Foundations of Network and
Computer Security

John Black

Lecture #20
Nov 4t 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

* Quiz #3 — Today

— Need to know what big-endian is
— Remind me to mention it if | forget!

 Brian’s detective work
— Mazdak will fix as he can

The Translation Table

char s[n]; alloc(s) = n;

s[n] = \0’; len(s) = max(len(s), n+l)

p = “foo”; len(p) = 4; alloc(p) = 4;
strlen(s) len(s)-1

gets (s) ; len(s) = choose(l..00) ;
fgets(s,n,..); len(s) = choose(l..n);
strcpy(dst, src); len(dst) = len(src);

strncpy (dst, src, n); len(dst) = min(len(src), n);
strcat (s, suffix); len(s) += len(suffix) - 1;
strncat (s, suffix, n); len(s) += min(len(suffix)-1,n);

And so on

Program Analysis

* Once we set these “variables” we wish to see if it's
possible to violate our constraint (len(s) <= alloc(s) for all
strings s)

— A simplified approach is to do so without flow analysis
« This makes the tool more scalable because flow analysis is hard

* However it means that strcat() cannot be correctly analyzed

« So we will flag every nontrivial usage of strcat() as a potential
overflow problem (how annoying)

* The actual analysis is done with an “integer range
analysis” program which we won’t describe here

— Integer range analysis will examine the constraints we generated
above and determine the possible ranges each variable could
assume

Evaluating the Range Analysis

* Suppose the range analysis tells us that
for string s we have

a<=len(s)<=b and c<=alloc(s)<=d

* Then we have three possibillities:

b<=c¢ s never overflows its buffer

a>d s always overflows its buffer (usually caught
early on)

c<=b s possibly overflows its buffer: issue a warning

An Implementation of the Tool

* David Wagner implemented (a simple
version of) this tool as part of his PhD
thesis work

— Pointers were ignored

* This means *argv[] is not handled (and it is a
reasonably-frequent culprit for overflows)

—~ structS were handled

» Wagner ignored them initially, but this turned out to
be bad

— function pointers, unions, ignored

Emperical Results

* Applied to several large software packages

— Some had no known buffer overflow vulnerabilities
and other did

 The Linux nettools package

— Contains utilities such as netstat, ifconfig, route,
etc.

— Approximately 7k lines of C code

— Already hand-audited in 1996 (after several overflows
were discovered)

— Nonetheless, Wagner discovered several more
exploitable vulnerabilities

And then there's sendmail

+ sendmail IS a Unix program for forwarding
email
— About 32k lines of C

— Has undergone several hand audits after
many vulnerabilities were found (overflows
and race conditions mostly)

— Wagner found one additional off-by-one error

* Running on an old version of sendmail (V.
8.7.5), he found 8 more (all of which had
been subsequently fixed)

Performance

* Running the tool on sendmail took about 15
mins
— Almost all of this was for the constraint generation

— Combing by hand through the 44 “probable overflows”
took much longer (40 of these were false alarms)

— But sendmail 8.9.3 has 695 calls to potentially unsafe

string routines

» Checking these by hand would be 15 times more work than
using the tool, so running the tool is worthwhile here

Endianness

* A multi-byte quantity (like an integer) can
be stored in two ways

—1=0x12345678:;
— In memory:
Lower Addrs
78 56 34 12 Little Endian

12 34 56 78 Big Endian

Off-by-one Overflows

 Consider this code:

void testl (char *p)

{
char t[12];

strcpy(t, “test”);
strncat (t, p, 12-4);

}

« Recall that strncat() adds chars from p on to
string t, adding at most 12-4=8 of them

— But with the null, this produces an off-by-one error:
we need 13 characters!

— Note: this is a common error and usually not thought
of as a security problem!

What happens on overflow?

o Try test1("™xXxxxxxxx")
— Null byte overwrites first byte of sfp

— Next we mov esp, ebp; pop ebp

* This means the ebp will contain the old value clobbered by
the Null (call this mbp: munged base pointer)

Note: off-by-one must be adjacent Top of stack

to sfp in order to be exploitable

t XXXXXXXXXXXX 12 bytes

sfp | 00 Saved Frame Pointer 4 bytes

ret Return address to caller 4 bytes

str Ptr to large string 4 bytes

Bottom of stack

And on the next function exit?

« With the wrong ebp value, equal to mbp, we
return to the caller

— Caller then exits next and does what?
— mov esp, ebp; pop ebp; ret
— So the stack ptr is now mbp

— If we also control memory around address mbp, we
take over the machine
 The ret call will transfer control wherever we like

* Note that we don’t need an overflow in this secondary buffer,
we just need to control its contents

— Despite this sounding far-fetched, there have been
numerous exploitable off-by-ones

« SSH, wu-ftp, and more

Format String Vulnerabilities

* Example:

output (char *p)

{
printf (p);

}

« Seems harmless: prints whatever string is
handed to it

— But if string is user-supplied, strange things can
happen

— Consider what happens if formatting chacters are
included
« Ex:p="%s"

Format Strings (cont)

» Let's play with format strings:
— “AAAAAAAY%08x%08x%08x%08x”
— Prints values from the stack (expecting

parameters)
Top of stack
sfp Saved Frame Pointer 4 bytes
prinif called ret | Return address to caller 4 bytes
” p Ptr to format string 4 bytes

values from here are printed

Format string | A444444A4%08x%08x%08x%08x

Example Output

» Continuing with
"AAAAAAA%O08x%08x%08x%08x”

— AAAAAAAAD12f2f1580ff000010ff202018ae1414

— So the above values were on the stack... how can we
exploit this?

