
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #24
Nov 23rd 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

Proj #2 – Due today
– Can hand in Tuesday if need be

• Quiz #4: next time

• No class Thurs (Thanksgiving) or Tues
(the 30th)

WEP and RC4
• We saw last time how WEP uses RC4

– C = P ⊕ RC4(v, k)
– v is a 24-bit IV
– k is a 40-bit key (could be 104-bits too)

• C is then sent along with v
– So we seed RC4 with 64 bits, 24 of which are public

and 40 of which are private

• Turns out this is bad

RC4
• Designed by Rivest
• Secret algorithm (trade secret) for years

– One day, reverse-engineered code showed up on a
cypherpunks mailing list (1995)

– Was called “alleged RC4” for a while
– Now just assumed to be RC4

• Meant to be simple enough to be memorized
– This was to circumvent export problems

• Most common mode used in SSL
– But they don’t use it like WEP does

RC4 Algorithm
• Uses an internal state of:

– 256 byte permutation S
– 2 pointers into that permutation

• So how many states possible?
– 256! * 2562 ≈ 21700

– Exhaustive search on the state is clearly not a good
idea

State array S

0 1 2 3 4 5 6 7 fffe

Byte values; must be a permutation of {0,…,255}

RC4 Algorithm (cont)

• Two phases of the algorithm:
– Key Schedule Algorithm (KSA)

• Digest the key to get the initial state
– Pad Generation (PRGA)

• Start generating endless stream of pseudorandom
bytes

• We run the KSA first with the key; discard
the key; keep the state; then ask the
PRGA for bytes as-needed

RC4-KSA(K)
• K has 8 bytes for 24-bit IV v and 40-bit WEP key k

RC4_KSA(K)
for i ← 0 to 255

S[i] ← i
j ← 0
for i ← 0 to 255

j ← (j + S[i] + K[i mod 8])
S[i] ↔ S[j]

• Assume all arithmetic is mod 256 when manipulating
indices to S (so j stays in the range 0 to 255)

• Please take a moment to memorize this one

RC4-PRGA
i ← 0; j ← 0
while (1) do

i++
j ← (j+S[i])
S[i] ↔ S[j]
output S[S[i] + S[j]]

• State S is global; PRGA outputs bytes forever
• Once again, assume mod 256 as needed

Let’s Run KSA
• First we need an IV v and WEP key k

– eg, v=0x020441, k=0x0567f1a3dd

• Next we initialize the state array
– Permutation is the identity, i and j point to 0

02 04 41 05 67 f1 a3 dd

IV v WEP Key k

0 1 2 3 4 5 6 7RC4 Key K

0 1 2 3 4 5 6 7 fffe

0 1 2 3 4 5 6 7 fffe

i, j

Running the KSA
0 1 2 3 4 5 6 7 fffe

0 1 2 3 4 5 6 7 fffeS0

i ← 0 j ← 0 + 0 + K[0] = 2

0 1 2 3 4 5 6 7 fffe

2 1 0 3 4 5 6 7 fffeS1

i ← 1 j ← 2 + 1 + K[1] = 11

0 1 2 3 4 5 6 7 fffe

2 7 0 3 4 5 6 1 fffeS2

i ← 2 j ← 2 + 1 + K[1] = 7

Si denotes the state of array S after i iterations of the for loop

Then Run PRGA
• Suppose we have some permutation at the end

of the KSA; now run PRGA once

• i is 1, j is 0
• j ← j + S[i], so j ← S[1]
• swap S[i] and S[j]
• output S[S[i] + S[j]], so S[S[1] + S[S[1]]]
• So first byte of PRGA after KSA is run is

S[S[1] + S[S[1]]]

0 1 2 3 4 5 6 7 fffe

2 7 0 fa a0 9 22 9a 5fb1

The Attack

• David Wagner noticed in 1996 that if the
first bytes of the RC4 seed were of a
certain form, interesting things happen

• Fluhrer, Mantin, Shamir expanded on this
and showed how it applies to WEP

• Idea:
– Suppose WEP IV is of the following form:

• 0x03ffxx
• Here, “xx” means any value, so we just need it to

start with 0x03ff

Special IV

• What does K look like then?

