Foundations of Network and
Computer Security

John Black

Lecture #26
Dec 2nd 2004

CSCI 6268/TLEN 5831, Fall 2004



Announcements

Proj #3 — Due Today

FCQs — At end of class today

Quiz #4: Discuss Solutions

Next Week: firewalls and a final review

Following week: Final Exam (Mon, Dec 13th)



Intrusion Detection (IDS)

 An Intruder is either external or internal

— External breaks into your system

» Gains access to files or completely takes over the
machine

— Internal is already on your system, but wants
to escalate privileges or gain access to
unauthorized areas

* Normal user becomes root, eg

* An IDS attempts to detect these events
and alert the proper authority



Anomalies and Misuse

* Anomaly Detection

— Static form is defined

« Code and data must conform to some precise set of rules;
easy to specify this

— Dynamic behavior is defined

« Behavior of users is evaluated as acceptable or anomalous;
much harder to define

 Misuse Detection

— Monitors for specific types of penetration attempts
 Virus scanners, eg
» Other “pattern checkers” (more later)



Anomaly Detection

« Static part is easy

— Certain code or data on the disk should never
change; make sure it doesn't

* Dynamic part is hard

— Typical approach: scan audit logs
* Audit logs are produced by the OS

* IDS looks at log entries and uses various
technologies to evaluate whether there is
something bad going on

— Statistical tests, neural nets, machine learning, genetic
algorithms, Al, etc.



TripWire — Static Analysis

 Unix Based

— File structure and inodes are recorded along
with meta-data

— meta-data specify what can change in the
inode of a given file

— Uses hashing and signatures to check
whether a file has changed or not

o Self-NonSelf is not as famous but its
inventor may be coming to CU



Dynamic Anomaly Detection

« Typically need to specify “normal”
behavior

— Get a "base profile”

« For each user, typical log-in time/location, favorite
editor, average bandwidth consumed, length of
Interactive session, and common sequences of
actions

» Older approaches measure statistical deviation
from this profile and flag if deviations are too great

« Some systems gradually update the profile over
time as user behavior changes



NIDES

Next-generation Intrusion Detection Expert
System (SRI)

— Statistical system with three measure classes:

 Audit record distribution — tracks the types of audit
records generated over some interval

» Categorical — transaction-specific information (user
name, file names, machine names accessed by
user)

« Continuous — a count of any event such as
elapsed user CPU time, number of open files,
number of pages read from disk, etc



NIDES — Continuous

 Continuous measures are sorted into
HbinS”
— A bin might be (eg) total memory size of a

user’s processes; profile is the distribution of
these measures over time

— Each bin is compared with its corresponding
base distribution



NIDES — Statistics

* NIDES stores basic statistics
— frequencies, means, variances, and covariances
« Storing the audit data in detail is too space-consumptive

— Given a profile with n measures, NIDES characterizes
any point in the n-space of measures as anomalous if
sufficiently far from an expected value

« Eg, two standard deviations

» All statistical measures are exponentially
decayed

— Older measures have less weight than newer
measures



UNM — Pattern Matching

 UNM — University of New Mexico

— Forrest is currently there

* For privileged processes, profile which system
calls are made

— Eg, sendmail might call:
* open, read, mmap, mmap, open, read, mmap
« Parameters are ignored

 Profile varies depending on what sendmail is doing

— Forwarding is different from bouncing, is different from sending
to multiple recipients

— All these are profiled



UNM — Typical database size

sendmail 1318 Kbytes
lpr 198 Kbytes
ftpd 1017 Kbytes

Of course not ALL legal usages are
captured here

Each program above was known to have
vulnerabilities (3 for sendmail, 1 each for
lpr and ftpd)



UNM — Results

All intrusions using these vulnerabilities were detected

— Suppose an attacker exploits a sendmail buffer overflow and
adds a backdoor to the password file, spawns a new shell that
listens on port 80

— Sequence of calls might be: open, write, close, socket, bind,
listen, accept, read, fork

— Highly suspicious sequence would be caught by UNM

Does this mean it works?

pH is a similar system by the UNM people we’ll see in a
minute



Attacking IDS’s

Assume attacker knows how the IDS works

Assume “normal” behavior for a system

— An approximation could be obtained by running the
IDS on a “normal” system for a while

Assume initial penetration leaves no system call
trace

— Eg, a buffer overflow

Assume IDS is watching what attacker does
after initial penetration

— This is what most of them are looking for——anomalous
behavior



Slipping under the Radar

* Don’t execute any system calls
— Web pages defacement
— Changing emails dynamically

— Some (rare) exploits that don’t require system
calls

 Old Solaris bug: cause a divide by zero trap and
you get to be root!

* Probably the harm caused without any
system calls is limited, however



Be Patient

o Attacker simulates the IDS and waits until the
malicious sequence won't be tagged as
anomalous

— This might not ever happen, but then again it might!

— This might happen, but the subsequent events after
the exploit might trigger an alarm
« Perhaps it's too late then?

