
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #9
Sep 21st 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements
• Quiz #2, Tuesday, Sept 28th

• Project #0 due Tuesday, Oct 5th

– A few words about testing output

• Midterm, Thursday, Oct 14th

• Exams are closed notes, calculators allowed

• Remember to consult the class calendar

Prime Number Theorem

• Jeff asked last time about the distribution
of primes
– I gave a pretty non-rigorous answer; let me try

again
• PNT: π(n) ∼ n/ln(n) where π(n) is the number of

primes smaller than n
• In other words, lim n→∞ π(n) ln(n)/n = 1

– What does this mean?
• Primes get sparser as we go to the right on the

number line

π(n) versus n/ln(n)

Sample Calculation
• Let’s say we’re generating an RSA modulus and we

need two 512-bit primes
– This will give us a 1024-bit modulus n

• Let’s generate the first prime, p
– Question: if I start at some random 512-bit odd candidate c, what

is the probability that c is prime?
• Ans: about 1/ln(c) ≈ 1/350

– Question: what is the expected number of candidates I have to
test before I find a prime, assuming I try every odd starting from
c?

• Ans: each number has a 1/350 chance, but I’m testing only odd
numbers, so my chance is 1/175; I therefore expect to test 175
numbers on average before I find a prime

• Of course I could do more sieving (eliminate multiples of 3, 5, etc)

Back to SSL/TLS

• SSL
– Secure Socket Layer

• Designed by Paul Kocher, consulting for Netscape

• TLS
– Transport Layer Security

• New version of SSL, and probably what we should
call it (but I’m used to SSL)

• Used for web applications (https)
– But also used many other places that aren’t

as well-known

TLS – Sketch
• Let’s start by trying to design TLS ourselves and

see what else we’ll need
– This will end up being only a sketch of the very

complex protocol TLS actually is

• We want:
– Privacy, authentication
– Protection against passive and active adversaries

• We have:
– Symmetric/asymmetric encryption and authentication
– Collision-resistant hash functions

A First Stab

• First we need a model
– Client/Server is the usual one
– Client and Server trust each other
– No shared keys between client and server

• Assuming a shared key is not realistic in most settings

– Adversary is active (but won’t try DoS)
• Server generates RSA key pair for encryption

– pkS, skS

– S subscript stands for “Server”

A First Stab (cont)

• Now client C comes along and wants to
communicate with server S
– C sends SSL HELLO to initiate session
– S responds by sending pkS
– C sends credit card number encrypted with

pkS
– S decrypts credit card number with skS and

charges the purchase
• What’s wrong here?

Our First Protocol: Problems

• There are tons of problems here
– We don’t know how to encrypt {0,1}*, only how to

encrypt elements of Zn
*

• Ok, say we solve that problem (there are ways)

– It’s really SLOW to use RSA on big messages
• Ok, we mentioned this before… let’s use symmetric

cryptography to help us

– There is no authentication going on here!
• Adversary could alter pkS on the way to the client
• We’d better add some authentication too

• Let’s try again…

Second Stab

• C says Hello
• S sends pkS to C
• C generates two 128-bit session keys

– Kenc, Kmac, used for encryption and MACing
• C encrypts (Kenc, Kmac) with pkS and sends

to S
• S recovers (Kenc, Kmac) using skS and both

parties use these “session keys” to encrypt
and MAC all further communication

Second Stab (cont)

• Problems?
– Good news: we’re a lot more efficient now

since most crypto is done with symmetric key
– Good news: we’re doing some authentication

now
– Bad news: Man-in-the-Middle attack still

possible
– Frustratingly close

• If we could get pk
S

to the client, we’d be happy

Man in the Middle
• Let’s concretely state the problem

– Suppose an adversary A generates pkA and skA
– Now S sends pkS to C, but A intercepts and sends pkA

to C instead
– C responds with (Kenc, Kmac) encrypted under pkA and

sends to S
– A intercepts, decrypts (Kenc, Kmac) using skA and re-

encrypts with pkS then sends on to S
• A doesn’t have to use (Kenc, Kmac) here… any keys would do

– Idea is that A proxies the connection between C and
S and reads/alters any traffic he wishes

MitM Attack

C A S

hello hello

pkSpkA

(Kenc, Kmac) under pkA (Kenc, Kmac) under pkS

“Welcome” under (Kenc, Kmac)

CC# under (Kenc, Kmac)

“Welcome” under (Kenc, Kmac)

CC# under (Kenc, Kmac)

How do we Stop This?

