Frame.

We will consistently use the term message (symbolically, M) to
refer to the initial frame of data to be protected, the term plaintext
(P) to refer to the concatenation of message and checksum as it is
presented to the RC4 encryption algorithm, and the term ciphertext
(C) to refer to the encryption of the plaintext as it is transmitted
over the radio link.

To decrypt a frame protected by WEP, the recipient simply re-
verses the encryption process. First, he regenerates the keystream
RC4(v; k) and XORs it against the ciphertext to recover the initial
plaintext:

P
0 = C �RC4(v; k)

= (P �RC4(v; k))�RC4(v; k)

= P:

Next, the recipient verifies the checksum on the decrypted plaintext
P 0 by splitting it into the form hM 0; c0i, re-computing the check-
sum c(M 0), and checking that it matches the received checksum
c0. This ensures that only frames with a valid checksum will be
accepted by the receiver.

2.1 Security Goals
The WEP protocol is intended to enforce three main security goals
[15]:

Confidentiality: The fundamental goal of WEP is to prevent ca-
sual eavesdropping.

Access control: A second goal of the protocol is to protect access
to a wireless network infrastructure. The 802.11 standard
includes an optional feature to discard all packets that are not
properly encrypted using WEP, and manufacturers advertise
the ability of WEP to provide access control.

Data integrity: A related goal is to prevent tampering with trans-
mitted messages; the integrity checksum field is included for
this purpose.

In all three cases, the claimed security of the protocol “relies on
the difficulty of discovering the secret key through a brute-force
attack” [15].

There are actually two classes of WEP implementation: classic
WEP, as documented in the standard, and an extended version de-
veloped by some vendors to provide larger keys. The WEP standard

specifies the use of 40-bit keys, so chosen because of US Govern-
ment restrictions on the export of technology containing cryptogra-
phy, which were in effect at the time the protocol was drafted. This
key length is short enough to make brute-force attacks practical
to individuals and organizations with fairly modest computing re-
sources [3, 8]. However, it is straightforward to extend the protocol
to use larger keys, and several equipment manufacturers offer a so-
called “128-bit” version (which actually uses 104-bit keys, despite
its misleading name). This extension renders brute-force attacks
impossible for even the most resourceful of adversaries given to-
day’s technology. Nonetheless, we will demonstrate that there are
shortcut attacks on the system that do not require a brute-force at-
tack on the key, and thus even the 128-bit versions of WEP are not
secure.

In the remainder of this paper, we will argue that none of the three
security goals are attained. First, we show practical attacks that al-
low eavesdropping. Then, we show that it is possible to subvert the
integrity checksum field and to modify the contents of a transmit-
ted message, violating data integrity. Finally, we demonstrate that
our attacks can be extended to inject completely new traffic into the
network.

A number of these results (particularly the IV reuse weaknesses
described in Section 3) have been anticipated in earlier indepen-
dent work by Simon et. al [19] and by Walker [24]. The serious
flaws in the WEP checksum (see Section 4), however, to the best of
our knowledge have not been reported before. After our work was
completed, Arbaugh et. al have found several extensions that may
make these weaknesses even more dangerous in practice [2, 1].

2.2 Attack Practicality
Before describing the attacks, we would like to discuss the fea-
sibility of mounting them in practice. In addition to the crypto-
graphic considerations discussed in the sections to follow, a com-
mon barrier to attacks on communication subsystems is access to
the transmitted data. Despite being transmitted over open radio
waves, 802.11 traffic requires significant infrastructure to intercept.
An attacker needs equipment capable of monitoring 2.4GHz fre-
quencies and understanding the physical layer of the 802.11 proto-
col; for active attacks, it is also necessary to transmit at the same
frequencies. A significant development cost for equipment manu-
facturers lies in creating technologies that can reliably perform this
task.

As such, there might be temptation to dismiss attacks requiring
link-layer access as impractical; for instance, this was once es-
tablished practice among the cellular industry. However, such a
position is dangerous. First, it does not safeguard against highly
resourceful attackers who have the ability to incur significant time
and equipment costs to gain access to data. This limitation is es-
pecially dangerous when securing a company’s internal wireless
network, since corporate espionage can be a highly profitable busi-
ness.

Second, the necessary hardware to monitor and inject 802.11 traf-
fic is readily available to consumers in the form of wireless Eth-
ernet interfaces. All that is needed is to subvert it to monitor and
transmit encrypted traffic. We were successfully able to carry out
passive attacks using off-the-shelf equipment by modifying driver
settings. Active attacks appear to be more difficult, but not beyond
reach. The PCMCIA Orinoco cards produced by Lucent allow their
firmware to be upgraded; a concerted reverse-engineering effort

181

should be able to produce a modified version that allows inject-
ing arbitrary traffic. The time investment required is non-trivial;
however, it is a one-time effort—the rogue firmware can then be
posted on a web site or distributed amongst underground circles.
Therefore, we believe that it would be prudent to assume that moti-
vated attackers will have full access to the link layer for passive and
even active attacks. Further supporting our position are the WEP
documents themselves. They state: “Eavesdropping is a familiar
problem to users of other types of wireless technology” [15, p.61].
We will not discuss the difficulties of link layer access further, and
focus on cryptographic properties of the attacks.

