
Foundations of Network and Foundations of Network and 
Computer SecurityComputer Security

JJohn Black

Lecture #14
Oct 11th 2004

CSCI 6268/TLEN 5831, Fall 2004



Announcements

Midterm Thursday
– Material: lectures through today; all readings; all 

projects (not silly OpenSSL details)
– Closed notes; calculators allowed
– Exam is 4 pages long (double-sided)

• 2.5 pages short-answer
• 0.5 pages extended topic
• 1 page of justified true/false

– Half of exam is regurgitation, half is thought-problems
• Some thought problems are hard

– Best strategy: do easiest problems first
– For hard problems, if you can’t solve it, prove you at least know 

what the goal is (for partial credit)



Colloquium Talk

• Thursday, Oct 14th, 3:30pm, ECCR 265

• This is my “reappointment talk”

• Might be kind of redundant for people in 
this class, but come if you have nothing 
better to do



Tracebacks Methods
• One basic problem with fighting DDoS is that we 

cannot find the source IP of the attacker
– Finding the attacker would allow us to shut down the 

attack at the source
• This assumes ISPs will cooperate and that there is a 

mechanism in place for reporting the source
• Both of these assumptions are questionable as we saw in the 

Gibson story
– The Internet Protocol (IP) makes it hard to find out 

where things are coming from
• Easy to forge source IPs
• No tracing mechanism available

– This is on purpose



Adding Traceback 

• Perhaps we could add a mechanism to IP to 
implement traceback
– Still doesn’t stop reflectors
– Needs to be backward-compatible with current routing 

protocols
• If not, too expensive and no one will do it

– There have been several suggestions
• Probabilistic traceback
• Algebraic traceback
• Others

– We’ll look just at probabilistic traceback



Probabilistic Traceback

• Original idea due to Savage, Wetherall, 
Karlin, and Anderson
– “Practical Network Support for IP Traceback”

• Improved scheme due to Song and Perrig
– “Advanced and Authenticated Marking 

Schemes for IP Traceback”
• We’ll focus on the first paper, even though 

it is still far from a complete solution



First Try: Link Testing
• Idea: Manually trace source of traffic

– Too labor intensive
– Some tools developed, but requires a lot of 

cooperation between ISPs and backbone companies
• Not much economic incentive to cooperate

– Could use “controlled flooding”
• Induce traffic from upstream routers and see which traffic is 

dropped
• But this is a DoS attack itself… ethical?
• Relies on being able to generate traffic
• Requires good map of the Internet… hard to get

– Both are useful only during an attack



How about Logging?

• Idea: select routers log all packets as they 
pass through
– Then what?
– Data mining techniques to try and figure out 

which packets were part of an attack
– Then trace back upstream 
– Huge resource requirements!
– Large-scale inter-provider database 

integration problems



Packet Marking

• Idea: mark packets as they pass through routers
– The mark should give information as to what route the 

packet took
– One idea is to mark every packet that traverses a 

given router
• Just append their IP address to a list in the IP header
• Drawback is that this is a HUGE burden to put on routers

– They would have to mark EVERY packet
– Packets would get enormous if they travel a long route
– Packets might be caused to fragment 



Probabilistic Packet Marking

• First, some assumptions:
– Attackers can generate any packet
– Attackers can conspire
– Packets can be lost or reordered
– Route from attacker to victim is mostly stable
– Routers are not widely compromised



PPM: Continued

• Each router writes its address in a 32-bit 
field only with probability p
– Routers don’t care if they are overwriting 

another router’s address
– Probability of seeing the mark of a router d 

hops away is p(1-p)d-1

– This is monotonic so victim can sort by 
number of packets received and get the path

• Smallest number is received by furthest router, etc



PPM: Difficulties
• We have to change the IP header any time a router 

marks a packet
– This means storing the mark (has drawbacks)
– Updating the header checksum

• But this is already done for TTL decrements

• But we may need a LOT of packets to reconstruct a path
– Suppose p=0.51 and d=15, then we need more than 42,000 to 

get a single sample from the furthest router
– To get the order right with 95% probability requires around 

300,000 packets
• Multiple attackers complicates matters

– With multiple attackers at the same distance, this all breaks 
down



Next Try: Edge Sampling
• Reserve two address-sized fields in the IP header: “start” and “end”
• Reserve a small “distance” field as well
• When a router decides to mark a packet, it writes its address in the 

“start” field and zeroes the distance field
• When a router sees a zero in the distance field, it writes its address 

in the “end” field
• If a router decides not to mark a packet, it increments the distance 

field only
– Must use saturating addition
– This is critical to minimize spoofing by the attacker; without it, attackers 

could inject routers close to the victim
– Now attacker can only spoof marks with distance counts equal or 

greater than its distance from the victim
• Note that we can now use any probability p we like

– We’re not sorting based on packet counts any longer



Edge Sampling (Cont)
• The expected number of packets needed for the 

victim to reconstruct the entire path is at most 
ln(d)/p(1-p)d-1

– Example: p=0.1, d=10, reconstruction requires about 
75 packets

– This is related to the coupon-collection problem
• Edge sampling allows reconstruction of the 

whole attack tree
• Encoding start, end, and distance is a problem

– Not backward compatible if we change the IP header!
– There are ways around this



Digression: Coupon Collection
• Suppose you have t types of coupons, C1, C2, … 

, Ct
– Each time you open baseball cards, you get a coupon 

of type i with probability 1/t
– How many coupons do you need before you have a 

complete set?
• Note that in real competitions, all types are not 1/t
• Call total number you need N (a random variable)

– Define a random variable Ni indicating the number of 
draws you need to use when you hold i-1 coupon 
types and you want a new type

• Then N = N1 + N2 + … + Nt



Coupon Collection (cont)
• Then E(N) = E(N1) + … E(Nt)

– Linearity of expectation
• What is E(Ni)?

– Probability of getting a new type if you have i-1 types 
is (N-i+1)/N, so expectation is N/(N-i+1)

• For geometric random variables, expectation is the inverse of 
the parameter

• If you have a fair die, it takes an expected 6 rolls to get a 4 
(for example)

– So E(N) = 1 + N/(N-2) + N/(N-3) + …+ N or N HN
• Here HN is the Nth harmonic number
• This is approximately N ln N.



Back to Reality

• No one does this
– Yet?!

• DDoS attacks are still a huge problem and 
are still quite common

• But fortunately there is even more to worry 
about



TCP Session Hijacking

• This is the last topic on network-based 
attacks for a while

• After the midterm we’ll look at 
vulnerabilities for awhile

• We’ll come back to some network 
protocols and some more crypto later in 
the course



Session Hijacking

• How might we jump in on an established 
TCP session?
– If we could sniff the connections and inject 

traffic, we could do this with no problem
– If we can only inject traffic (by sending 

unsolicited TCP segments to the victim) it’s 
harder

• Must guess the proper sequence number



Hijacking
• If attacker uses sequence number outside the window of Target, 

Target will drop traffic
• If attacker uses sequence number within window, Target accepts as 

from Host A
– Result is a one-sided connection
– Can be used to crash Target, confuse, reset connection, etc

Host A

Target

Attacker

TCP Sessio
n

Guesses Host A’s sequence number, uses Host A’s IP



Preventing Hijacking

• Make sequence number hard-to-guess
– Use random ISNs

• Note that SYN cookies in effect do this by using a 
hash of some stuff which includes a counter and a 
secret key

• There are many other kinds of hijacking 
techniques
– We’ll later look at ARP cache poisoning