• Idea:
– Embed pkS in the browser

• A cannot impersonate S if the public key of S is already held
by C

• Problems:
– Scalability (10,000 public keys in your browser?)
– Key freshening (if a key got compromised and it were already

embedding in your browser, how would S update?)
– New keys (how do you get new keys? A new browser?)
– Your crypto is only as reliable as the state of your browser

(what if someone gets you to install a bogus browser?)

• (Partial) Solution: Certificates

Certificates: Basic Idea

• Enter the “Certification Authority” (CA)
– Some trusted entity who signs S’s public key

• Well-known ones are Verisign, RSA
• Let’s assume the entity is called “CA”
• CA generates keys vkCA and skCA

• CA signs pkS using skCA

• CA’s vkS is embedded in all browsers
– Same problem with corrupted browsers as before, but

the scaling problem is gone

New Protocol

• C sends Hello
• S sends pkS and the signature of CA on pkS

– These two objects together are called a “certificate”
• C verifies signature using vkCA which is built in to

his browser
• C generates (Kenc, Kmac), encrypts with pkS and

sends to S
• S decrypts (Kenc, Kmac) with skS

• Session proceeds with symmetric cryptography

SSH (A Different Model)

• SSH (Secure SHell)
– Replacement for telnet
– Allows secure remote logins

• Different model
– Too many hosts and too many clients
– How to distribute pk of host?
– Can be done physically
– Can pay a CA to sign your keys (not likely)
– Can run your own CA

• More reasonable, but still we have a bootstrapping problem

SSH: Typical Solution

• The most common “solution” is to accept initial
exposure
– When you connect to a host for the first time you get a

warning:
• “Warning: host key xxxxxx with fingerprint xx:xx:xx is not in

the .ssh_hosts file; do you wish to continue? Saying yes may
allow a man-in-the-middle attack.” (Or something like that)

• You take a risk by saying “yes”
• If the host key changes on your host and you didn’t expect

that to happen, you will get a similar warning
– And you should be suspicious

Key Fingerprints

• The key fingerprint we just saw was a
hash of the public key
– Can use this when you’re on the road to verify

that it’s the key you expect
• Write down the fingerprint on a small card and

check it
• When you log in from a foreign computer, verify

the fingerprint
– Always a risk to log in from foreign computers!

X.509 Certificates

• X.509 is a format for a certificate
– It contains a public key (for us, at least), email

address, and other information
– In order to be valid, it must be signed by the

CA
– In this class, our grader Mazdak, will be the

CA

Project #1
• The next phase of the project

– Won’t be assigned for a while, but here is a heads-up
– You will generate an RSA pk,sk pair using OpenSSL

(genrsa command)
• Your private key should be password protected
• PEM stands for “Privacy Enhanced Mail” and is the default

format used by OpenSSL

% openssl genrsa –out john-priv.pem 1024

Generating RSA private key, 1024 bit long modulus

..........++++++

.++++++

e is 65537 (0x10001)

What does secret key look like?

-----BEGIN RSA PRIVATE KEY-----
fFbkGjYxpp9dEpiq5p61Q/Dm/Vz5X2Kpp2+11qFCKXLzxc8Z8zL7Xgi3oV5RUtSl
wFjkiJaPP7fyo/X/Swz0LO1QKVQ7RDUe9NpnwTUBV44rtQVsSWfbgzdA9MAQT945
wBI27OAJWYQTApEeM2JhgvqCSPtdIn9paC9yeIzXLxwqrnlLCscGKncX53y3J3QG
KP1UqujpdTY9FRMvbL6bM5cn1bQ16pSbjntgFi5q4sdcwBNiWveFy5BNf4FnWtk6
KdAQ4jFeZqnwR3eAP0kdleosucPNZMxoQKafsi19bGi9BDdR4FoBdHy+K1sbXEm0
Z5+mcVPIITmB9MgUQLZ/AFguXHsxGDiH74es2Ahe6OACxWlqe4nfFxikXJfJw8EY
9nzw8xSZV5ov66BuT6e/K5cyrd2r0mlUb9gooYoVZ9UoCfO/C6mJcs7i7MWRNakv
tC1Ukt9FqVF14Bcr1oB4QEeK1oWW3QU2TArCWQKc67sVcSBuvMJjBd18Q+8AZ7GY
Jtt4rcOEb0/EUJuMauv4XlAQkiJcQ46qQjtkUo346+XMeRjWuUyQ/e5A/3Fhprat
7C10relDQonVi5WoXrEUTKeoaJgggZaeFhdpoee6DQePSWfLKB06u7qpJ6Gr5XAd
NnBoHEWBYH4C0YcGm77OmX7CbPaZiIrha/WU7mHUBXPUHDCOhyYQK8uisADKfmEV
XEzyl3iK6hF3cJFDZJ5BBmI774AoBsB/vahLquBUjSPtDruic24h6n2ZXcGCLiyc
redr8OiGRJ0r6XF85GYKUO82vQ6TbSXqBgM5Llotf53gDZjMdT71eMxI4Fj3PH91
-----END RSA PRIVATE KEY-----