3. THE RISKS OF KEYSTREAM REUSE
WEP provides data confidentiality using a stream cipher called
RC4. Stream ciphers operate by expanding a secret key (or, as in
the case of WEP, a public IV and a secret key) into an arbitrarily
long “keystream” of pseudorandom bits. Encryption is performed
by XORing the generated keystream with the plaintext. Decryption
consists of generating the identical keystream based on the IV and
secret key and XORing it with the ciphertext.

A well-known pitfall of stream ciphers is that encrypting two mes-
sages under the same IV and key can reveal information about both
messages:

If C1 = P1 �RC4(v; k)
and C2 = P2 �RC4(v; k)
then

C1 �C2 = (P1 �RC4(v; k))� (P2 �RC4(v; k))
= P1 � P2:

In other words, XORing the two ciphertexts (C1 and C2) together
causes the keystream to cancel out, and the result is the XOR of the
two plaintexts (P1 � P2).

Thus, keystream reuse can lead to a number of attacks: as a special
case, if the plaintext of one of the messages is known, the plaintext
of the other is immediately obtainable. More generally, real-world
plaintexts often have enough redundancy that one can recover both
P1 and P2 given only P1 � P2; there are known techniques, for
example, for solving such plaintext XORs by looking for two En-
glish texts that XOR to the given value P1 � P2 [7]. Moreover, if
we have n ciphertexts that all reuse the same keystream, we have
what is known as a problem of depth n. Reading traffic in depth be-
comes easier as n increases, since the pairwise XOR of every pair
of plaintexts can be computed, and many classical techniques are
known for solving such problems (e.g., frequency analysis, drag-
ging cribs, and so on) [20, 22].

Note that there are two conditions required for this class of attacks
to succeed:

� The availability of ciphertexts where some portion of the
keystream is used more than once, and

� Partial knowledge of some of the plaintexts.

To prevent these attacks, WEP uses a per-packet IV to vary the
keystream generation process for each frame of data transmitted.
WEP generates the keystream RC4(v; k) as a function of both the

secret key k (which is the same for all packets) and a public ini-
tialization vector v (which varies for each packet); this way, each
packet receives a different keystream. The IV is included in the un-
encrypted portion of the transmission so that the receiver can know
what IV to use when deriving the keystream for decryption. The
IV is therefore available to attackers as well2, but the secret key
remains unknown and maintains the security of the keystream.

The use of a per-packet IV was intended to prevent keystream reuse
attacks. Nonetheless, WEP does not achieve this goal. We describe
below several realistic keystream reuse attacks on WEP. First, we
discuss how to find instances of keystream reuse; then, we show
how to exploit these instances by taking advantage of partial infor-
mation on how typical plaintexts are expected to be distributed.

Finding instances of keystream reuse.
One potential cause of keystream reuse comes from improper IV
management. Note that, since the shared secret key k generally
changes very rarely, reuse of IV’s almost always causes reuse of
some of the RC4 keystream. Since IV’s are public, duplicate IV’s
can be easily detected by the attacker. Therefore, any reuse of old
IV values exposes the system to keystream reuse attacks. We call
such a reuse of an IV value a “collision”.

The WEP standard recommends (but does not require) that the IV
be changed after every packet. However, it does not say anything
else about how to select IV’s, and, indeed, some implementations
do it poorly. The particular PCMCIA cards that we examined reset
the IV to 0 each time they were re-initialized, and then incremented
the IV by one for each packet transmitted. These cards re-initialize
themselves each time they are inserted into the laptop, which can
be expected to happen fairly frequently. Consequently, keystreams
corresponding to low-valued IV’s were likely to be reused many
times during the lifetime of the key.

Even worse, the WEP standard has architectural flaws that expose
all WEP implementations — no matter how cautious — to serious
risks of keystream reuse. The IV field used by WEP is only 24
bits wide, nearly guaranteeing that the same IV will be reused for
multiple messages. A back-of-the-envelope calculation shows that
a busy access point sending 1500 byte packets and achieving an
average 5Mbps bandwidth (the full transmission rate is 11Mbps)
will exhaust the available space in less than half a day. Even for
less busy installations, a patient attacker can readily find duplicates.
Because the IV length is fixed at 24 bits in the standard, this vul-
nerability is fundamental: no compliant implementation can avoid
it.

Implementation details can make keystream reuse occur even more
frequently. An implementation that uses a random 24-bit IV for
each packet will be expected to incur collisions after transmitting
just 5000 packets3, which is only a few minutes of transmission.
Worse yet, the 802.11 standard does not even require that the IV be
changed with every packet, so an implementation could reuse the
same IV for all packets without risking non-compliance!

Exploiting keystream reuse to read encrypted traffic.
2Interestingly enough, some marketing literature disregards this
fact: one manufacturer advertises 64-bit cipher strength on their
products, even though only a 40-bit secret key is used along with a
24-bit public IV.
3This is a consequence of the so-called “birthday paradox”.

182

Once two encrypted packets that use the same IV are discovered,
various methods of attack can be applied to recover the plaintext.
If the plaintext of one of the messages is known, it is easy to derive
the contents of the other one directly.