* Perhaps we can crash the application and a sys admin would
be used to this?

— Blue Screen of Death



Parameter Replacement

* Since parameters are ignored in system
calls on (almost) all IDS’s

— Replace open(“/lib/libc.so”, O RDONLY)
— with open(“/etc/shadow”, O RDWR)

* Since open() call is expected, no anomaly
IS reported

* Subsequent read() and write() calls are
similarly expected



Insert no-ops

 Between calls to create malicious behavior
the attacker does useless stuff

— Attacker wants to call bind() and listen() but
this will trigger an alarm

— Attacker instead does bind(), getpid(), open(),
close(), etc, on some arbitrary file name

— Then calls listen()

— IDS looks only a sequences of calls of some
fixed length (typically 6)



Mimicry Attacks: Best Known Attack

* Model the IDS

— In pH we need to know the last 5 system calls
iIn order to know whether the next one will
trigger an alert

— Build a FSM M to tell us what we can do to
avoid detection given the current state

— Find a path through M such that we get all our
system calls without raising an alarm



pH: Process Homeostasis

* Like other UNM system but

— pH slows down the application by delaying
each system call for 2™ time units

* m is the number of mismatched length-6 subtraces
In the last 128 system calls



An Attack

* Wagner and Soto attacked pH using an
off-the-shelf exploit
— wuftp FTP server and autowux.c exploit
— autowux.c exploits a format string vulnerability
in wuftp and then
» calls setreuid(0,0)

* break out of chroot jail
» calls execve() with /bin/sh



Digression: chroot jail

« On Unix you can use chroot() to set the root
directory of a process to some other directory

— Example: chroot(“/etc/apache/home”);

* Now if process executes chdir(“/”) it goes to the apache
home directory

* Note that “/bin/sh” won’t work!

— Breaking out is easy if we're root:
* make a temp directory
 chroot to that directory
« Use chdir(“..”) a bunch of times to move up to the real root

[13RL

 chroot(“.”)



Back to the Attack

* Wagner and Soto trained pH to
understand “normal” wuftpd operation

— Hundreds of files downloaded over two day
period

» Tested the exploit and pH caught the
behavior

— Have to be careful not to train pH that the
exploit is “normal”



How to get around pH?

* At the point the exploit occurs, the last 5
calls are
— fstat, mmap, Iseek, close, write
— Now we know what calls we can make next

* Exploit wants to make these calls

— setreuid(0,0), dup2(1,2), mkdir(“sh”),
chroot(“sh”), 9 x chdir(“..”), chroot(“.”),
execve(“/bin/sh™)

» can collapse 9 chdir’s into chdir(“../../..[..[..[..[..[..]..")



Attack Target

 Need to build

— N* setreuid N* dup2 N* mkdir N* chroot N*
chdir N* chroot N* execve

* N* indicates O or more no-ops, where the no-ops
come from a pre-defined list

* Wagner and Soto's tool found there was
no path through M that found a way to get
this sequence

— But they noted another attack squence they
COULD get



Alternate Attack

* First, use an existing dir instead of
creating a new one

« Second, put a backdoor into the passwd
file instead of spawning a shell

 New sequence:

— setreuid(0,0), chroot(“pub”), chdir(“../../../..[../..[..[..].."), chroot("."),
open(“etc/passwd”, O_APPEND | O_WRONLY), write(fd,
“toor:AAaaaaaaaaaa:0:0::/:/bin/sh”, 33), close(fd), exit(0)



read() write() close() munmap() sigprocmask() wait4()
sigprocmask() sigaction() alarm() time() stat() read()
alarm() sigprocmask() setreuid() fstat() getpid()
time() write() time() getpid() sigaction() socketcall()
sigaction() close() flock() getpid() 1seek() read()
kill() 1seek() flock() sigaction() alarm() time()
stat() write() open() fstat() mmap() read() open()
fstat() mmap() read() close() munmap() brk() fcntl()
setregid() open() fcntl() chroot() chdir() setreuid()
1stat() 1lstat() 1lstat() 1lstat() open() fcntl() fstat()
lseek() getdents() fcntl() fstat() lseek() getdents()
close() write() time() open() fstat() mmap() read()
close() munmap() brk() fcntl() setregid() open() fcntl()
chroot() chdir() setreuid() 1lstat() 1lstat() 1lstat()
1stat() open() fcntl() brk() fstat() lseek() getdents()
lseek() getdents() time() stat() write() time() open()
getpid() sigaction() socketcall() sigaction() umask()
sigaction() alarm() time() stat() read() alarm()
getrlimit() pipe() fork() fcntl() fstat() mmap() lseek()
close() brk() time() getpid() sigaction() socketcall()
sigaction() chdir() sigaction() sigaction() write()

munmap () munmap() munmap() ezt ()




Moral of the Story

* IDS systems are useful but still not perfect

* Any new IDS system should provide
implementations for evasion testing

* Perhaps parameters should be looked at
as well?