(Not very useful, is it?)

OpenSSL RSA Private Key
% openssl rsa -in john-priv.pem -text -noout
Private-Key: (1024 bit)
modulus:

00:a3:8d:60:56:df:75:52:50:62:fb:6b:09:3a:2e:
e4:46:4e:e3:e2:d2:fe:c5:43:52:71:5a:47:ed:26:. . .
63:29:27:38:bf:df:cc:cd:0b

publicExponent: 65537 (0x10001)
privateExponent:

7f:09:7c:50:5e:27:c9:f5:28:bd:33:29:aa:a8:eb:
a4:f4:f8:2b:a2:4a:44:3d:03:97:8a:51:9e:12:29:. . .
19:7f:28:b4:ff:70:f8:99

prime1:
00:d9:12:85:e4:c5:6f:23:7a:19:7c:34:81:1a:20:
ac:80:ae:9a:0d:24:a8:ca:9d:43:06:7a:26:a1:02:. . .

0c:8f:a5:8d:9f
prime2: …
exponent1: …
exponent2: …
coefficient: …

Challenge Problem #2: Figure out what these are!

But Notice no Password!
• Shouldn’t leave your private key lying around

without password protection; let’s fix this
% openssl genrsa -aes128 -out john-priv.pem 1024
Generating RSA private key, 1024 bit long modulus
...++++++
..........................++++++
e is 65537 (0x10001)
Enter pass phrase for john-priv.pem:
Verifying - Enter pass phrase for john-priv.pem:

% openssl rsa -in john-priv.pem -text -noout
Enter pass phrase for john-priv.pem:
Private-Key: (1024 bit)
modulus:

00:ca:40:b9:ef:31:c2:84:73:ab:ef:e2:6d:07:17... ...

What does key look like now?

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,1210A20F8F950B78E710B75AC837599B

fFbkGjYxpp9dEpiq5p61Q/Dm/Vz5X2Kpp2+11qFCKXLzxc8Z8zL7Xgi3oV5RUtSl
wFjkiJaPP7fyo/X/Swz0LO1QKVQ7RDUe9NpnwTUBV44rtQVsSWfbgzdA9MAQT945
wBI27OAJWYQTApEeM2JhgvqCSPtdIn9paC9yeIzXLxwqrnlLCscGKncX53y3J3QG
KP1UqujpdTY9FRMvbL6bM5cn1bQ16pSbjntgFi5q4sdcwBNiWveFy5BNf4FnWtk6
KdAQ4jFeZqnwR3eAP0kdleosucPNZMxoQKafsi19bGi9BDdR4FoBdHy+K1sbXEm0
Z5+mcVPIITmB9MgUQLZ/AFguXHsxGDiH74es2Ahe6OACxWlqe4nfFxikXJfJw8EY
9nzw8xSZV5ov66BuT6e/K5cyrd2r0mlUb9gooYoVZ9UoCfO/C6mJcs7i7MWRNakv
tC1Ukt9FqVF14Bcr1oB4QEeK1oWW3QU2TArCWQKc67sVcSBuvMJjBd18Q+8AZ7GY
Jtt4rcOEb0/EUJuMauv4XlAQkiJcQ46qQjtkUo346+XMeRjWuUyQ/e5A/3Fhprat
7C10relDQonVi5WoXrEUTKeoaJgggZaeFhdpoee6DQePSWfLKB06u7qpJ6Gr5XAd
NnBoHEWBYH4C0YcGm77OmX7CbPaZiIrha/WU7mHUBXPUHDCOhyYQK8uisADKfmEV
XEzyl3iK6hF3cJFDZJ5BBmI774AoBsB/vahLquBUjSPtDruic24h6n2ZXcGCLiyc
redr8OiGRJ0r6XF85GYKUO82vQ6TbSXqBgM5Llotf53gDZjMdT71eMxI4Fj3PH91
-----END RSA PRIVATE KEY-----

