
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #21
Nov 9th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Quiz #3 – Returned today

• Proj #2 – Due week from Thurs

• Proj #3 – Still time, but get started
– Tricky in parts

• Use of class mailing lists
– Good!

Format String Vulnerabilities
• Example:

output(char *p)
{

printf(p);
}

• Seems harmless: prints whatever string is
handed to it
– But if string is user-supplied, strange things can

happen
– Consider what happens if formatting chacters are

included
• Ex: p = “%s”

Format Strings (cont)

• Let’s play with format strings:
– “AAAAAAA%08x%08x%08x%08x”
– Prints values from the stack (expecting

parameters)
Top of stack

Format string

ret

sfp

AAAAAAAA%08x%08x%08x%08x

Return address to caller

Saved Frame Pointer

4 bytes

4 bytes

4 bytes

p Ptr to format string

printf called

.

. values from here are printed

Example Output

• Continuing with
“AAAAAAA%08x%08x%08x%08x”
– AAAAAAAA012f2f1580ff000010ff202018ae1414
– So the above values were on the stack… how can we

exploit this?
• We can keep printing stack values until we run into the

format string itself… might lead to something interesting
• AAAAAAA%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0
8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%
08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

• Output:
AAAAAAAA12f2f1580f…414141414141414178380425

Printing Data from (almost)
Anywhere in Memory

• As we saw, %s interprets stack value as a
pointer, not an int
– Suppose we would like to read from address

0x77f7f570
• Note: we can’t have any 00 bytes in the address since we are

about to embed it in a string

– Use format string
“AAAA\x70\xf5\xf7\x77%08x%08x…%08x_%s_”

• Note we’re assuming little-endian here
– Output “AAAApJ^0012ff800cccc…ccc41414141_&h2!$*\&_”

• Note that string will terminate at first 0 byte encountered (and
segfault if you go off the end of valid memory)

Picture of Stack
• Kind of confusing:

– As printf reads the format string, it’s reading down the
stack for its arguments as well

– When printf gets to the %s, the arg ptr is pointing at
\x70\xf5\xf7\x77, so we print the contents of that addr

Top of stack

Format string

ret

sfp

AAAA\x70\xf5\xf7\x77%08x%08x…%08x_%s_

Return address to caller

Saved Frame Pointer

4 bytes

4 bytes

4 bytes

p Ptr to format string

printf called

.

. values from here are printed

But Can We Alter the Stack
Contents?

• Introducing the %n token
– This one is obscure: nothing is printed but the

number of chars printed thus far is stored at
the address indicated by the corresponding
parameter to %n

– Ex: printf(“hi%n there”, &i); now i = 2
– How can we use this ability to write to

memory?
• Consider “AAAA\x70\xf5\xf7\x77%08x%08x…%08%n”
• Writes 0x00000164 (= 356) to address 0x77f7f570

Using %n

• Extending this, we can write any value of
our choice to (almost) any address
– “AAAA\x70\xf5\xf7\x77\x71\xf5\xf7\x77\x72\xf5\xf7\x7

7\x73\xf5\xf7\x77%08x%08x…%08x%n%n%n%n”
– Writes 0x00000164 four times, so at address

0x77f7f570 we will see 0x64646464
– But how do we get values of our choice to address

0x77f7f570 instead of this 0x64646464 thing?
• Let’s use the %##u token (or any other that takes a length

specifier)

Writing Arbitrary Values

• We use the width specifier to add any
number of bytes we like to the current
“number of printed chars” count
– To write 0xfff09064 we use

““AAAA\x70\xf5\xf7\x77\x71\xf5\xf7\x77\x72\xf5\xf7\x
77\x73\xf5\xf7\x77%08x%08x…%08x%n%43u%n%9
6%n%15u%n”

– This works fine if we are wanting to write ever-
increasing byte values

• How can we write 0xf0ff9064?
• How might we write to address 0x400014a0?

