
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #22
Nov 11th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Proj #2 – Due week from today

• Following Thurs is Thanksgiving – No Class
• Following Tuesday is just Tuesday – No Class

• Final is about a month from now (time flies)

• Brian discovered a typo on shellcode slides: load addr of
“/bin/sh” into %ebx and addr of array into %ecx (I had it
the other way around)

Password Crackers

• Unix approach: store one-way hash of password
in a public file
– Since hash is one-way, there is no risk in showing the

digest, right?
– This assumes there are enough inputs to make

exhaustive search impossible (recall IP example from
the midterm)

– There are enough 10-char passwords, but they are
NOT equally likely to be used

• HelloThere is more likely than H7%$$a3#.4 because we’re
human

Password Crackers (cont)

• Idea is simple: try hashing all common
words and scan for matching digest
– Original Unix algorithm for hash is to iterate

DES 25 times using the password to derive
the DES key

• DES25(pass, 064) = digest
• Note: this was proved secure by noticing that this

is the CBCMAC of (064)25 under key ‘pass’ and
then appealing to known CBCMAC results

• Why is DES iterated so many times?

Password Crackers (cont)

• Note: Actually uses a variant of DES to
defeat hardware-based approaches

• Note: Modern implementations often use
md5 instead of this DES-based hash

• But we can still launch a ‘dictionary attack’
– Take large list of words, names, birthdays,

and variants and hash them
– If your password is in this list, it will be

cracked

Password Crackers: example

word digest

alabaster xf5yh@ae1

&trh23Gfhad

Hj68aan4%41

7%^^1j2labdGH

albacore

alkaline

wont4get

Pasword file
/etc/passwd

jones:72hadGKHHA%

smith:HWjh234h*@!!j!

jackl:UwuhWuhf12132^

taylor:Hj68aan4%41

bradt:&sdf29jhabdjajK22

knuth:ih*22882h*F@*8haa

wirth:8w92h28fh*(Hh98H

rivest:&shsdg&&hsgDGH2

Making Things Harder: Salt

• In reality, Unix systems always add a two-
character “salt” before hashing your
password
– There are 4096 possible salts
– One is randomly chosen, appended to your

password, then the whole thing is hashed
– Password file contains the digest and the salt

(in the clear)
– This prevents attacking all passwords in

/etc/passwd in parallel

Password Crackers: with Salt

word digest

alabaster xf5yh@ae1

&trh23Gfhad

U8&@H**12

7%^^1j2labdGH

albacore

alkaline

wont4get

Pasword file
/etc/passwd

jones:72hadGKHHA%H7

smith:HWjh234h*@!!j!YY

jackl:UwuhWuhf12132^a$

taylor:Hj68aan4%41y$

bradt:&sdf29jhabdjajK22Ja

knuth:ih*22882h*F@*8haaU%

wirth:8w92h28fh*(Hh98H1&

rivest:&shsdg&&hsgDGH2*1

Table for Salt Value: A6

no match

Fighting the Salt: 4096 Tables

• Crackers build 4096 tables, one for each
salt value
– Build massive databases, on-line, for each

salt
• 100’s of GB was a lot of storage a few years ago,

but not any longer!
• Indexed for fast look-up
• Most any common password is found quickly by

such a program
• Used by miscreants, but also by sysadmins to find

weak passwords on their system

Getting the /etc/passwd File

• Public file, but only if you have an acct
– There have been tricks for remotely fetching

the /etc/passwd file using ftp and other
vulnerabilities

– Often this is all an attacker is after
• Very likely to find weak passwords and get on the

machine
– Of course if you are a local user, no problem
– Removing the /etc/passwd from global view

creates too many problems

Shadowed Passwords
• One common approach is to put just the

password digests into /etc/shadow
– /etc/passwd still has username, userid, groupid, home

dir, shell, etc., but the digests are missing
– /etc/shadow has only the username and digests (and

a couple of other things)
– /etc/shadow is readable and writeable for root only

• Makes it a bit harder to get a hold of
• Breaks some software (including the buggy web server)

which wants to authenticate users with their passwords
– One might argue that non-root software shouldn’t be asking for

user passwords anyhow

Last Example: Ingres Authorization
Strings

• Ingres, 1990
– 2nd largest database company behind Oracle

• Authorization Strings
– Encoded what products and privileges the user had

purchased
• Easier to maintain this way: ship entire product
• Easier to sell upgrades: just change the string

• Documentation guys
– Needed an example auth string for the manual

Moral
• There’s no defending against stupidity

• Social engineering is almost always the easiest
way to break in
– Doesn’t work on savvy types or sys admins, but

VERY effective on the common user
– I can almost guarantee I could get the password of

most CU students easily
• “Hi this is Jack Stevens from ITS and we need to change

your password for security reasons; can you give me your
current password?”