This private key file is encrypted

CSR: Certificate Request

• You will generate a CSR
– Certificate Request

• Has your name, email, other info, your public key, and you
sign it

• Send your CSR to the CA
– CA will sign it if it is properly formatted
– His signature overwrites your signature on the CSR

• Once CA signs your CSR it becomes a
certificate

Creating a CSR
% openssl req -key john-priv.pem -new -out john-req.pem
Enter pass phrase for john-priv.pem:
You are about to be asked to enter information that will

be incorporated into your certificate request.
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Colorado
Locality Name (eg, city) []:Boulder
Organization Name (eg, company) [Internet Widgits Pty

Ltd]:University of Colorado
Organizational Unit Name (eg, section) []:Computer Science
Common Name (eg, YOUR name) []:John Black
Email Address []:jrblack@cs.colorado.edu

(Leave the rest blank)

This outputs the file john-req.pem which is a cert request

Viewing a CSR
% openssl req -in john-req.pem -text -noout
Certificate Request:

Data:
Version: 0 (0x0)
Subject: C=US, ST=Colorado, L=Boulder, O=University of Colorado,

OU=Computer Science, CN=John Black/emailAddress=jrblack@cs.colorado.edu
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:ca:40:b9:ef:31:c2:84:73:ab:ef:e2:6d:07:17:
83:5e:96:46:24:25:38:ed:7a:60:54:58:e6:f4:7b:

...
27:de:00:09:40:0c:5e:80:17

Exponent: 65537 (0x10001)
Attributes:

a0:00
Signature Algorithm: md5WithRSAEncryption

32:e1:3f:e2:12:47:74:88:a3:f9:f4:44:8a:f3:b7:4e:d1:14:
1f:0b:be:b8:19:be:45:40:ed:5b:fb:ab:9b:01:e8:9a:26:0c:

...
9c:e0

CSR is signed by you

Note: not password protected

CSRs
• Why is your CSR signed by you?

– Ensures that the CSR author (you) have the private
key corresponding to the public key in the CSR

• If we didn’t do this, I could get the CA to sign anyone’s public
key as my own

– Not that big a deal since I can’t decrypt things without the
corresponding private key, but still we disallow this

• Why does the CA sign your public key
– Well, because that’s his reason for existence, as

discussed previously
– Ok, let’s say I email my CSR to Mazdak and he signs

it… then what?

