Foundations of Network and
Computer Security

John Black

Lecture #21
Nov 9t 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

Quiz #3 — Returned today
Proj #2 — Due week from Thurs

Proj #3 — Still time, but get started
— Tricky in parts

Use of class mailing lists
— Good!

Format String Vulnerabilities

* Example:

output (char *p)

{
printf (p);

}

« Seems harmless: prints whatever string is
handed to it

— But if string is user-supplied, strange things can
happen

— Consider what happens if formatting chacters are
included
« Ex:p="%s"

Format Strings (cont)

» Let's play with format strings:
— “AAAAAAAY%08x%08x%08x%08x”
— Prints values from the stack (expecting

parameters)
Top of stack
sfp Saved Frame Pointer 4 bytes
prinif called ret | Return address to caller 4 bytes
” p Ptr to format string 4 bytes

values from here are printed

Format string | A444444A4%08x%08x%08x%08x

Example Output

» Continuing with
"AAAAAAA%O08x%08x%08x%08x”

— AAAAAAAAD12f2f1580ff000010ff202018ae1414

— So the above values were on the stack... how can we
exploit this?

* We can keep printing stack values until we run into the
format string itself... might lead to something interesting

 AAAAAAAY%08x%08x%08x%08x%08x%08x%08x%08x%08
X%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0
8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%
08x%08%x%08x%08x%08x%08x%08x%08x%08x%08x%08x

* Output:
AAAAAAAA12f2f1580f...414141414141414178380425

Printing Data from (almost)
Anywhere in Memory

* As we saw, %s interprets stack value as a
pointer, not an int

— Suppose we would like to read from address
Ox77f7f570

* Note: we can’t have any 00 bytes in the address since we are
about to embed it in a string

— Use format string
“AAAA\X7 O\xFE\XF7\X77%08x%08xX...%08x_%s_”

* Note we’re assuming little-endian here
— Output “AAAApJ*0012ff800cccc...ccc41414141 &h2!1$\&

» Note that string will terminate at first 0 byte encountered (and
segfault if you go off the end of valid memory)

Picture of Stack

 Kind of confusing:

— As printf reads the format string, it's reading down the
stack for its arguments as well

— When printf gets to the %s, the arg ptr is pointing at
\X70\xf5\xf7\x77, so we print the contents of that addr

Top of stack
sfp Saved Frame Pointer 4 bytes
printf called ret | Return address to caller 4 bytes
| R
g p Ptr to format string 4 bytes

v

values from here are printed

.

Format string AAAAX70\xf5\xf7\x77%08x%08x ... %608x_%6s

But Can We Alter the Stack
Contents?

* Introducing the %n token

— This one is obscure: nothing is printed but the
number of chars printed thus far is stored at
the address indicated by the corresponding
parameter to %n

— Ex: printf(*hi%n there”, &i); now i = 2
— How can we use this ability to write to

memory?

o Consider “AAAA\X70\xf5\xf7\x77 %08x%08x...%08%n”
« Writes 0x00000164 (= 356) to address 0x77f7f570

Using %n

« Extending this, we can write any value of

our choice to (almost) any address

— “AAAANXT O\XIE\XT7\X7 7\XT A\XEO\XT 7\X7 7\XT7 2\Xxf5\xf 7\x7
T\XT 3\XF5\XF7\x77%08x%08x...%08x%n%n%n%n"

— Writes 0x00000164 four times, so at address
Ox77f7t570 we will see 0x64646464

— But how do we get values of our choice to address
Ox77f7t570 instead of this 0x64646464 thing?

» Let’s use the %##u token (or any other that takes a length
specifier)

Writing Arbitrary Values

* We use the width specifier to add any
number of bytes we like to the current
“number of printed chars” count

— To write 0xfff09064 we use

“AAAAXTO\XFE\XF7\X7 7\X7 1\xfE\XF7\X7 7\X7 2\xf5\xf7\x
7 T\XT3\Xt5\xf7\x77%08x%08X...%08x%n%43u%n%9
6%nNn%15u%n”

— This works fine if we are wanting to write ever-
iIncreasing byte values

* How can we write 0xfOff90647?
« How might we write to address 0x400014a0?