Detecting Format String
Vulnerabilities

• Not as hard to detect as buffer overflows
(which can be very subtle)

• One method is to look for calls to printf,
sprintf, snprintf, fprintf, etc. and examine
the stack clean up code
– Recall that after a function call returns, it must

remove its parameters from the stack by
adding the sum of their sizes to esp

– If we see add $4, %esp, we flag a possible
vulnerability

Heap Overflows

• These are among the hardest to exploit
and depend on minute OS and compiler
details
– Some hackers consider writing a heap

overflow as a rite of passage
– We will only sketch how they work; a detailed

example would take too long
– This is the last software vulnerability we’ll talk

about in this class, but there are MANY more

What is the Heap?

• The area of data which grows toward the stack
– malloc() and new use this memory area for dynamic

structures
– Unlike the stack, we do not linearly grow and shrink

the heap
• We allocated and deallocate blocks in any order
• We have to worry about marking the size of blocks, blending

adjacent deallocated chunks for re-use, etc.
• Many algorithms (with various tradeoffs) exist so this attack

will depend on the specifics of those algorithms

The Heap (Layout)

HEADER HEAP BUFFER

HEAP BUFFER

HEAP BUFFER

HEADER

HEADER

Size of Block/8 Size of Prev Block/8

Flags

Windows 2K
Heap Header

Higher Memory

How to Exploit a Heap Overflow

• Details vary, but in one case:
– free() takes a value from the header and

writes to an address also taken from the
header

– If we can overflow the buffer just before this
header, we can control both the address used
and the value written to that address

– This address could be a return address on the
stack, and we know the rest of the story…

Other Vulnerabilities

• We have been discussing a range of
common and generic vulnerabilities
– There are lots more which are more

application-specific
– We couldn’t possibly hope to cover them all
– Let’s look at a couple of examples

Password Checking and Page
Faults

• Some older OS worked like this:
– Password was checked character-by-

character by a high-privilege program
– If password mismatch occurred, program

stopped checking at that point
– Page faults were viewable by all
– Idea:

• Put candidate password on disk which is known
not to be in memory, and watch page faults

Page Fault Technique (cont)
• Idea: place candidate password across page boundary

on disk
– If we page fault to get second page, the password-checking

program must have matched correctly up to all characters before
the boundary

– If we don’t page fault, keep trying last letter before boundary
– Each time we get a character correct, shift left and continue until

we get the whole password

xyzzyActual Password
(protected memory)

xy qr7a

Page boundaryPage fault occurs

Candidate Password
(on disk)

Password Crackers

• Unix approach: store one-way hash of password
in a public file
– Since hash is one-way, there is no risk in showing the

digest, right?
– This assumes there are enough inputs to make

exhaustive search impossible (recall IP example from
the midterm)

– There are enough 10-char passwords, but they are
NOT equally likely to be used

• HelloThere is more likely than H7%$$a3#.4 because we’re
human

Password Crackers (cont)

• Idea is simple: try hashing all common
words and scan for matching digest
– Original Unix algorithm for hash is to iterate

DES 25 times using the password to derive
the DES key

• DES25(pass, 064) = digest
• Note: this was proved secure by noticing that this

is the CBCMAC of (064)25 under key ‘pass’ and
then appealing to known CBCMAC results

• Why is DES iterated so many times?

Password Crackers (cont)

• Note: Actually uses a variant of DES to
defeat hardware-based approaches

• Note: Modern implementations often use
md5 instead of this DES-based hash

• But we can still launch a ‘dictionary attack’
– Take large list of words, names, birthdays,

and variants and hash them
– If your password is in this list, it will be

cracked

Password Crackers: example

word digest

alabaster xf5yh@ae1

&trh23Gfhad

Hj68aan4%41

7%^^1j2labdGH

albacore

alkaline

wont4get

Pasword file
/etc/passwd

jones:72hadGKHHA%

smith:HWjh234h*@!!j!