Sample Certificate
-----BEGIN CERTIFICATE-----
MIIDkDCCAnigAwIBAgIBCzANBgkqhkiG9w0BAQQFADCBgTEQMA4GA1UEAxMHSm9o
biBDQTERMA8GA1UECBMIQ29sb3JhZG8xCzAJBgNVBAYTAlVTMSYwJAYJKoZIhvcN
AQkBFhdqcmJsYWNrQGNzLmNvbG9yYWRvLmVkdTElMCMGA1UEChMcUm9vdCBDZXJ0
aWZpY2F0aW9uIEF1dGhvcml0eTAeFw0wMzExMTMyMDQ1MjFaFw0wNDExMTIyMDQ1
MjFaMIGFMRIwEAYDVQQDEwlUZXN0IFVzZXIxETAPBgNVBAgTCENvbG9yYWRvMQsw
CQYDVQQGEwJVUzEjMCEGCSqGSIb3DQEJARYUdGVzdEBjcy5jb2xvcmFkby5lZHUx
FjAUBgNVBAoTDVVuaXYgQ29sb3JhZG8xEjAQBgNVBAsTCUNTQ0kgNDgzMDCCASIw
DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAL1k6hJ9gwXlUYHiFOm6OHOf+8Y0
o1b7WOexYfNDWm9H0I79o0wVgDj7waOgt4hz2FE2h+gArfGY5VsaSzmCH0EA4kDS
m/sPob3HTVpbIFwlbXTV7hC0OxOzRs8lphDdj1vaNDSnOwqOS1ADCfIdaGEh9WKi
rEdFdriiu7v1bw+c1ByM57v9aHO7RslswR9EnRFZPWYa8GpK+St0s8bZVf98IOOk
H8HiliyVSt5lAXRMnIxhYMG89tkkuCAwxgDD+7WqyETYxY0UCg/joFV4IKcC7W1b
CmvxsY6/H35UpGgv0anCkjyP0mKY/YWB9KXwrR8NHC7/hacij0YNiV77EIMCAwEA
AaMNMAswCQYDVR0TBAIwADANBgkqhkiG9w0BAQQFAAOCAQEAZr4hdQPcGnAYmk++
0bQ4UKILXj9wr7UZdgz3DKJNpMPkFjzU6wvJrd1C8KIKfJC63TKHJ7svmdZwTCB2
hNUFy8kbe2KvNWQiGoX3PaY1eo3auLzIi8IxPqN+W/p1z3MhtpQqNllqzG8G1o50
QP2yAyj2V0rnwlRL3kZ7ibvXRnSB1Bz+6zJJLAQr4kTQD2EfxLhpks+iSE+m58PV
tfck25o2IMJYYLAdtoNGjcFG9/aDk+GHbsx8LP/va6B6BIzB3vrefuQvBu+7j/mz
aXP7QkuGYf1r4yyOiuMYnw0kwp5xndDKTzORsxksHQk5AWfBXrDdGPZrb6i1UlOq
U/P3+A==
-----END CERTIFICATE-----

Ooh…how useful!

Viewing a Certificate
% openssl x509 -in john-cert.pem -text –noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=US, ST=CO, L=DENVER, O=UCB, OU=CS,

CN=MAZDAK/emailAddress=mazdak.hashemi@colorado.edu
Validity

Not Before: Sep 17 20:57:44 2004 GMT
Not After : Sep 12 20:57:44 2005 GMT

Subject: C=US, ST=Colorado, L=Boulder, O=University of Colorado, OU=Computer
Science, CN=John Black/emailAddress=jrblack@cs.colorado.edu

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:ca:40:b9:ef:31:c2:84:73:ab:ef:e2:6d:07:17:
83:5e:96:46:24:25:38:ed:7a:60:54:58:e6:f4:7b:. . .
27:de:00:09:40:0c:5e:80:17

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

97:4a:20:ea:a7:5a:4d:4c:77:b9:3e:c0:49:9b:ab:8f:6f:02:
53:24:a9:71:97:2c:1f:e8:e4:eb:d0:f6:6a:7c:74:30:1d:9e: . . .
3a:59

Again, no encryption

Now it’s the CA’s signature

What have we Accomplished?
• We have an X.509 cert

– It contains our public key, name, email, and other stuff
– It is signed by the CA

• You have a private key in a password-protected
file
– Don’t lose this file or forget the password!

• What else do we need?
– We need to be able to verify the CA’s signature on a

public key!
– We therefore need the CA’s verification key

CA’s Verification Key is a Cert!

• The CA generates a self-signed “root
certificate”
– This is his verification key (aka public key)