There are many ways to obtain plausible candidates for the plain-
text. Many fields of IP traffic are predictable, since protocols use
well-defined structures in messages, and the contents of messages
are frequently predictable. For example, login sequences are quite
uniform across many users, and so the contents — for example, the
Password: prompt or the welcome message — may be known to
the attacker and thus usable in a keystream reuse attack. As another
example, it may be possible to recognize a specific shared library
being transferred from a networked file system by analyzing traffic
patterns and lengths; this would provide a large quantity of known
plaintext suitable for use in a keystream reuse attack.

There are also other, sneakier, ways to obtain known plaintext. It is
possible to cause known plaintext to be transmitted by, for example,
sending IP traffic directly to a mobile host from an Internet host
under the attacker’s control. The attacker may also send e-mail to
users and wait for them to check it over a wireless link. Sending
spam e-mail might be a good method of doing this without raising
too many alarms.

Sometimes, obtaining known plaintext in this way may be even
simpler. One access point we tested would transmit broadcast pack-
ets in both encrypted and unencrypted form, when the option to
control network access was disabled. In this scenario, an attacker
with a conforming 802.11 interface can transmit broadcasts to the
access point (they will be accepted, since access control is turned
off) and observe their encrypted form as they are re-transmitted.
Indeed, this is unavoidable on a subnet that contains a mixture of
WEP clients with and without support for encryption: since broad-
cast packets must be forwarded to all clients, there is no way to
avoid this technique for gathering known plaintext.

Finally, we remind the reader that even when known plaintext is not
available, some analysis is still possible if an educated guess about
the structure of the plaintexts can be made, as noted earlier.

3.1 Decryption Dictionaries
Once the plaintext for an intercepted message is obtained, either
through analysis of colliding IV’s, or through other means, the at-
tacker also learns the value of the keystream used to encrypt the
message. It is possible to use this keystream to decrypt any other
message that uses the same IV. Over time, the attacker can build
a table of the keystreams corresponding to each IV. The full table
has modest space requirements—perhaps 1500 bytes for each of
the 224 possible IV’s, or roughly 24 GB—so it is conceivable that
a dedicated attacker can, after some amount of effort, accumulate
enough data to build a full decryption dictionary, especially when
one considers the low frequency with which keys are changed (see
Section 3.2). The advantage to the attacker is that, once such a ta-
ble is available, it becomes possible to immediately decrypt each
subsequent ciphertext with very little work.

Of course, the amount of work necessary to build such a dictionary
restricts this attack to only the most persistent attackers who are
willing to invest time and resources into defeating WEP security.
It can be argued that WEP is not designed to protect from such
attackers, since a 40-bit key can be discovered through brute-force
in a relatively short amount of time with moderate resources [3,

8]. However, manufacturers have already begun to extend WEP to
support larger keys, and the dictionary attack is effective regardless
of key size. (The size of the dictionary depends not on the size of
the key, but only on the size of the IV, which is fixed by the standard
at 24 bits.)

Further, the dictionary attack can be made more practical by ex-
ploiting the behavior of PCMCIA cards that reset the IV to 0 each
time they are reinitialized. Since typical use of PCMCIA cards in-
cludes reinitialization at least once per day, building a dictionary for
only the first few thousand IV’s will enable an attacker to decrypt
most of the traffic directed towards the access point. In an installa-
tion with many 802.11 clients, collisions in the first few thousand
IV’s will be plentiful.

3.2 Key Management
The 802.11 standard does not specify how distribution of keys is to
be accomplished. It relies on an external mechanism to populate
a globally-shared array of 4 keys. Each message contains a key
identifier field specifying the index in the array of the key being
used. The standard also allows for an array that associates a unique
key with each mobile station; however, this option is not widely
supported. In practice, most installations use a single key for an
entire network.

This practice seriously impacts the security of the system, since a
secret that is shared among many users cannot stay very well hid-
den. Some network administrators try to ameliorate this problem
by not revealing the secret key to end users, but rather configuring
their machines with the key themselves. This, however, yields only
a marginal improvement, since the keys are still stored on the users’
computers. As anecdotal evidence, we know of a group of gradu-
ate students who reverse-engineered the network key merely for the
convenience of being able to use unsupported operating systems.

The reuse of a single key by many users also helps make the attacks
in this section more practical, since it increases chances of IV col-
lision. The chance of random collisions increases proportionally
to the number of users; even worse, PCMCIA cards that reset the
IV to 0 each time they are reinitialized will all reuse keystreams
corresponding to a small range of low-numbered IV’s. Also, the
fact that many users share the same key means that it is difficult to
replace compromised key material. Since changing a key requires
every single user to reconfigure their wireless network drivers, such
updates will be infrequent. In practice, we expect that it may be
months, or even longer, between key changes, allowing an attacker
more time to analyze the traffic and look for instances of keystream
reuse.

3.3 Summary
The attacks in this section demonstrate that the use of stream ci-
phers is dangerous, because the reuse of keystream can have devas-
tating consequences. Any protocol that uses a stream cipher must
take special care to ensure that keystream never gets reused.

This property can be difficult to enforce. The WEP protocol con-
tains vulnerabilities despite the designers’ apparent knowledge of
the dangers of keystream reuse attacks. Nor is it the first protocol
to fall prey to stream-cipher-based attacks; see, for example, the
analysis of an earlier version of the Microsoft PPTP protocol [18].
In light of this, a protocol designer should give careful considera-
tion to the complications that the use of stream ciphers adds to a
protocol when choosing an encryption algorithm.