Social Engineering: Phishing

• Sending authentic looking email saying
“need you to confirm your PayPal account
information”
– Email looks authentic
– URL is often disguised
– Rolling over the link might even pop-up a valid

URL in a yellow box!
– Clicking takes you to attacker’s site, however

• This site wants your login info

Disguising URLs
• URI spec

– Anything@http://www.colorado.edu is
supposed to send you to www.colorado.edu

• Can be used to disguise a URL:
– http://www.ebay.com-
SECURITYCHECKw8grHGAkdj>jd7788<Account
Maintenace-4957725-s5982ut-aw-ebayconfirm-secure-
23985225howf8shfMHHIUBd889yK@www.evil.org

• Notice feel-good words
• Length of URI exceeds width of browser, so you may not see

the end
• www.evil.org could be hex encoded for more deception

– %77%77%77%2e%65%76%69%6c%2e%63%6f%6d =
www.evil.com

Disguising URL’s (cont)

• This no longer works on IE
• Still works on Mozilla
• In IE 5.x and older, there was another trick

where you could get the toolbar and URL
window to show “www.paypal.com” even though
you had been sent to a different site
– Very scary

• Moral: don’t click on email links; type in URL
manually

Digression: Character Encodings

• Normally web servers don’t allow things like this:
– http://www.cs.colorado.edu/~jrblack/../../etc/passwd

• The “..” is filtered out

– Character encodings can sometimes bypass the filter
• Unicode is a 16-bit code for representing various alphabets
• . = C0 AE
• / = C0 AF
• \ = C1 9C

– In Oct 2000, a hacker revealed that IIS failed to filter
these encodings

• …/~jrblack/%C0AE/%C0AE/%C0AE/%C0AE/etc/passwd

Segue to Web Security

• The web started out simple, but now is
vastly complex
– Mostly because of client-side scripting

• Javascript, Java applets, Flash, Shockwave,
VBScript, and more

– And server-side scripting
• CGIs (sh, C, perl, python, almost anything), Java

servlets, PHP, ASP, JSP
– All of these are security-sensitive

• Ugh

We Can’t Hope to Survey all
Possible Web Security Issues

• Too many to count

• Goal: look at a few thematic ones

• Cataloguing all of them would not be very
instructive, most likely

Typical Server-Side Vulnerability

• PHP: Personal HomePage (?!)
– An easy-to-use and Perl-like server-side scripting

language
– A “study in poor security” – Gary McGraw
– Variables are dynamically declared, initialized, and

global by default; this can be dangerous:
• if(isset($page))
{

include($page);
}

• Now we call this script with:
– script.php?page=/etc/passwd

Javascript

• Javascript (and VBScript) can do bad things
– Get your cookies, for one, which may include

sensitive information
• You don’t want to run scripts unless the site you

are visiting is “trustworthy”
– Javascript has had a large number of security

problems in the past; dubious sites might take
advantage of these

– If you set your security level high in IE, it turns off
Javascript; that should tell you something

Javascript (cont)

• Turning it off in your browser is one solution
– But often you lose a bunch of functionality

• How can an attacker get you to run his malicious
Javascript code?
– Gets you to visit his website

• But you might know better

– Old trick: post something to a bulletin board with
<script>…</script> in it

– When you view his post, you run his script!

Filtering

• To prevent this, a correct bulletin board
implementation always filters stuff that
others have posted

• You can post YES! but not
<script> evil stuff… </script>

• But until recently we didn’t worry about
filtering stuff from you to yourself! ☺

XSS Attacks
• XSS: Cross Server Scripting

– Not CSS (Cascading Style Sheets)
– Idea: you open a website, passing a value, and the

site echoes back that value
• What if that value has a script embedded?!

– Example: 404 Not Found
• Suppose you see a link (in email, on IRC, on the web)

saying, “Click here to search Google”
– The link really does go to google, so what the heck…
– However the link is www.google.com/badurl%0a%5C...

» Above contains an embedded, hidden script
– Google says, “badurl%0a%5C…” not found
– Just displaying this to you, executes the script

XSS Vulnerabilities

• They’ve been found all over the web
– Fairly new problem
– Lots of examples still exist in the wild
– Very tricky to find them all

• Solution is to filter, of course
– Need to filter inputs from users that server will

be echoing back to the user

