
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #20
Nov 4th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Quiz #3 – Today
– Need to know what big-endian is
– Remind me to mention it if I forget!

• Brian’s detective work
– Mazdak will fix as he can

And so on . . .
len(s) += min(len(suffix)–1,n);strncat(s, suffix, n);

alloc(s) = n;char s[n];
len(s) = max(len(s), n+1)s[n] = ‘\0’;

len(s) += len(suffix) – 1;strcat(s, suffix);
len(dst) = min(len(src), n);strncpy(dst, src, n);
len(dst) = len(src);strcpy(dst, src);
len(s) = choose(1…n);fgets(s,n,…);
len(s) = choose(1…∞);gets(s);
len(s)-1 strlen(s)
len(p) = 4; alloc(p) = 4;p = “foo”;

Derived Abstract ModelOriginal C Source

The Translation Table

Program Analysis
• Once we set these “variables” we wish to see if it’s

possible to violate our constraint (len(s) <= alloc(s) for all
strings s)
– A simplified approach is to do so without flow analysis

• This makes the tool more scalable because flow analysis is hard
• However it means that strcat() cannot be correctly analyzed
• So we will flag every nontrivial usage of strcat() as a potential

overflow problem (how annoying)

• The actual analysis is done with an “integer range
analysis” program which we won’t describe here
– Integer range analysis will examine the constraints we generated

above and determine the possible ranges each variable could
assume

Evaluating the Range Analysis

• Suppose the range analysis tells us that
for string s we have

a <= len(s) <= b and c <= alloc(s) <= d
• Then we have three possibilities:

b <= c s never overflows its buffer
a > d s always overflows its buffer (usually caught

early on)
c <= b s possibly overflows its buffer: issue a warning

An Implementation of the Tool

• David Wagner implemented (a simple
version of) this tool as part of his PhD
thesis work
– Pointers were ignored

• This means *argv[] is not handled (and it is a
reasonably-frequent culprit for overflows)

– structs were handled
• Wagner ignored them initially, but this turned out to

be bad
– function pointers, unions, ignored

Emperical Results
• Applied to several large software packages

– Some had no known buffer overflow vulnerabilities
and other did

• The Linux nettools package
– Contains utilities such as netstat, ifconfig, route,

etc.
– Approximately 7k lines of C code
– Already hand-audited in 1996 (after several overflows

were discovered)
– Nonetheless, Wagner discovered several more

exploitable vulnerabilities

And then there’s sendmail
• sendmail is a Unix program for forwarding

email
– About 32k lines of C
– Has undergone several hand audits after

many vulnerabilities were found (overflows
and race conditions mostly)

– Wagner found one additional off-by-one error
• Running on an old version of sendmail (v.

8.7.5), he found 8 more (all of which had
been subsequently fixed)

Performance
• Running the tool on sendmail took about 15

mins
– Almost all of this was for the constraint generation
– Combing by hand through the 44 “probable overflows”

took much longer (40 of these were false alarms)
– But sendmail 8.9.3 has 695 calls to potentially unsafe

string routines
• Checking these by hand would be 15 times more work than

using the tool, so running the tool is worthwhile here

Endianness

• A multi-byte quantity (like an integer) can
be stored in two ways
– i = 0x12345678;
– In memory:

78 56 34 12

12 785634

Lower Addrs

Little Endian

Big Endian

Off-by-one Overflows
• Consider this code:
void test1(char *p)

{
char t[12];
strcpy(t, “test”);
strncat(t, p, 12-4);

}

• Recall that strncat() adds chars from p on to
string t, adding at most 12-4=8 of them
– But with the null, this produces an off-by-one error:

we need 13 characters!
– Note: this is a common error and usually not thought

of as a security problem!

What happens on overflow?

• Try test1(“xxxxxxxx”)
– Null byte overwrites first byte of sfp
– Next we mov esp, ebp; pop ebp

• This means the ebp will contain the old value clobbered by
the Null (call this mbp: munged base pointer)

Bottom of stack

Top of stack

*str

ret

sfp

t

Ptr to large_string

Return address to caller

00 Saved Frame Pointer

4 bytes

4 bytes

4 bytes

12 bytesxxxxxxxxxxxx

Note: off-by-one must be adjacent
to sfp in order to be exploitable

And on the next function exit?
• With the wrong ebp value, equal to mbp, we

return to the caller
– Caller then exits next and does what?
– mov esp, ebp; pop ebp; ret
– So the stack ptr is now mbp
– If we also control memory around address mbp, we

take over the machine
• The ret call will transfer control wherever we like
• Note that we don’t need an overflow in this secondary buffer,

we just need to control its contents
– Despite this sounding far-fetched, there have been

numerous exploitable off-by-ones
• SSH, wu-ftp, and more

Format String Vulnerabilities
• Example:

output(char *p)
{

printf(p);
}

• Seems harmless: prints whatever string is
handed to it
– But if string is user-supplied, strange things can

happen
– Consider what happens if formatting chacters are

included
• Ex: p = “%s”

Format Strings (cont)

• Let’s play with format strings:
– “AAAAAAA%08x%08x%08x%08x”
– Prints values from the stack (expecting

parameters)
Top of stack

Format string

ret

sfp

AAAAAAAA%08x%08x%08x%08x

Return address to caller

Saved Frame Pointer

4 bytes

4 bytes

4 bytes

p Ptr to format string

printf called

.