183

4. MESSAGE AUTHENTICATION
The WEP protocol uses an integrity checksum field to ensure that
packets do not get modified in transit. The checksum is imple-
mented as a CRC-32 checksum, which is part of the encrypted pay-
load of the packet.

We will argue below that a CRC checksum is insufficient to ensure
that an attacker cannot tamper with a message: it is not a crypto-
graphically secure authentication code. CRC’s are designed to de-
tect random errors in the message; however, they are not resilient
against malicious attacks. As we will demonstrate, this vulnerabil-
ity of CRC is exacerbated by the fact that the message payload is
encrypted using a stream cipher.

4.1 Message Modification
First, we show that messages may be modified in transit without
detection, in violation of the security goals. We use the following
property of the WEP checksum:

PROPERTY 1. The WEP checksum is a linear function of the
message.

By this, we mean that checksumming distributes over the XOR op-
eration, i.e., c(x � y) = c(x) � c(y) for all choices of x and y.
This is a general property of all CRC checksums.

One consequence of the above property is that it becomes possible
to make controlled modifications to a ciphertext without disrupting
the checksum. Let’s fix our attention on a ciphertext C which we
have intercepted before it could reach its destination:

A! (B) : hv; Ci:

We assume that C corresponds to some unknown message M , so
that

C = RC4(v; k)� hM; c(M)i: (1)

We claim that it is possible to find a new ciphertext C0 that decrypts
toM 0, whereM 0 =M�� and �may be chosen arbitrarily by the
attacker. Then, we will be able to replace the original transmission
with our new ciphertext by spoofing the source,

(A)! B : hv; C0i;

and upon decryption, the recipient B will obtain the modified mes-
sage M 0 with the correct checksum.

All that remains is to describe how to obtain C0 from C so that
C0 decrypts to M 0 instead of M . The key observation is to note
that stream ciphers, such as RC4, are also linear, so we can reorder
many terms. We suggest the following trick: XOR the quantity
h�; c(�)i against both sides of Equation 1 above to get a new ci-
phertext C0:

C
0 = C � h�; c(�)i

= RC4(v; k)� hM; c(M)i � h�; c(�)i

= RC4(v; k)� hM ��; c(M)� c(�)i

= RC4(v; k)� hM 0

; c(M ��)i

= RC4(v; k)� hM 0

; c(M 0)i:

In this derivation, we used the fact that the WEP checksum is linear,
so that c(M) � c(�) = c(M ��). As a result, we have shown

how to modify C to obtain a new ciphertext C0 that will decrypt to
P ��.

This implies that we can make arbitrary modifications to an en-
crypted message without fear of detection. Thus, the WEP check-
sum fails to protect data integrity, one of the three main goals of the
WEP protocol (see Section 2.1).

Notice that this attack can be applied without full knowledge of
M : the attacker only needs to know the original ciphertext C and
the desired plaintext difference �, in order to calculate C0 = C �
h�; c(�)i. For example, to flip the first bit of a message, the at-
tacker can set � = 1000 � � � 0. This allows an attacker to modify a
packet with only partial knowledge of its contents.

4.2 Message Injection
Next, we show that WEP does not provide secure access control.
We use the following property of the WEP checksum:

PROPERTY 2. The WEP checksum is an unkeyed function of the
message.

As a consequence, the checksum field can also be computed by the
adversary who knows the message.

This property of the WEP integrity checksum allows the circum-
vention of access control measures. If an attacker can get ahold
of an entire plaintext corresponding to some transmitted frame, he
will then able to inject arbitrary traffic into the network. As we saw
in Section 3, knowledge of both the plaintext and ciphertext reveals
the keystream. This keystream can subsequently be reused to create
a new packet, using the same IV. That is, if the attacker ever learns
the complete plaintext P of any given ciphertext packet C, he can
recover keystream used to encrypt the packet:

P �C = P � (P �RC4(v; k)) = RC4(v; k):

He can now construct an encryption of a message M0:

(A)! B : hv; C0i;

where

C
0 = hM 0

; c(M 0)i �RC4(v; k):

Note that the rogue message uses the same IV value as the original
one. However, we can appeal to the following behaviour of WEP
access points:

PROPERTY 3. It is possible to reuse old IV values without trig-
gering any alarms at the receiver.

Therefore, it is not necessary to block the reception of the original
message. Once we know an IV v along with its corresponding
keystream sequence RC4(v; k), this property allows us to reuse
the keystream indefinitely and circumvent the WEP access control
mechanism.

A natural defense against this attack would be to disallow the reuse
of IV’s in multiple packets, and require that all receivers enforce

184

this prohibition.4 However, the 802.11 standard does not do this.
While the 802.11 standard strongly recommends against IV reuse,
it does not require it to change with every packet. Hence, every
receiver must accept repeated IV’s or risk non-interoperability with
compliant devices. We consider this a flaw in the 802.11 standard.

In networking one often hears the rule of thumb “be conservative in
what you send, and liberal in what you accept.” However, when se-
curity is a goal, this guideline can be very dangerous: being liberal
in what one accepts means that each low-security option offered
by the standard must be supported by everyone, and is thus avail-
able to the attacker. This situation is analogous to the ciphersuite
rollback attacks on SSL [23], which also made use of a standard
that included both high-security and low-security options. Conse-
quently, to avoid security at the least-common denominator level,
we suggest that the 802.11 standard should be more specific about
forbidding IV reuse and other dangerous behavior.