Detecting Format String
Vulnerabilities

 Not as hard to detect as buffer overflows
(which can be very subtle)

* One method is to look for calls to printf,
sprintf, snprintf, fprintf, etc. and examine
the stack clean up code

— Recall that after a function call returns, it must
remove its parameters from the stack by
adding the sum of their sizes to esp

— If we see add $4, %esp, we flag a possible
vulnerability

Heap Overflows

* These are among the hardest to exploit
and depend on minute OS and compiler
details

— Some hackers consider writing a heap
overflow as a rite of passage

— We will only sketch how they work; a detailed
example would take too long

— This is the last software vulnerability we'll talk
about in this class, but there are MANY more

What is the Heap?

* The area of data which grows toward the stack

— malloc() and new use this memory area for dynamic
structures

— Unlike the stack, we do not linearly grow and shrink
the heap

* We allocated and deallocate blocks in any order

« We have to worry about marking the size of blocks, blending
adjacent deallocated chunks for re-use, etc.

« Many algorithms (with various tradeoffs) exist so this attack
will depend on the specifics of those algorithms

The Heap (Layout)

HEADER HEAP BUFFER >
HEADER HEAP BUFFER
> HEADER
HEAP BUFFER >
Higher Memory
Size of Block/8 Size of Prev Block/&
Windows 2K
Heap Header
Flags

How to Exploit a Heap Overflow

* Details vary, but in one case:

— free() takes a value from the header and
writes to an address also taken from the
neader

— If we can overflow the buffer just before this
neader, we can control both the address used
and the value written to that address

— This address could be a return address on the
stack, and we know the rest of the story...

Other Vulnerabilities

* We have been discussing a range of
common and generic vulnerabilities

— There are lots more which are more
application-specific

— We couldn’t possibly hope to cover them all

— Let’s look at a couple of examples

Password Checking and Page
Faults

« Some older OS worked like this:

— Password was checked character-by-
character by a high-privilege program

— If password mismatch occurred, program
stopped checking at that point

— Page faults were viewable by all

— |dea:

« Put candidate password on disk which is known
not to be in memory, and watch page faults

Page Fault Technique (cont)

» |dea: place candidate password across page boundary
on disk

— If we page fault to get second page, the password-checking
program must have matched correctly up to all characters before
the boundary

— If we don’t page fault, keep trying last letter before boundary

— Each time we get a character correct, shift left and continue until
we get the whole password

Actual Password V77
(protected memory) 7
Candidate Password - Ta
(on disk) YL

T

Page fault occurs Page boundary

Password Crackers

« Unix approach: store one-way hash of password
In a public file

— Since hash is one-way, there is no risk in showing the
digest, right?

— This assumes there are enough inputs to make
exhaustive search impossible (recall IP example from
the midterm)

— There are enough 10-char passwords, but they are
NOT equally likely to be used

« HelloThere is more likely than H7%$$a3#.4 because we’re
human

Password Crackers (cont)

* Idea is simple: try hashing all common
words and scan for matching digest

— Original Unix algorithm for hash is to iterate
DES 25 times using the password to derive
the DES key

« DES?°(pass, 094) = digest
* Note: this was proved secure by noticing that this

is the CBCMAC of (04)2° under key ‘pass’ and
then appealing to known CBCMAC results

 Why is DES iterated so many times?

Password Crackers (cont)

* Note: Actually uses a variant of DES to
defeat hardware-based approaches

* Note: Modern implementations often use
md5 instead of this DES-based hash

* But we can still launch a ‘dictionary attack

— Take large list of words, names, birthdays,
and variants and hash them

— If your password is in this list, it will be
cracked

)

Password Crackers: example

Pasword file

word digest /etc/passwd
alabaster xfSyh@ael jones:72hadGKHHA %
albacore &trh23Gthad smith: HWjh234h*@!!j!

