Foundations of Network and Computer Security

John Black

Lecture \#24
Nov 23 ${ }^{\text {rd }} 2004$

Announcements

Proj \#2 - Due today

- Can hand in Tuesday if need be
- Quiz \#4: next time
- No class Thurs (Thanksgiving) or Tues (the $30^{\text {th }}$)

WEP and RC4

- We saw last time how WEP uses RC4
$-C=P \oplus R C 4(v, k)$
-v is a 24-bit IV
-k is a 40-bit key (could be 104-bits too)
- C is then sent along with v
- So we seed RC4 with 64 bits, 24 of which are public and 40 of which are private
- Turns out this is bad

RC4

- Designed by Rivest
- Secret algorithm (trade secret) for years
- One day, reverse-engineered code showed up on a cypherpunks mailing list (1995)
- Was called "alleged RC4" for a while
- Now just assumed to be RC4
- Meant to be simple enough to be memorized
- This was to circumvent export problems
- Most common mode used in SSL
- But they don't use it like WEP does

RC4 Algorithm

- Uses an internal state of:
- 256 byte permutation S
- 2 pointers into that permutation
- So how many states possible?
-256 ! * $256^{2} \approx 2^{1700}$
- Exhaustive search on the state is clearly not a good idea

State array S

Byte values; must be a permutation of $\{0, \ldots, 255\}$

RC4 Algorithm (cont)

- Two phases of the algorithm:
- Key Schedule Algorithm (KSA)
- Digest the key to get the initial state
- Pad Generation (PRGA)
- Start generating endless stream of pseudorandom bytes
- We run the KSA first with the key; discard the key; keep the state; then ask the PRGA for bytes as-needed

RC4-KSA(K)

- K has 8 bytes for 24-bit IV v and 40-bit WEP key k

```
RC4_KSA(K)
for i }\leftarrow0\mathrm{ to 255
    S[i] \leftarrow i
j}\leftarrow
for i }\leftarrow0\mathrm{ to 255
    j \leftarrow (j + S[i] + K[i mod 8])
    S[i] \leftrightarrow S[j]
```

- Assume all arithmetic is mod 256 when manipulating indices to S (so j stays in the range 0 to 255)
- Please take a moment to memorize this one

RC4-PRGA

$i \leftarrow 0 ; j \leftarrow 0$
while (1) do

$$
\begin{aligned}
& i++ \\
& j \leftarrow(j+S[i]) \\
& S[i] \leftrightarrow S[j] \\
& \text { output } S[S[i]+S[j]]
\end{aligned}
$$

- State S is global; PRGA outputs bytes forever
- Once again, assume mod 256 as needed

Let's Run KSA

- First we need an IV v and WEP key k
- eg, v=0x020441, k=0x0567f1a3dd

- Next we initialize the state array
- Permutation is the identity, i and j point to 0

0	1	2	3	4	5	6	7			
0	1	2	3	4	5	6	7			

Running the KSA

$$
i \leftarrow 0 \quad j \leftarrow 0+0+K[0]=2
$$

$$
i \leftarrow 1 \quad j \leftarrow 2+1+K[1]=11
$$

$i \leftarrow 2 \quad j \leftarrow 2+1+K[1]=7$
S_{i} denotes the state of array S after iterations of the for loop

Then Run PRGA

- Suppose we have some permutation at the end of the KSA; now run PRGA once

0	1	2	3	4	5	6	7			
2	7	0	fa	a0	9	22	9 a			

-•• | | b 1 | 5 f |
| :--- | :--- | :--- |

- i is $1, j$ is 0
- $\mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]$, so $\mathrm{j} \leftarrow \mathrm{S}[1]$
- swap S[i] and S[j]
- output S[S[i] + S[j]], so S[S[1] + S[S[1]]]
- So first byte of PRGA after KSA is run is S[S[1] + S[S[1]]]

The Attack

- David Wagner noticed in 1996 that if the first bytes of the RC4 seed were of a certain form, interesting things happen
- Fluhrer, Mantin, Shamir expanded on this and showed how it applies to WEP
- Idea:
- Suppose WEP IV is of the following form:
- 0x03ffxx
- Here, "xx" means any value, so we just need it to start with 0x03ff