Note that in this attack we do not rely on Property 1 of the WEP
checksum (linearity). In fact, substituting any unkeyed function in
place of the CRC will have no effect on the viability of the attack.
Only a keyed message authentication code (MAC) such as SHA1-
HMAC [13] will offer sufficient strength to prevent this attack.

Simon et. al had earlier warned in independent work that, given
known plaintext for a single packet, one can use Property 2 to forge
packets until the IV changes [19], and they too recommended re-
placing WEP’s checksum with a MAC. However, they did not ap-
pear to recognize the possibility to replay old IV values indefinitely
(Property 3), which heightens the impact of this attack.

4.3 Authentication Spoofing
A special case of the message injection attack can be used to de-
feat the shared-key authentication mechanism used by WEP. The
mechanism is used by access points to authenticate mobile stations
before allowing them to form an association. After a mobile sta-
tion requests shared-key authentication, the access point sends it a
challenge, a 128-byte random string, in cleartext. The mobile sta-
tion then needs to respond with the same challenge encrypted using
WEP. The authentication succeeds if the decryption of the response
calculated at the access point matches the challenge. The ability to
generate a an encrypted version of the challenge is considered proof
of possession of a key.

However, as described in the previous section, it is possible to inject
properly encrypted WEP messages without the key. All that is nec-
essary is knowledge of a plaintext/ciphertext pair of the requisite
length. It is easy to obtain such a pair by monitoring a legitimate
authentication sequence: the attacker learns both the plaintext chal-
lenge sent by the access point and the encrypted version sent by the
mobile station. From this, it is easy to derive the keystream used to
encrypt the response. Since all authentication responses are of the
same length, the recovered keystream will be sufficient to create a
proper response for a new challenge (received in plaintext).

Therefore, after intercepting a single authentication sequence using
a particular key, the attacker can authenticate himself with that key
indefinitely. This is a particularly serious problem when the same
shared key is used by all mobile stations, which is frequently the
case in practice. This attack on the authentication protocol was
4There are sophisticated physical layer attacks that may be able to
monitor a packet being sent and jam the receiver at the same time;
at best such attacks would allow to reuse an IV once.

also discovered independently by Arbaugh et al. [2] based on a
preliminary version of our results.

4.4 Message Decryption
What may be surprising is that the ability to modify encrypted
packets without detection can also be leveraged to decrypt mes-
sages sent over the air. Consider WEP from the point of view of
the adversary. Since WEP uses a stream cipher presumed to be se-
cure (RC4), attacking the cryptography directly is probably hope-
less. But if we cannot decrypt the traffic ourselves, there is still
someone who can: the access point. In any cryptographic protocol,
the legitimate decryptor must always possess the secret key in or-
der to decrypt, by design. The idea, then, is to trick the access point
into decrypting some ciphertext for us. As it turns out, the ability to
modify transmitted packets provides two easy ways to exploit the
access point in this way.

4.4.1 IP redirection
The first way is called an “IP redirection” attack, and can be used
when the WEP access point acts as a IP router with Internet connec-
tivity; note that this is a fairly common scenario in practice, because
WEP is typically used to provide network access for mobile laptop
users and others.

In this case, the idea is to sniff an encrypted packet off the air,
and use the technique of Section 4.1 to modify it so that it has
a new destination address: one the attacker controls. The access
point will then decrypt the packet, and send the packet off to its
(new) destination, where the attacker can read the packet, now in
the clear. Note that our modified packet will be traveling from the
wireless network to the Internet, and so most firewalls will allow it
to pass unmolested.

The easiest way to modify the destination IP address is to figure
out what the original destination IP address is, and then apply the
technique of Section 4.1 to change it to the desired one. Figuring
out the original destination IP address is usually not difficult; all of
the incoming traffic, for example, will be destined for an IP address
on the wireless subnet, which should be easy to determine. Once
the incoming traffic is decrypted, the IP addresses of the other ends
of the connections will be revealed, and outgoing traffic can then
be decrypted in the same manner.

In order for this attack to work, however, we need to not only
modify the destination IP address, but also to ensure that the IP
checksum in the modified packet is still correct—otherwise, the
decrypted packet will be dropped by the access point. Since the
modified packet differs from the original packet only in its destina-
tion IP address, and since both the old and new values for the desti-
nation IP address are known, we can calculate the required change
to the IP checksum caused by this change in IP address. Suppose
the high and low 16-bit words of the original destination IP address
were DH and DL, and we wish to change them to D0

H and D0

L.
If the old IP checksum was � (which we do not necessarily know,
since it is encrypted), the new one should be

�
0 = �+D

0

H +D
0

L �DH �DL

(where the additions and subtractions here and below are one’s-
complement) [5, 14].

The trick is that we only know how to modify a packet by applying
an XOR to it, and we don’t necessarily know what we need to XOR

185

to � to get �0, even though we do know what we would need to add
(namely, D0

H +D0

L �DH �DL).

We now discuss three ways to try to correct the IP checksum of the
modified packet:

The IP checksum for the original packet is known: If it happens
to be the case that we somehow know �, then we simply
calculate �0 as above, and modify the packet by XORing in
� � �0, which will change the IP checksum to the correct
value of �0.