jackl:UwuhWuhf12132^

taylor:Hj68aan4%41

bradt:&sdf29jhabdjajK22

knuth:ih*22882h*F@*8haa

wirth:8w92h28fh*(Hh98H

rivest:&shsdg&&hsgDGH2

Making Things Harder: Salt

• In reality, Unix systems always add a two-
character “salt” before hashing your
password
– There are 4096 possible salts
– One is randomly chosen, appended to your

password, then the whole thing is hashed
– Password file contains the digest and the salt

(in the clear)
– This prevents attacking all passwords in

/etc/passwd in parallel

Password Crackers: with Salt

word digest

alabaster xf5yh@ae1

&trh23Gfhad

U8&@H**12

7%^^1j2labdGH

albacore

alkaline

wont4get

Pasword file
/etc/passwd

jones:72hadGKHHA%H7

smith:HWjh234h*@!!j!YY

jackl:UwuhWuhf12132^a$

taylor:Hj68aan4%41y$

bradt:&sdf29jhabdjajK22Ja

knuth:ih*22882h*F@*8haaU%

wirth:8w92h28fh*(Hh98H1&

rivest:&shsdg&&hsgDGH2*1

Table for Salt Value: A6

no match

Fighting the Salt: 4096 Tables

• Crackers build 4096 tables, one for each
salt value
– Build massive databases, on-line, for each

salt
• 100’s of GB was a lot of storage a few years ago,

but not any longer!
• Indexed for fast look-up
• Most any common password is found quickly by

such a program
• Used by miscreants, but also by sysadmins to find

weak passwords on their system

Getting the /etc/passwd File

• Public file, but only if you have an acct
– There have been tricks for remotely fetching

the /etc/passwd file using ftp and other
vulnerabilities

– Often this is all an attacker is after
• Very likely to find weak passwords and get on the

machine
– Of course if you are a local user, no problem
– Removing the /etc/passwd from global view

creates too many problems

Shadowed Passwords
• One common approach is to put just the

password digests into /etc/shadow
– /etc/passwd still has username, userid, groupid, home

dir, shell, etc., but the digests are missing
– /etc/shadow has only the username and digests (and

a couple of other things)
– /etc/shadow is readable and writeable for root only

• Makes it a bit harder to get a hold of
• Breaks some software (including the buggy web server)

which wants to authenticate users with their passwords
– One might argue that non-root software shouldn’t be asking for

user passwords anyhow

Last Example: Ingres Authorization
Strings

• Ingres, 1990
– 2nd largest database company behind Oracle

• Authorization Strings
– Encoded what products and privileges the user had

purchased
• Easier to maintain this way: ship entire product
• Easier to sell upgrades: just change the string

• Documentation guys
– Needed an example auth string for the manual

Moral
• There’s no defending against stupidity

• Social engineering is almost always the easiest
way to break in
– Doesn’t work on savvy types or sys admins, but

VERY effective on the common user
– I can almost guarantee I could get the password of

most CU students easily
• “Hi this is Jack Stevens from ITS and we need to change

your password for security reasons; can you give me your
current password?”

Social Engineering: Phishing

• Sending authentic looking email saying
“need you to confirm your PayPal account
information”
– Email looks authentic
– URL is often disguised
– Rolling over the link might even pop-up a valid

URL in a yellow box!
– Clicking takes you to attacker’s site, however

• This site wants your login info

Disguising URLs

• URI spec
– Anything@http://www.colorado.edu is

supposed to send you to www.colorado.edu
• Can be used to disguise a URL:

– http://www.ebay.com-
SECURITYCHECKw8grHGAkdj>jd7788<Account
Maintenace-4957725-s5982ut-aw-ebayconfirm-secure-
23985225howf8shfMHHIUBd889yK@www.evil.org

• Notice feel-good words
• Length of URI exceeds width of browser, so you may not see

the end
• www.evil.org could be hex encoded for more deception

Disguising URL’s (cont)

• This no longer works on IE
• Still works on Mozilla
• In IE 5.x and older, there was another trick

where you could get the toolbar and URL
window to show “www.paypal.com” even though
you had been sent to a different site
– Very scary

• Moral: don’t click on email links; type in URL
manually