Special IV

-What does K look like then?
RC4 Key K

- T here is the first part of the WEP key k
- This is a secret value that we would like to find
- The IV is of course public, so we can recognize when it is in this special form
- Let's run the KSA with this IV

$$
K=03 \text { ff } \mathbf{x x} \mathbf{T} \ldots ; \quad \text { Set } X=\mathbf{x x}
$$

$$
i \leftarrow 0 \quad j \leftarrow 0+0+K[0]=3
$$

$$
i \leftarrow 1 \quad j \leftarrow 3+1+K[1]=3
$$

$$
i \leftarrow 2 \quad j \leftarrow 3+2+K[2]=5+X
$$

Note: We can compute all of this without the WEP key k
S_{3}

0	1	2	3	4	5	6	7		
3	0	$\mathrm{~S}_{2}[\mathrm{X}+5]$	1	4	5	6	7		

$$
i \leftarrow 3 \quad j \leftarrow(X+5)+1+K[3]=X+6+T
$$

	0	1	2	3	4	5
S_{4}	3	0	$\mathrm{S}_{2}[\mathrm{X}+5]$	$\mathrm{S}_{3}[\mathrm{X}+6+\mathrm{T}]$	4	5

X +5	fe ff	
2	fe	ff

Note: This is the first time something happens that we cannot compute using just the IV

- Now let's assume that for the remaining 252 iterations of i (from 4 through 255) we never disturb $\mathrm{S}[0]$, $\mathrm{S}[1]$, or $\mathrm{S}[3]$
- i will never point here again, but j might; we assume that it won't, and see what happens
- Then the PRGA runs and outputs S[S[1]+S[S[1]]] as its first byte
- This is $\mathrm{S}[0+\mathrm{S}[0]]=\mathrm{S}[3]=\mathrm{S}_{3}[\mathrm{X}+6+\mathrm{T}]$
- We can solve for T

Solving for T

- We have $\mathrm{S}_{3}[\mathrm{X}+6+\mathrm{T}]$ and we know S_{3} completely
- Search for $S_{3}[X+6+T]$ in the $S_{-} 3$ array
- Say the index is Z
- Then T = Z-X-6
- Taken mod 256, as always
- This gives T, the first byte of the secret WEP key k
- Other bytes found in similar manner

But what if j messes things up?

- Recall j was "randomly" jumping through S
- It may point to 0,1 , or 3 and then our computation doesn't work
- Moreover, if j messes things up, we can't detect that it did or didn't!
- Let's assume j is uniform and random
- What is the probability it will avoid these 3 locations?
- $(1-3 / 255)^{252} \approx \lim _{N \rightarrow \infty}(1-3 / N)^{N}=e^{-3} \approx 0.05$
- So 95% of the time, j messes us up...

Using statistics

- However, 5% of the time we strike gold
- And we can assume that the times we don't, we get a uniformly random value out
- Imagine a die with 256 sides with 1 side coming up 5% of the time and the other sides coming up 0.37% of the time
- So 1 side is 13 times more likely than any other
- Run a statistical test:
- For χ different values of X, get the candidate T
- The majority element is the correct T value
- Calculations show that $\chi=60$ is sufficient
- Challenge problem \#4: compute how many values of X are needed to get a probability p that the majority element is T

Example

- Suppose you have IV's:
- 0x03ff00, 0x03ff01, 0x03ff02, ..., 0x03ff3b
- You get candidate T values (using our computation):
- $12 \quad 19 \quad 21 \quad 217 \quad 19 \quad 204171922495752$ $2501111918720 \ldots$
- So we choose T=19 as the first byte of the secret key

RC4 Attack: Further Notes

- Need IV's of a certain form
- A passive attacker has to wait until they occur naturally
- An active attacker will just set them to whatever values he needs
- Note that we need to get the first byte of the key stream
- With WEP this is easy because the first byte of every frame is 0xaa
- Has to do with an encapsulation standard

Extending the Attack

- Once you get $\mathrm{T}=\mathrm{K}[3]$ you can get all further bytes as well
- For 40-bit WEP, there are 4 more bytes
- For 104-bit WEP there are 12 more
- So for this attack, key size DOES matter
- To attack K[4] you need to have K[3]
- It had better be right!
- IVs should be of the form 0x04ffxx

Practical Implications

- An attacker has to sit outside and collect a LOT of packets to get your WEP key
- This attack, combined with the BGW attack from last time are quite damaging, but it still makes sense to run WEP if you're worried about securing your network
- AirSnort and other programs have the FMS attack built in