. values from here are printed

Example Output

• Continuing with
“AAAAAAA%08x%08x%08x%08x”
– AAAAAAAA012f2f1580ff000010ff202018ae1414
– So the above values were on the stack… how can we

exploit this?
• We can keep printing stack values until we run into the

format string itself… might lead to something interesting
• AAAAAAA%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0
8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%
08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

• Output:
AAAAAAAA12f2f1580f…414141414141414178380425

Printing Data from (almost)
Anywhere in Memory

• As we saw, %s interprets stack value as a
pointer, not an int
– Suppose we would like to read from address

0x77f7f570
• Note: we can’t have any 00 bytes in the address since we are

about to embed it in a string

– Use format string
“AAAA\x70\xf5\xf7\x77%08x%08x…%08x_%s_”

• Note we’re assuming little-endian here
– Output “AAAApJ^0012ff800cccc…ccc41414141_&h2!$*\&_”

• Note that string will terminate at first 0 byte encountered (and
segfault if you go off the end of valid memory)

Picture of Stack
• Kind of confusing:

– As printf reads the format string, it’s reading down the
stack for its arguments as well

– When printf gets to the %s, the arg ptr is pointing at
\x70\xf5\xf7\x77, so we print the contents of that addr

Top of stack

Format string

ret

sfp

AAAA\x70\xf5\xf7\x77%08x%08x…%08x_%s_

Return address to caller

Saved Frame Pointer

4 bytes

4 bytes

4 bytes

p Ptr to format string

printf called

.

. values from here are printed

But Can We Alter the Stack
Contents?

• Introducing the %n token
– This one is obscure: nothing is printed but the

number of chars printed thus far is stored at
the address indicated by the corresponding
parameter to %n

– Ex: printf(“hi%n there”, &i); now i = 2
– How can we use this ability to write to

memory?
• Consider “AAAA\x70\xf5\xf7\x77%08x%08x…%08%n”
• Writes 0x00000164 (= 356) to address 0x77f7f570

Using %n

• Extending this, we can write any value of
our choice to (almost) any address
– “AAAA\x70\xf5\xf7\x77\x71\xf5\xf7\x77\x72\xf5\xf7\x7

7\x73\xf5\xf7\x77%08x%08x…%08x%n%n%n%n”
– Writes 0x00000164 four times, so at address

0x77f7f570 we will see 0x64646464
– But how do we get values of our choice to address

0x77f7f570 instead of this 0x64646464 thing?
• Let’s use the %##u token (or any other that takes a length

specifier)

Writing Arbitrary Values

• We use the width specifier to add any
number of bytes we like to the current
“number of printed chars” count
– To write 0xfff09064 we use

““AAAA\x70\xf5\xf7\x77\x71\xf5\xf7\x77\x72\xf5\xf7\x
77\x73\xf5\xf7\x77%08x%08x…%08x%n%43u%n%9
6%n%15u%n”

– This works fine if we are wanting to write ever-
increasing byte values

• How can we write 0xf0ff9064?
• How might we write to address 0x400014a0?

Detecting Format String
Vulnerabilities

• Not as hard to detect as buffer overflows
(which can be very subtle)

• One method is to look for calls to printf,
sprintf, snprintf, fprintf, etc. and examine
the stack clean up code
– Recall that after a function call returns, it must

remove its parameters from the stack by
adding the sum of their sizes to esp

– If we see add $4, %esp, we flag a possible
vulnerability

Heap Overflows

• These are among the hardest to exploit
and depend on minute OS and compiler
details
– Some hackers consider writing a heap

overflow as a rite of passage
– We will only sketch how they work; a detailed

example would take too long
– This is the last software vulnerability we’ll talk

about in this class, but there are MANY more

What is the Heap?

• The area of data which grows toward the stack
– malloc() and new use this memory area for dynamic

structures
– Unlike the stack, we do not linearly grow and shrink

the heap
• We allocated and deallocate blocks in any order
• We have to worry about marking the size of blocks, blending

adjacent deallocated chunks for re-use, etc.
• Many algorithms (with various tradeoffs) exist so this attack

will depend on the specifics of those algorithms

The Heap (Layout)

HEADER HEAP BUFFER

HEAP BUFFER

HEAP BUFFER

HEADER

HEADER

Size of Block/8 Size of Prev Block/8

Flags

Windows 2K
Heap Header

Higher Memory

How to Exploit a Heap Overflow

• Details vary, but in one case:
– free() takes a value from the header and

writes to an address also taken from the
header

– If we can overflow the buffer just before this
header, we can control both the address used
and the value written to that address

– This address could be a return address on the
stack, and we know the rest of the story…