The original IP checksum is not known: If � is not known, the
task is harder. Given � = �0 � �, we need to calculate
� = �0 � �.

In fact, there is not enough information to calculate � given
only �. For example, if � = 0xCAFE, it could be that:

� �0 = 0xCAFE; � = 0x0000, so � = 0xCAFE

� �0 = 0xD00D; � = 0x050F, so � = 0xD502

� �0 = 0x1EE7; � = 0x53E8, so � = 0x4D0F

� : : :

However, not all 216 values for � are possible, and some
are much more likely than others. In the above example,
there are four values for � (0x3501, 0x4B01, 0x4D01,
0x5501) which occur more than 3% of the time each. Fur-
ther, we are free to make multiple attempts—any incorrect
guesses will be silently ignored by the access point. De-
pending on the value of �, a small number of attempts can
succeed with high probability. Finally, a successful decryp-
tion of one packet can be used to bootstrap the decryption of
others; for example, in a stream of communication between
two hosts, the only field in the IP header that changes is the
identification field. Thus, knowledge of the full IP header
of one packet can be used to predict the full header of the
surrounding packets, or narrow it down to a small number of
possibilities.

Arrange that � = �0: Another possibility is to compensate for the
change in the destination field by a change in another field,
such that the checksum of the packet remains the same. Any
header field that is known to us and does not affect packet
delivery is suitable, for example, the source IP address. As-
suming the source IP address of the packet to be decrypted
is also known (we can obtain it, for example, by performing
the attack in the previous item on one packet to decrypt it
completely, and then using this simpler attack on subsequent
packets once we read the source address from the first one),
we simply subtract � from the low 16-bit word of the source
IP address, and the resulting packet will have the same IP
checksum as the original. However, it is possible that modi-
fying the source address in this way will cause a packet to be
dropped based on egress filtering rules; other header fields
could potentially be used instead.

Highly resourceful attackers with monitoring access to an
entire class B network can even perform the necessary ad-
justments in the destination field alone, by choosing D0

L =
DH + DL � D0

H . For example, if the original destina-
tion address in a packet is 10.20.30.40 and the attacker holds
control over the 192.168.0.0/16 subnet, selecting the address

192.168.103.147 results in identical IP header checksum val-
ues, and the packet will be delivered to an address he con-
trols.

4.4.2 Reaction attacks
There is another way to manipulate the access point and break
WEP-encrypted traffic that is applicable whenever WEP is used to
protect TCP/IP traffic. This attack does not require connectivity to
the Internet, so it may apply even when IP redirection attacks are
impossible. However, it is effective only against TCP traffic; other
IP protocols cannot be decrypted using this attack.

In our attack, we monitor the reaction of a recipient of a TCP packet
and use what we observe to infer information about the unknown
plaintext. Our attack relies on the fact that a TCP packet is accepted
only if the TCP checksum is correct, and when it is accepted, an ac-
knowledgement packet is sent in response. Note that acknowledge-
ment packets are easily identified by their size, without requiring
decryption. Thus, the reaction of the recipient will disclose whether
the TCP checksum was valid when the packet was decrypted.

The attack, then, proceeds as follows. We intercept a ciphertext
hv; Ci with unknown decryption P :

A! (B) : hv; Ci:

We flip a few bits inC and adjust the encrypted CRC accordingly to
obtain a new ciphertext C0 with valid WEP checksum. We transmit
C0 in a forged packet to the access point:

(A)! B : hv; C0i:

Finally, we watch to see whether the eventual recipient sends back
a TCP ACK (acknowledgement) packet; this will allow us to tell
whether the modified text passed the TCP checksum and was ac-
cepted by the recipient.

Note that we may choose which bits of C to flip in any way we like,
using techniques from Section 4.1. The key technical observation
is as follows: By a clever choice of bit positions to flip, we can
ensure that the TCP checksum remains undisturbed exactly when
the one-bit condition Pi�Pi+16 = 1 on the plaintext holds. Thus,
the presence or absence of an ACK packet will reveal one bit of
information on the unknown plaintext P . By repeating the attack
for many choices of i, we can learn almost all of the plaintext P ,
and then deducing the few remaining unknown bits will be easy
using classical techniques.

We explain later precisely how to choose which bits to flip. For
now, the details are not terribly important. Instead, the main point
is that we have exploited the receiver’s willingness to decrypt arbi-
trary ciphertexts and feed them to another component of the system
that leaks a tiny bit of information about its inputs. The recipient’s
reaction to our forged packet—either acknowledging or ignoring
it—can be viewed as a side channel, similar to those exploited in
timing and power consumption attacks [11, 12], that allows us to
learn information about the unknown plaintext. Thus, we have used
the recipient as an oracle to unknowingly decrypt the intercepted ci-
phertext for us. This is known as a reaction attack, as it works by
monitoring the recipient’s reaction to our forgeries.

Reaction attacks were initially discovered by Bellovin and Wagner
in the context of the IP Security protocol, where their existence
was blamed on the use of encryption without also using a MAC
for message authentication [4]. As a result, Bellovin proposed a

186

design principle for IP Security: all encryption modes of operation
should also use a MAC. It seems that the same rule of thumb applies
to the WEP protocol as well, for the presence of a secure MAC
(rather than the insecure CRC checksum) would have prevented
these attacks.

