Foundations of Network and
Computer Security

John Black

Lecture #24
Nov 23 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

Proj #2 — Due today
— Can hand in Tuesday if need be

e Quiz #4: next time

* No class Thurs (Thanksgiving) or Tues
(the 30th)

WEP and RC4

 We saw last time how WEP uses RC4
— C=P & RCA4(v, k)
— Vis a 24-bit IV
— k is a 40-bit key (could be 104-bits too)

« Cis then sent along with v

— So we seed RC4 with 64 bits, 24 of which are public
and 40 of which are private

 Turns out this is bad

RC4

Designed by Rivest

Secret algorithm (trade secret) for years

— One day, reverse-engineered code showed up on a
cypherpunks mailing list (1995)

— Was called “alleged RC4” for a while

— Now just assumed to be RC4

Meant to be simple enough to be memorized
— This was to circumvent export problems

Most common mode used in SSL
— But they don'’t use it like WEP does

RC4 Algorithm

« Uses an internal state of:
— 256 byte permutation S
— 2 pointers into that permutation
« So how many states possible?
— 256! * 2562 ~ 21700

— Exhaustive search on the state is clearly not a good
iIdea

State array S
o 1 2 3 4 5 6 7 fe

ff

Byte values; must be a permutation of {0,...,255}

RC4 Algorithm (cont)

* Two phases of the algorithm:

— Key Schedule Algorithm (KSA)
 Digest the key to get the initial state

— Pad Generation (PRGA)

« Start generating endless stream of pseudorandom
bytes

* We run the KSA first with the key; discard
the key; keep the state; then ask the
PRGA for bytes as-needed

RC4-KSA(K)

« K has 8 bytes for 24-bit IV v and 40-bit WEP key k

RC4 KSA (K)

for 1 < 0 to 255
S[1] < 1

7 < 0

for 1 < 0 to 255
J < (J + S[i] + K[i mod 8])
S[1] < S[J]

* Assume all arithmetic is mod 256 when manipulating
indices to S (so j stays in the range 0 to 255)

* Please take a moment to memorize this one

RC4-PRGA

i+ 0; 7 < O
while (1) do
1++
J < (J+S[1])
S[1] < S[J]
output S[S[i] + S[]J]]

« State S is global; PRGA outputs bytes forever
* Once again, assume mod 256 as needed

Let's Run KSA

First we need an IV v and WEP key k
— eg, v=0x020441, k=0x0567f1a3dd

RC4KeyK 0 1 2 3 4 5 6 7
02 04 |41 05|67 |fl |a3 |dd

IV v WEP Key k

* Next we Iinitialize the state array
— Permutation is the identity, i and j pointto 0

fe

ff

fe

ff

Running the KSA

1 2 3 4 5 6 7 fe ff

1123 |14|5|6]7 e0e fe | ff
i—0 j+—0+0+K[0]=2

1 2 3 4 5 6 7 fe ff

1034|567 i fe | ff
i—1 j+2+1+K[1]=11

2 3 4 5 6 7 fe ff

710113 14|5]6]|1 eoe fe | ff

i—2 j+2+1+K[1]=7

S denotes the state of array S after i iterations of the for loop

Then Run PRGA

Suppose we have some permutation at the end

of the KSA: now run PRGA once

0 1

2

3

4

5

6

7

2 |7

0

fa

a0

9

22

Oa

1is1,jis O

j <+ 3Sli], soj« S[1]

swap S[i] and SJj]

output S[S[i] + S[j]], so S[S[1] + S[S[1]]]
So first byte of PRGA after KSA is run is

S[S[1] + S[S[1]]]

fe ff

bl| 5f

The Attack

* David Wagner noticed in 1996 that if the
first bytes of the RC4 seed were of a
certain form, interesting things happen

* Fluhrer, Mantin, Shamir expanded on this
and showed how it applies to WEP

e |dea:

— Suppose WEP |V is of the following form:
« Ox03ffxx

* Here, “xx” means any value, so we just need it to
start with Ox03ff

Special IV

 \What does K look like then?

