
Foundations of Network and Foundations of Network and 
Computer SecurityComputer Security

JJohn Black

Lecture #26
Dec 2nd 2004

CSCI 6268/TLEN 5831, Fall 2004



Announcements
• Proj #3 – Due Today

• FCQs – At end of class today

• Quiz #4: Discuss Solutions

• Next Week: firewalls and a final review

• Following week: Final Exam (Mon, Dec 13th)



Intrusion Detection (IDS)

• An intruder is either external or internal
– External breaks into your system

• Gains access to files or completely takes over the 
machine

– Internal is already on your system, but wants 
to escalate privileges or gain access to 
unauthorized areas

• Normal user becomes root, eg

• An IDS attempts to detect these events 
and alert the proper authority



Anomalies and Misuse

• Anomaly Detection
– Static form is defined

• Code and data must conform to some precise set of rules; 
easy to specify this

– Dynamic behavior is defined
• Behavior of users is evaluated as acceptable or anomalous; 

much harder to define

• Misuse Detection
– Monitors for specific types of penetration attempts

• Virus scanners, eg
• Other “pattern checkers” (more later)



Anomaly Detection

• Static part is easy
– Certain code or data on the disk should never 

change; make sure it doesn’t
• Dynamic part is hard

– Typical approach: scan audit logs
• Audit logs are produced by the OS
• IDS looks at log entries and uses various 

technologies to evaluate whether there is 
something bad going on

– Statistical tests, neural nets, machine learning, genetic 
algorithms, AI, etc.



TripWire – Static Analysis

• Unix Based
– File structure and inodes are recorded along 

with meta-data
– meta-data specify what can change in the 

inode of a given file
– Uses hashing and signatures to check 

whether a file has changed or not
• Self-NonSelf is not as famous but its 

inventor may be coming to CU



Dynamic Anomaly Detection

• Typically need to specify “normal” 
behavior
– Get a “base profile”

• For each user, typical log-in time/location, favorite 
editor, average bandwidth consumed, length of 
interactive session, and common sequences of 
actions

• Older approaches measure statistical deviation 
from this profile and flag if deviations are too great

• Some systems gradually update the profile over 
time as user behavior changes



NIDES

• Next-generation Intrusion Detection Expert 
System (SRI)
– Statistical system with three measure classes:

• Audit record distribution – tracks the types of audit 
records generated over some interval

• Categorical – transaction-specific information (user 
name, file names, machine names accessed by 
user)

• Continuous – a count of any event such as 
elapsed user CPU time, number of open files, 
number of pages read from disk, etc



NIDES – Continuous 

• Continuous measures are sorted into 
“bins”
– A bin might be (eg) total memory size of a 

user’s processes; profile is the distribution of 
these measures over time

– Each bin is compared with its corresponding 
base distribution



NIDES – Statistics 
• NIDES stores basic statistics

– frequencies, means, variances, and covariances
• Storing the audit data in detail is too space-consumptive

– Given a profile with n measures, NIDES characterizes 
any point in the n-space of measures as anomalous if 
sufficiently far from an expected value

• Eg, two standard deviations

• All statistical measures are exponentially 
decayed
– Older measures have less weight than newer 

measures



UNM – Pattern Matching

• UNM – University of New Mexico
– Forrest is currently there

• For privileged processes, profile which system 
calls are made
– Eg, sendmail might call:

• open, read, mmap, mmap, open, read, mmap
• Parameters are ignored
• Profile varies depending on what sendmail is doing

– Forwarding is different from bouncing, is different from sending
to multiple recipients

– All these are profiled



UNM – Typical database size

• sendmail 1318 Kbytes
• lpr 198 Kbytes
• ftpd 1017 Kbytes

• Of course not ALL legal usages are 
captured here

• Each program above was known to have 
vulnerabilities (3 for sendmail, 1 each for 
lpr and ftpd)



UNM – Results 
• All intrusions using these vulnerabilities were detected

– Suppose an attacker exploits a sendmail buffer overflow and 
adds a backdoor to the password file, spawns a new shell that 
listens on port 80

– Sequence of calls might be: open, write, close, socket, bind, 
listen, accept, read, fork

– Highly suspicious sequence would be caught by UNM

• Does this mean it works?