The technical details.
We have deferred until now the technical details on how to choose
new forged packets C0 to trick the recipient into revealing informa-
tion about the unknown plaintext P .

Recall that the TCP checksum is the one’s-complement addition of
the 16-bit words of the message M . Moreover, one’s-complement
addition behaves roughly equivalently to addition modulo 216 � 1.
Hence, roughly speaking, the TCP checksum on a plaintext P is
valid only when P � 0 mod 216 � 1.

We let C 0 = C ��, so that � specifies which bit positions to flip,
and we choose � as follows: pick i arbitrarily, set bit positions
i and i + 16 of � to one, and let � be zero elsewhere. It is a
convenient property of addition modulo 216 � 1 that P � � �
P mod 216 � 1 holds exactly when Pi � Pi+16 = 1. Since we
assume that the TCP checksum is valid for the original packet (i.e.,
P � 0 mod 216 � 1), this means that the TCP checksum will be
valid for the new packet (i.e., P �� � 0 mod 216 � 1) just when
Pi � Pi+16 = 1. This gives us our one bit of information on the
plaintext, as claimed.

4.5 Summary
In this section, we have shown the importance of using a cryp-
tographically secure message authentication code, such as SHA1-
HMAC [13], to protect integrity of transmissions. The use of CRC
is wholly inappropriate for this purpose, and in fact any unkeyed
function falls short from defending against all of the attacks in this
section. A secure MAC is particularly important in view of compo-
sition of protocols, since the lack of message integrity in one layer
of the system can lead to breach of secrecy in the larger system.

5. COUNTERMEASURES
There are configuration options available to a network administra-
tor that can reduce the viability of the attacks we described. The
best alternative is to place the wireless network outside of the or-
ganization firewall. Instead of trying to secure the wireless infras-
tructure, it is simpler to consider it to be as much of a threat as
other hosts on the Internet. The typical clients of a wireless net-
work are portable computers that are mobile by their nature, and
will frequently employ a Virtual Private Network (VPN) solution
to access hosts inside the firewall when accessing via dial-up or
from a remote site. Requiring that the same VPN be used to ac-
cess the internal network when connected over 802.11 obviates
the need for link-layer security, and reuses a well-studied mech-
anism. To provide access control, the network can be configured
such that no routes to the outside Internet exist from the wireless
network. This prevents people within radio range of the wireless
infrastructure from usurping potentially costly Internet connection
bandwidth, requiring VPN use for any outside access. (However, it
may be desirable to allow visitors to access the Internet wirelessly
without additional administrative setup.)

A useful additional measure is to improve the key management of
a wireless installation. If possible, every host should have its own
encryption key, and keys should be changed with high frequency.

The design of a secure and easy-to-use mechanism for automated
key distribution to all users is a good subject for further research.
Note, though, that good key management alone cannot solve all of
the problems described in this paper; in particular, the attacks from
section 4 remain applicable.

6. LESSONS
The attacks in this paper serve to demonstrate a fact that has been
well-known in the cryptography community: design of secure pro-
tocols is difficult, and fraught with many complications. It requires
special expertise beyond that acquired in engineering network pro-
tocols. A good understanding of cryptographic primitives and their
properties is critical. From a purely engineering perspective, the
use of CRC-32 and RC4 can be justified by their speed and ease of
implementation. However, many of the attacks we have described
rely on the properties of stream ciphers and CRC’s, and would be
rendered ineffective, or at least more difficult, by the use of other
algorithms. There are also more subtle interactions of engineering
decisions that are not directly related to the use of cryptography.
For example, being stateless and being liberal in what a protocol
accepts are well-established principles in network engineering. But
from a security standpoint, both of these principles are dangerous,
since they give an attacker more freedom to operate, and indeed,
the traffic injection attacks capitalize on this freedom. Security is a
property of an entire system, and every decision must be examined
with security in mind.

The setting of WEP makes a secure design particularly difficult. A
link-layer protocol must take into account interactions with many
different entities at the same time. The IP redirection attack relies
on collaboration between an agent injecting messages at the link-
layer and a host somewhere the Internet. The complex functionality
of a 802.11 access point makes it susceptible to such attacks from
all sides. Faced with such difficulties, even the most experienced
of security professionals can make serious errors. Recognizing this
fact, the accepted practice is to rely on the expertise of others to
improve the security of protocols. Two important ways to do this is
to reuse past design and to offer new designs for public reviews.

Past designs should be reused whenever possible. A common tenet
of protocol design is “don’t do it.” WEP could have benefitted
from the experience gained in the design of the IP Security Pro-
tocol (IPSEC) [10]. Although the goals of IPSEC are somewhat
different, it also aims to provide link-layer security, and as such
needs to deal with many of the same issues as WEP. Even if the
protocol could not be reused as-is, a review of its design and past
analysis would have been very instructive. Some of the previously
published problems in IPSEC [4] share many similarities with the
attacks presented in this paper.