03 ff xx T

IV v WEP Key k

0 1 2 3 4 5 6 7RC4 Key K

• T here is the first part of the WEP key k
– This is a secret value that we would like to find
– The IV is of course public, so we can

recognize when it is in this special form
• Let’s run the KSA with this IV

0 1 2 3 4 5 6 7 fffe

0 1 2 3 4 5 6 7 fffeS0

i ← 0 j ← 0 + 0 + K[0] = 3

0 1 2 3 4 5 6 7 fffe

3 1 2 0 4 5 6 7 fffeS1

i ← 1 j ← 3 + 1 + K[1] = 3

0 1 2 3 4 5 6 7 fffe

3 0 2 1 4 5 6 7 fffeS2

i ← 2 j ← 3 + 2 + K[2] = 5 + X

K = 03 ff xx T … ; Set X = xx

Note: We can compute all of this without the WEP key k

0 1 2 3 4 5 6 7 fffe

3 0 S2[X+5] 1 4 5 6 7 fffeS3

i ← 3 j ← (X+5) + 1 + K[3] = X+6+T

2

X+5

0 1 2 3 4 5 fffe

3 0 S2[X+5] S3[X+6+T] 4 5 fffeS4 2

X+5

Note: This is the first time something happens that we cannot compute using just the IV

• Now let’s assume that for the remaining 252 iterations of i
(from 4 through 255) we never disturb S[0], S[1], or S[3]
– i will never point here again, but j might; we assume that it won’t,

and see what happens
• Then the PRGA runs and outputs S[S[1]+S[S[1]]] as its

first byte
– This is S[0 + S[0]] = S[3] = S3[X+6+T]
– We can solve for T

Solving for T

• We have S3[X+6+T] and we know S3
completely
– Search for S3[X+6+T] in the S_3 array
– Say the index is Z
– Then T = Z-X-6

• Taken mod 256, as always
– This gives T, the first byte of the secret WEP

key k
• Other bytes found in similar manner

But what if j messes things up?

• Recall j was “randomly” jumping through S
– It may point to 0, 1, or 3 and then our

computation doesn’t work
• Moreover, if j messes things up, we can’t detect

that it did or didn’t!
– Let’s assume j is uniform and random

• What is the probability it will avoid these 3
locations?

• (1-3/255)252 ≈ limN →∞ (1-3/N)N = e-3 ≈ 0.05
• So 95% of the time, j messes us up…

Using statistics
• However, 5% of the time we strike gold

– And we can assume that the times we don’t, we get a
uniformly random value out

– Imagine a die with 256 sides with 1 side coming up
5% of the time and the other sides coming up 0.37%
of the time

• So 1 side is 13 times more likely than any other
– Run a statistical test:

• For χ different values of X, get the candidate T
• The majority element is the correct T value

– Calculations show that χ = 60 is sufficient
– Challenge problem #4: compute how many values of X are

needed to get a probability p that the majority element is T

Example

• Suppose you have IV’s:
– 0x03ff00, 0x03ff01, 0x03ff02, …, 0x03ff3b
– You get candidate T values (using our

computation):
• 12 19 21 217 19 204 1 7 19 22 49 57 52

250 111 19 18 7 20 …
• So we choose T=19 as the first byte of the secret

key

RC4 Attack: Further Notes
• Need IV’s of a certain form

– A passive attacker has to wait until they occur
naturally

– An active attacker will just set them to whatever
values he needs

• Note that we need to get the first byte of the key
stream
– With WEP this is easy because the first byte of every

frame is 0xaa
• Has to do with an encapsulation standard

Extending the Attack

• Once you get T = K[3] you can get all
further bytes as well
– For 40-bit WEP, there are 4 more bytes
– For 104-bit WEP there are 12 more

• So for this attack, key size DOES matter
– To attack K[4] you need to have K[3]

• It had better be right!
• IVs should be of the form 0x04ffxx

Practical Implications

• An attacker has to sit outside and collect a
LOT of packets to get your WEP key

• This attack, combined with the BGW
attack from last time are quite damaging,
but it still makes sense to run WEP if
you’re worried about securing your
network

• AirSnort and other programs have the
FMS attack built in