alkaline Hj68aan4%41 ‘\ jackl:UwuhWuhf121324

= taylor:Hj68aan4 %41

bradt:&sdf29jhabdjajK22

knuth:ih*22882h*F@*8haa

wirth:8w92h28fh*(Hh98H

wontdget 7%""1j2labdGH rivest: &shsdg&&hsgDGH2

Making Things Harder: Salt

* In reality, Unix systems always add a two-
character “salt” before hashing your
password
— There are 4096 possible salts

— One is randomly chosen, appended to your
password, then the whole thing is hashed

— Password file contains the digest and the salt
(in the clear)

— This prevents attacking all passwords in
/etc/passwd in parallel

Password Crackers: with Salt

Table for Salt Value: A6

Pasword file

word digest /etc/passwd
alabaster x5 yh@ae | jones:72hadGKHHA%H7
albacore &trh23Gthad smith: HWjh234h*@!1j!YY

alkaline US&@H™**12 ‘\\ jackl:UwuhWuhf12132"a$

— taylor:Hj68aan4%41y$

no match
bradt:&sdf29jhabdjajK22Ja

knuth:1h*22882h*F@*8haal %

wirth:8w92h28fh*(Hh98H1&

wontdget 7%""1j2labdGH rivest:&shsdg&&hsgDGH2*1

Fighting the Salt: 4096 Tables

 Crackers build 4096 tables, one for each

salt value

— Build massive databases, on-line, for each

salt
* 100’s of GB was a lot of storage a few years ago,
but not any longer!
 Indexed for fast look-up
* Most any common password is found quickly by
such a program

« Used by miscreants, but also by sysadmins to find
weak passwords on their system

Getting the /etc/passwd File

* Public file, but only if you have an acct

— There have been tricks for remotely fetching
the /etc/passwd file using ftp and other
vulnerabilities

— Often this is all an attacker is after

* Very likely to find weak passwords and get on the
machine

— Of course if you are a local user, no problem

— Removing the /etc/passwd from global view
creates too many problems

Shadowed Passwords

 One common approach is to put just the
password digests into /etc/shadow

— /etc/passwd still has username, userid, groupid, home
dir, shell, etc., but the digests are missing

— /etc/shadow has only the username and digests (and
a couple of other things)

— /etc/shadow is readable and writeable for root only
« Makes it a bit harder to get a hold of

« Breaks some software (including the buggy web server)
which wants to authenticate users with their passwords

— One might argue that non-root software shouldn’t be asking for
user passwords anyhow

Last Example: Ingres Authorization
Strings
* |Ingres, 1990

— 2"d largest database company behind Oracle

* Authorization Strings

— Encoded what products and privileges the user had
purchased
« Easier to maintain this way: ship entire product
« Easier to sell upgrades: just change the string

« Documentation guys
— Needed an example auth string for the manual

Moral

* There’'s no defending against stupidity

« Social engineering is almost always the easiest
way to break in

— Doesn’t work on savvy types or sys admins, but
VERY effective on the common user

— | can almost guarantee | could get the password of
most CU students easily

« “Hi this is Jack Stevens from ITS and we need to change
your password for security reasons; can you give me your
current password?”

Social Engineering: Phishing

* Sending authentic looking email saying
“need you to confirm your PayPal account
information”

— Email looks authentic
— URL is often disguised

— Rolling over the link might even pop-up a valid
URL in a yellow box!

— Clicking takes you to attacker’s site, however
* This site wants your login info

Disguising URLSs

* URI spec

— Anything@http://www.colorado.edu is
supposed to send you to www.colorado.edu

« Can be used to disguise a URL.:

— http://www.ebay.com-
SECURITYCHECKw8grHGAkdj>jd7788<Account
Maintenace-4957725-s5982ut-aw-ebayconfirm-secure-
23985225howf8shfMHHIUBd889yK@www.evil.org

* Notice feel-good words

» Length of URI exceeds width of browser, so you may not see
the end

« www.evil.org could be hex encoded for more deception

Disguising URL's (cont)

This no longer works on |E
Still works on Mozilla

In |[E 5.x and older, there was another trick
where you could get the toolbar and URL
window to show “www.paypal.com” even though
you had been sent to a different site

— Very scary

Moral: don't click on email links; type in URL
manually