• pH is a similar system by the UNM people we’ll see in a 
minute



Attacking IDS’s
• Assume attacker knows how the IDS works
• Assume “normal” behavior for a system

– An approximation could be obtained by running the 
IDS on a “normal” system for a while

• Assume initial penetration leaves no system call 
trace
– Eg, a buffer overflow

• Assume IDS is watching what attacker does 
after initial penetration
– This is what most of them are looking for—anomalous 

behavior



Slipping under the Radar

• Don’t execute any system calls
– Web pages defacement
– Changing emails dynamically
– Some (rare) exploits that don’t require system 

calls
• Old Solaris bug: cause a divide by zero trap and 

you get to be root!

• Probably the harm caused without any 
system calls is limited, however



Be Patient

• Attacker simulates the IDS and waits until the 
malicious sequence won’t be tagged as 
anomalous
– This might not ever happen, but then again it might!
– This might happen, but the subsequent events after 

the exploit might trigger an alarm
• Perhaps it’s too late then?
• Perhaps we can crash the application and a sys admin would 

be used to this?
– Blue Screen of Death



Parameter Replacement

• Since parameters are ignored in system 
calls on (almost) all IDS’s
– Replace open(“/lib/libc.so”, O_RDONLY)
– with open(“/etc/shadow”, O_RDWR)

• Since open() call is expected, no anomaly 
is reported

• Subsequent read() and write() calls are 
similarly expected



Insert no-ops

• Between calls to create malicious behavior 
the attacker does useless stuff
– Attacker wants to call bind() and listen() but 

this will trigger an alarm
– Attacker instead does bind(), getpid(), open(), 

close(), etc, on some arbitrary file name
– Then calls listen()
– IDS looks only a sequences of calls of some 

fixed length (typically 6)



Mimicry Attacks: Best Known Attack

• Model the IDS
– In pH we need to know the last 5 system calls 

in order to know whether the next one will 
trigger an alert

– Build a FSM M to tell us what we can do to 
avoid detection given the current state

– Find a path through M such that we get all our 
system calls without raising an alarm



pH: Process Homeostasis

• Like other UNM system but
– pH slows down the application by delaying 

each system call for 2m time units
• m is the number of mismatched length-6 subtraces

in the last 128 system calls



An Attack

• Wagner and Soto attacked pH using an 
off-the-shelf exploit
– wuftp FTP server and autowux.c exploit
– autowux.c exploits a format string vulnerability 

in wuftp and then 
• calls setreuid(0,0)
• break out of chroot jail
• calls execve() with /bin/sh



Digression: chroot jail

• On Unix you can use chroot() to set the root 
directory of a process to some other directory
– Example: chroot(“/etc/apache/home”);

• Now if process executes chdir(“/”) it goes to the apache 
home directory

• Note that “/bin/sh” won’t work!

– Breaking out is easy if we’re root:
• make a temp directory
• chroot to that directory
• Use chdir(“..”) a bunch of times to move up to the real root
• chroot(“.”)



Back to the Attack

• Wagner and Soto trained pH to 
understand “normal” wuftpd operation
– Hundreds of files downloaded over two day 

period
• Tested the exploit and pH caught the 

behavior
– Have to be careful not to train pH that the 

exploit is “normal”!



How to get around pH?

• At the point the exploit occurs, the last 5 
calls are
– fstat, mmap, lseek, close, write
– Now we know what calls we can make next

• Exploit wants to make these calls
– setreuid(0,0), dup2(1,2), mkdir(“sh”), 

chroot(“sh”), 9 x chdir(“..”), chroot(“.”), 
execve(“/bin/sh”)

• can collapse 9 chdir’s into chdir(“../../../../../../../../..”)



Attack Target

• Need to build 
– N* setreuid N* dup2 N* mkdir N* chroot N* 

chdir N* chroot N* execve
• N* indicates 0 or more no-ops, where the no-ops 

come from a pre-defined list

• Wagner and Soto’s tool found there was 
no path through M that found a way to get 
this sequence
– But they noted another attack squence they 

COULD get



Alternate Attack

• First, use an existing dir instead of 
creating a new one

• Second, put a backdoor into the passwd
file instead of spawning a shell

• New sequence:
– setreuid(0,0), chroot(“pub”), chdir(“../../../../../../../../..”), chroot(“.”), 

open(“etc/passwd”, O_APPEND | O_WRONLY), write(fd, 
“toor:AAaaaaaaaaaa:0:0::/:/bin/sh”, 33), close(fd), exit(0)





Moral of the Story

• IDS systems are useful but still not perfect

• Any new IDS system should provide 
implementations for evasion testing

• Perhaps parameters should be looked at 
as well?