Public review is also of great importance. If WEP had been ex-
amined by the cryptographic community before it was enacted into
an international standard, many of the flaws would have been al-
most surely eliminated. (For example, the dangers of using a CRC
to ensure message integrity are well-known [9, 21, 6].) While we
applaud the fact that the standard is open, there are still barriers to
public review. A security researcher is faced with a financial burden
to even attempt to examine the standard—the cost of the document
is in the hundreds of dollars. This is the opposite of what should
be—a working group developing a new security protocol should
proactively invite the security community to analyze it.

187

7. CONCLUSIONS
In this paper, we have demonstrated major security flaws in the
WEP protocol and described several practical attacks that result.
Consequently, we recommend that WEP should not be counted on
to provide strong link-level security, and that additional precautions
be taken to protect network traffic. We hope that our discoveries
will motivate a redesign of the WEP protocol to address the vul-
nerabilities that we found. Our further hope is that this paper will
expose important security principles and design practices to a wide
audience, and that the lessons we identify will benefit future de-
signers of both WEP and other mobile communications security
protocols.

8. ACKNOWLEDGEMENTS
We would like to thank Mike Chen and Anthony Joseph for helping
us get access to the 802.11 standard; Matt Welsh and Alec Woo for
providing some of the testing equipment; Bernard Aboba and Jesse
Walker for keeping us apprised of 802.11 standards body activity;
and Adam Shostack and the anonymous referees for their helpful
comments on earlier versions of this paper.

9. REFERENCES
[1] W. A. Arbaugh. An inductive chosen plaintext attack against

WEP/WEP2. IEEE Document 802.11-01/230, May 2001.

[2] W. A. Arbaugh, N. Shankar, and Y. J. Wan. Your 802.11
wireless network has no clothes.
http://www.cs.umd.edu/˜waa/wireless.pdf,
Mar. 2001.

[3] A. Beck. Netscape’s export SSL broken by 120 workstations
and one student. HPCwire, Aug. 22 1995.

[4] S. M. Bellovin. Problem areas for the IP security protocols.
In 6th USENIX Security Symposium, San Jose, California,
July 1996. USENIX.

[5] B. Braden, D. Borman, and C. Partridge. Computing the
internet checksum. Internet Request for Comments RFC
1071, Internet Engineering Task Force, Sept. 1988.

[6] Core SDI. crc32 compensation attack against ssh-1.5.
http://www.core-
sdi.com/soft/ssh/attack.txt, July
1998.

[7] E. Dawson and L. Nielsen. Automated cryptanalysis of XOR
plaintext strings. Cryptologia, (2):165–181, Apr. 1996.

[8] D. Doligez. SSL challenge virtual press conference.
http://pauillac.inria.fr/˜doligez
/ssl/press-conf.html, 1995.

[9] R. Jueneman, S. Matyas, and C. Meyer. Message
authentication. IEEE Communications Magazine,
23(9):29–40, Sept. 1985.

[10] S. Kent and R. Atkinson. Security architecture for the
Internet Protocol. Internet Request for Comment RFC 2401,
Internet Engineering Task Force, Nov. 1998.

[11] P. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and
other cryptosystems using timing attacks. In D. Coppersmith,
editor, Advances in cryptology, CRYPTO ’95: 15th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 27–31, 1995: proceedings, pages
171–183. Springer-Verlag, 1995.

[12] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
Proc. 19th International Advances in Cryptology Conference
– CRYPTO ’99, pages 388–397, 1999.

[13] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication. RFC 2104, Feb.
1997.

[14] T. Mallory and A. Kullberg. Incremental updating of the
internet checksum. Internet Request for Comments RFC
1141, Internet Engineering Task Force, Jan. 1990.

[15] L. M. S. C. of the IEEE Computer Society. Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications. IEEE Standard 802.11, 1999 Edition, 1999.

[16] R. L. Rivest. The RC4 Encryption Algorithm. RSA Data
Security, Inc., Mar. 12, 1992. (Proprietary).

[17] B. Schneier. Applied Cryptography: Protocols, Algorithms
and Source Code in C. John Wiley and Sons, Inc., New York,
NY, USA, second edition, 1996.

[18] B. Schneier and Mudge. Cryptanalysis of Microsoft’s
Point-to-Point Tunneling Protocol (PPTP). In 5th ACM
Conference on Computer and Communications Security,
pages 132–140, San Francisco, California, Nov. 1998. ACM
Press.

[19] D. Simon, B. Aboba, and T. Moore. IEEE 802.11 security
and 802.1X. IEEE Document 802.11-00/034r1, Mar. 2000.

[20] S. Singh. The code book: the evolution of secrecy from Mary,
Queen of Scots, to quantum cryptography. Doubleday, New
York, NY, USA, 1999.

[21] S. G. Stubblebine and V. D. Gligor. On message integrity in
cryptographic protocols. In Proc. IEEE Symposium on
Research in Security and Privacy, pages 85–105, 1992.

[22] W. Tutte. FISH and I, 1998. A transcript of Tutte’s June 19,
1998 lecture at the University of Waterloo.

[23] D. Wagner and B. Schneier. Analysis of the SSL 3.0
protocol. In Proceedings of the 2nd USENIX Workshop on
Electronic Commerce (EC-96), pages 29–40, Berkeley,
Nov. 18–21 1996. USENIX Association.

[24] J. R. Walker. Unsafe at any key size; an analysis of the WEP
encapsulation. IEEE Document 802.11-00/362, Oct. 2000.

188