RC4 Key K 0 1 2 3 4 5 6 7
03 ff | xx | T

IV v WEP Key k

* T here is the first part of the WEP key k

— This is a secret value that we would like to find

— The IV is of course public, so we can
recognize when it is in this special form

e Let's run the KSA with this IV

K=031fxxT...;

Set X = xx

0 1 2 3 4 5 6 7

So o123]4|5]6]7
i—0 j+—0+0+K[0]=3

0 1 2 3 4 5 6 7

S, 1311121011456/ 7
i1 j+3+1+K[1]=3

0 1 2 3 4 5 6 7

S 1310|211]14]|5]|6]|7
i+2 j3+2+K2]=5+X

Note: We can compute all of this without the WEP key k

fe

ff

fe

ff

fe

ff

fe

ff

fe

ff

fe

ff

o 1 2 3 4 5 6 7 X+5 fe ff

S; [310 | SUXH5]| 114|567 eee | 2 |*°*°* | f| ff

i3 j+ (X+5)+1+K[3]=X+6+T

0 1 7 3 4 5 X+5 fe ff

S, | 3] 0 | SIXH5]| S3[X+6+T] 4 |5 oo | 2 |*°°® | | ff

Note: This is the first time something happens that we cannot compute using just the IV

* Now let’'s assume that for the remaining 252 iterations of i
(from 4 through 255) we never disturb S[0], S[1], or S[3]

— 1 will never point here again, but j might; we assume that it won't,
and see what happens

* Then the PRGA runs and outputs S[S[1]+S[S[1]]] as its
first byte
— This is S[0 + S[0]] = S[3] = S,[X+6+T]
— We can solve for T

Solving for T

* We have S;[X+6+T] and we know S,
completely
— Search for S;[X+6+T] in the S_3 array
— Say the index is Z
— Then T = Z-X-6
« Taken mod 256, as always

— This gives T, the first byte of the secret WEP
key K

» Other bytes found in similar manner

But what if | messes things up?

* Recall j was “randomly” jumping through S

— It may point to O, 1, or 3 and then our
computation doesn’t work

* Moreover, if j messes things up, we can’t detect
that it did or didn’t!

— Let’'s assume j is uniform and random

* What is the probability it will avoid these 3
locations?

« (1-3/255)%>? =~ limy _, . (1-3/N)N = e3 ~ 0.05
* S0 95% of the time, j messes us up...

Using statistics

« However, 5% of the time we strike gold

— And we can assume that the times we don't, we get a
uniformly random value out

— Imagine a die with 256 sides with 1 side coming up
5% of the time and the other sides coming up 0.37%
of the time

« S0 1 side is 13 times more likely than any other

— Run a statistical test:

« For y different values of X, get the candidate T
* The majority element is the correct T value

— Calculations show that y = 60 is sufficient

— Challenge problem #4: compute how many values of X are
needed to get a probability p that the majority elementis T

Example

e Suppose you have |V's:
— 0x03ff00, 0x03ff01, Ox03ff02, ..., Ox03ff3b

— You get candidate T values (using our
computation):
« 12 19 21 217 19 204 1 7 19 22 49 57 52
250 111 19 18 7 20 ...

« So we choose T=19 as the first byte of the secret
key

RC4 Attack: Further Notes

* Need IV’s of a certain form

— A passive attacker has to wait until they occur
naturally

— An active attacker will just set them to whatever
values he needs

* Note that we need to get the first byte of the key
stream

— With WEP this is easy because the first byte of every
frame is Oxaa

« Has to do with an encapsulation standard

Extending the Attack

* Once you get T = K[3] you can get all
further bytes as well

— For 40-bit WEP, there are 4 more bytes

— For 104-bit WEP there are 12 more
« So for this attack, key size DOES matter

— To attack K[4] you need to have K[3]
* |t had better be right!
* |Vs should be of the form 0x04ffxx

Practical Implications

 An attacker has to sit outside and collect a
LOT of packets to get your WEP key

 This attack, combined with the BGW
attack from last time are quite damaging,
but it still makes sense to run WEP if
you're worried about securing your
network

« AirSnort and other programs have the
FMS attack built in

