Foundations of Network and
Computer Security

John Black

Lecture #14
Oct 11th 2004

CSCI 6268/TLEN 5831, Fall 2004



Announcements

Midterm Thursday

— Material: lectures through today; all readings; all
projects (not silly OpenSSL details)

— Closed notes; calculators allowed

— Exam is 4 pages long (double-sided)
« 2.5 pages short-answer
* 0.5 pages extended topic
« 1 page of justified true/false

— Half of exam is regurgitation, half is thought-problems

« Some thought problems are hard
— Best strategy: do easiest problems first

— For hard problems, if you can’t solve it, prove you at least know
what the goal is (for partial credit)



Colloquium Talk

« Thursday, Oct 14, 3:30pm, ECCR 265
* This is my “reappointment talk”

* Might be kind of redundant for people in
this class, but come if you have nothing
better to do



Tracebacks Methods

* One basic problem with fighting DDoS is that we
cannot find the source IP of the attacker

— Finding the attacker would allow us to shut down the
attack at the source

* This assumes ISPs will cooperate and that there is a
mechanism in place for reporting the source

« Both of these assumptions are questionable as we saw in the
Gibson story
— The Internet Protocol (IP) makes it hard to find out
where things are coming from
« Easy to forge source IPs

* No tracing mechanism available
— This is on purpose



Adding Traceback

* Perhaps we could add a mechanism to IP to
Implement traceback

— Still doesn’t stop reflectors

— Needs to be backward-compatible with current routing
protocols
« If not, too expensive and no one will do it

— There have been several suggestions
* Probabilistic traceback

* Algebraic traceback
* Others

— We’'ll look just at probabilistic traceback



Probabilistic Traceback

* Original idea due to Savage, Wetherall,
Karlin, and Anderson

— “Practical Network Support for IP Traceback”

* Improved scheme due to Song and Perrig

— “Advanced and Authenticated Marking
Schemes for IP Traceback”

« We'll focus on the first paper, even though
it is still far from a complete solution



First Try: Link Testing

 |dea: Manually trace source of traffic
— Too labor intensive

— Some tools developed, but requires a lot of
cooperation between ISPs and backbone companies
* Not much economic incentive to cooperate

— Could use “controlled flooding”

* Induce traffic from upstream routers and see which traffic is
dropped

« But this is a DoS attack itself... ethical?
* Relies on being able to generate traffic
« Requires good map of the Internet... hard to get

— Both are useful only during an attack



How about Logging?

 ldea: select routers log all packets as they
pass through
— Then what?

— Data mining techniques to try and figure out
which packets were part of an attack

— Then trace back upstream
— Huge resource requirements!

— Large-scale inter-provider database
integration problems



Packet Marking

* |dea: mark packets as they pass through routers

— The mark should give information as to what route the
packet took

— One idea is to mark every packet that traverses a
given router
« Just append their IP address to a list in the |IP header

« Drawback is that this is a HUGE burden to put on routers
— They would have to mark EVERY packet
— Packets would get enormous if they travel a long route
— Packets might be caused to fragment



Probabilistic Packet Marking

* First, some assumptions:
— Attackers can generate any packet
— Attackers can conspire
— Packets can be lost or reordered
— Route from attacker to victim is mostly stable
— Routers are not widely compromised



PPM: Continued

 Each router writes its address in a 32-bit
field only with probability p

— Routers don’t care if they are overwriting
another router’s address

— Probability of seeing the mark of a router d
hops away is p(1-p)d-
— This is monotonic so victim can sort by
number of packets received and get the path
« Smallest number is received by furthest router, etc



PPM: Difficulties

We have to change the IP header any time a router
marks a packet
— This means storing the mark (has drawbacks)

— Updating the header checksum
« But this is already done for TTL decrements

But we may need a LOT of packets to reconstruct a path

— Suppose p=0.51 and d=15, then we need more than 42,000 to
get a single sample from the furthest router

— To get the order right with 95% probability requires around
300,000 packets

Multiple attackers complicates matters

— With multiple attackers at the same distance, this all breaks
down



Next Try: Edge Sampling

Reserve two address-sized fields in the IP header: “start’” and “end”
Reserve a small “distance” field as well

When a router decides to mark a packet, it writes its address in the
“start” field and zeroes the distance field
When a router sees a zero in the distance field, it writes its address
in the “end” field

If a router decides not to mark a packet, it increments the distance
field only

— Must use saturating addition

— This is critical to minimize spoofing by the attacker; without it, attackers
could inject routers close to the victim

— Now attacker can only spoof marks with distance counts equal or
greater than its distance from the victim

Note that we can now use any probability p we like
— We're not sorting based on packet counts any longer



Edge Sampling (Cont)

* The expected number of packets needed for the
victim to reconstruct the entire path is at most

In(d)/p(1-p)d-

— Example: p=0.1, d=10, reconstruction requires about
/5 packets

— This is related to the coupon-collection problem

« Edge sampling allows reconstruction of the
whole attack tree
* Encoding start, end, and distance is a problem

— Not backward compatible if we change the IP header!
— There are ways around this



Digression: Coupon Collection

* Suppose you have t types of coupons, C,, C,, ...
) Ct
— Each time you open baseball cards, you get a coupon
of type i with probability 1/t

— How many coupons do you need before you have a
complete set?
* Note that in real competitions, all types are not 1/t
 Call total number you need N (a random variable)

— Define a random variable N, indicating the number of
draws you need to use when you hold i-1 coupon
types and you want a new type

« ThenN=N,+N,+ ...+ N,



Coupon Collection (cont)

« Then E(N) = E(N,) + ... E(N,)
— Linearity of expectation
* Whatis E(N,)?
— Probability of getting a new type if you have i-1 types
is (N-i+1)/N, so expectation is N/(N-i+1)
« For geometric random variables, expectation is the inverse of

the parameter

* If you have a fair die, it takes an expected 6 rolls to get a 4
(for example)

— So E(N) = 1 + N/(N-2) + N/(N-3) + ...+ N or N Hy
* Here H is the Nth harmonic number
* This is approximately N In N.



Back to Reality

* No one does this
— Yet?!

* DDoS attacks are still a huge problem and
are still quite common

« But fortunately there is even more to worry
about



TCP Session Hijacking

* This is the last topic on network-based
attacks for a while

o After the midterm we’ll look at
vulnerabilities for awhile

* We'll come back to some network
protocols and some more crypto later in
the course



Session Hijacking

 How might we jump in on an established
TCP session?

— If we could sniff the connections and inject
traffic, we could do this with no problem

— If we can only inject traffic (by sending

unsolicited TCP segments to the victim) it's
harder

* Must guess the proper sequence number



Hijacking

If attacker uses sequence number outside the window of Target,

Target will drop traffic
If attacker uses sequence number within window, Target accepts as

from Host A
— Result is a one-sided connection
— Can be used to crash Target, confuse, reset connection, etc

1C

/?uesses Host A’s sequence number, uses Host A’s IP

Host A

Attacker




Preventing Hijacking

 Make sequence number hard-to-guess

— Use random ISNs

* Note that SYN cookies in effect do this by using a
hash of some stuff which includes a counter and a
secret key

* There are many other kinds of hijacking
techniques

— We'll later look at ARP cache poisoning