* We can keep printing stack values until we run into the
format string itself... might lead to something interesting

 AAAAAAAY%08x%08x%08x%08x%08x%08x%08x%08x%08
X%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0
8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%
08x%08%x%08x%08x%08x%08x%08x%08x%08x%08x%08x

* Output:
AAAAAAAA12f2f1580f...414141414141414178380425

Printing Data from (almost)
Anywhere in Memory

* As we saw, %s interprets stack value as a
pointer, not an int

— Suppose we would like to read from address
Ox77f7f570

* Note: we can’t have any 00 bytes in the address since we are
about to embed it in a string

— Use format string
“AAAA\X7 O\xFE\XF7\X77%08x%08xX...%08x_%s_”

* Note we’re assuming little-endian here
— Output “AAAApJ*0012ff800cccc...ccc41414141 &h2!1$\&

» Note that string will terminate at first 0 byte encountered (and
segfault if you go off the end of valid memory)

Picture of Stack

 Kind of confusing:

— As printf reads the format string, it's reading down the
stack for its arguments as well

— When printf gets to the %s, the arg ptr is pointing at
\X70\xf5\xf7\x77, so we print the contents of that addr

Top of stack
sfp Saved Frame Pointer 4 bytes
printf called ret | Return address to caller 4 bytes
| R
g p Ptr to format string 4 bytes

v

values from here are printed

.

Format string AAAAX70\xf5\xf7\x77%08x%08x ... %608x_%6s

But Can We Alter the Stack
Contents?

* Introducing the %n token

— This one is obscure: nothing is printed but the
number of chars printed thus far is stored at
the address indicated by the corresponding
parameter to %n

— Ex: printf(*hi%n there”, &i); now i = 2
— How can we use this ability to write to

memory?

o Consider “AAAA\X70\xf5\xf7\x77 %08x%08x...%08%n”
« Writes 0x00000164 (= 356) to address 0x77f7f570

Using %n

« Extending this, we can write any value of

our choice to (almost) any address

— “AAAANXT O\XIE\XT7\X7 7\XT A\XEO\XT 7\X7 7\XT7 2\Xxf5\xf 7\x7
T\XT 3\XF5\XF7\x77%08x%08x...%08x%n%n%n%n"

— Writes 0x00000164 four times, so at address
Ox77f7t570 we will see 0x64646464

— But how do we get values of our choice to address
Ox77f7t570 instead of this 0x64646464 thing?

» Let’s use the %##u token (or any other that takes a length
specifier)

Writing Arbitrary Values

* We use the width specifier to add any
number of bytes we like to the current
“number of printed chars” count

— To write 0xfff09064 we use

“AAAAXTO\XFE\XF7\X7 7\X7 1\xfE\XF7\X7 7\X7 2\xf5\xf7\x
7 T\XT3\Xt5\xf7\x77%08x%08X...%08x%n%43u%n%9
6%nNn%15u%n”

— This works fine if we are wanting to write ever-
iIncreasing byte values

* How can we write 0xfOff90647?
« How might we write to address 0x400014a0?

Detecting Format String
Vulnerabilities

 Not as hard to detect as buffer overflows
(which can be very subtle)

* One method is to look for calls to printf,
sprintf, snprintf, fprintf, etc. and examine
the stack clean up code

— Recall that after a function call returns, it must
remove its parameters from the stack by
adding the sum of their sizes to esp

— If we see add $4, %esp, we flag a possible
vulnerability

Heap Overflows

* These are among the hardest to exploit
and depend on minute OS and compiler
details

— Some hackers consider writing a heap
overflow as a rite of passage

— We will only sketch how they work; a detailed
example would take too long

— This is the last software vulnerability we'll talk
about in this class, but there are MANY more

What is the Heap?

* The area of data which grows toward the stack

— malloc() and new use this memory area for dynamic
structures

— Unlike the stack, we do not linearly grow and shrink
the heap

* We allocated and deallocate blocks in any order

« We have to worry about marking the size of blocks, blending
adjacent deallocated chunks for re-use, etc.

« Many algorithms (with various tradeoffs) exist so this attack
will depend on the specifics of those algorithms

The Heap (Layout)

HEADER HEAP BUFFER >
HEADER HEAP BUFFER
> HEADER
HEAP BUFFER >
Higher Memory
Size of Block/8 Size of Prev Block/&
Windows 2K
Heap Header
Flags

How to Exploit a Heap Overflow

* Details vary, but in one case:

— free() takes a value from the header and
writes to an address also taken from the
neader

— If we can overflow the buffer just before this
neader, we can control both the address used
and the value written to that address

— This address could be a return address on the
stack, and we know the rest of the story...