which he signs
– This certificate is what is embedded in your

browser
– This certificate is used to validate public keys

sent from other sources
– Mazdak’s root certificate will be used to

validate all public keys for our class

Mazdak’s Root Cert
-----BEGIN CERTIFICATE-----
MIIDYjCCAsugAwIBAgIBADANBgkqhkiG9w0BAQQFADCBgzELMAkGA1UEBhMCVVMx
CzAJBgNVBAgTAkNPMQ8wDQYDVQQHEwZERU5WRVIxDDAKBgNVBAoTA1VDQjELMAkG
A1UECxMCQ1MxDzANBgNVBAMTBk1BWkRBSzEqMCgGCSqGSIb3DQEJARYbbWF6ZGFr
Lmhhc2hlbWlAY29sb3JhZG8uZWR1MB4XDTA0MDkxNzIyNTQwOVoXDTA3MDkxNzIy
NTQwOVowgYMxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEPMA0GA1UEBxMGREVO
VkVSMQwwCgYDVQQKEwNVQ0IxCzAJBgNVBAsTAkNTMQ8wDQYDVQQDEwZNQVpEQUsx
KjAoBgkqhkiG9w0BCQEWG21hemRhay5oYXNoZW1pQGNvbG9yYWRvLmVkdTCBnzAN
BgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA1A8CIwTUxKl/ehlgMeTpU1gUmVIF/vXh
IYbBwz0CvXisMGq5U6JnGyianLmd+IJaE6NoSaEP3A4FZmDR0Aw5abM695PT4zyS
7J01jE8AfRIRe83yKQ/EwQDsn/pYZvD5DXsqL2GQj58GggAdX0qNy2fK0yum8zj5
t7KQ14tjmQMCAwEAAaOB4zCB4DAdBgNVHQ4EFgQU/Rp1mIPXUOwwteoAuXx4JrVf
vuYwgbAGA1UdIwSBqDCBpYAU/Rp1mIPXUOwwteoAuXx4JrVfvuahgYmkgYYwgYMx
CzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEPMA0GA1UEBxMGREVOVkVSMQwwCgYD
VQQKEwNVQ0IxCzAJBgNVBAsTAkNTMQ8wDQYDVQQDEwZNQVpEQUsxKjAoBgkqhkiG
9w0BCQEWG21hemRhay5oYXNoZW1pQGNvbG9yYWRvLmVkdYIBADAMBgNVHRMEBTAD
AQH/MA0GCSqGSIb3DQEBBAUAA4GBALTQurLtBbGJB1aarA+xmfgm7JPOK7exljAi
SuWuVpaG+C3IQWfrZwVdRYSQ4zlRUQzoi5AnEv5TYoI18mM8xJA5FVCyTZZEMmv9
z1torIhq17Xuydg+YGNobUaw5eVdzjsxPJCS0oiwhfRhQRZ59RY10TpwSux1Xd/O
asesXE4O
-----END CERTIFICATE-----

How to Distribute the Root Cert?

• It’s ridiculous for me to ask you to write
this down, right?
– If I email it to you, it might get altered by an

adversary
– If I put it on the web page, it might get altered

by an adversary
– Ok, this is probably not a REAL concern for

us, but we’re practicing being paranoid
– What can we do?

Distributing the Root Cert
• Fingerprint the root certificate!

– We’ll just distribute the fingerprint as a verification
check

– The cert itself will be distributed via some insecure
means

– The fingerprint will use a collision-resistant hash
function, so it cannot be altered

– But now we have to distribute the fingerprint
• This you can write down, or I can hand you a hardcopy on a

business card, etc
• People used to have a fingerprint of their PGP public key on

their business cards at conferences… haven’t seen this in a
while though

Root Cert Fingerprint

% openssl x509 -in cacert.pem -fingerprint -noout

MD5 Fingerprint =

FE:EF:31:32:22:1D:93:29:
6C:14:2E:79:73:63:9A:02

• Please write this down now
• And, yes, some is going to point out that perhaps my powerpoint

was infiltrated during the night, so I’ll check against my hardcopy

Overall Idea of the Project
• Each student has a cert containing a public key corresponding to his

private key
• Each student knows the verification key of the CA
• Student A wants to send secure mail message M to student B

– A obtains B’s cert and verifies it is correctly signed by the CA
– A chooses a random session key K and RSA encrypts using B’s public

key (from B’s cert)
– A writes out the encrypted K followed by M encrypted symmetrically,

then signs each of these with her private key and sends to B

• B receives all of this and…
– Obtains A’s cert and verifies it is signed by CA
– B verifies A’s signature on the message
– B uses his private key to decrypt K (session key used by A)
– B uses K to decrypt M

Sample Message from A to B
-----BEGIN CSCI 6268 MESSAGE-----
hjh2vkeSGpWehAwgMOEbKomsW3lTd8BBBrEfFchbAZpnbc+O7wcI8OT0g9WP9iPV
K92xbzAiVlAN7ZFOWlx/iX2XQIbUQBU6kl7NOyPTtSZ/5+9JHVDY1TFZG3cGtVj5
SeJ97+kvuWkZvNcKjAec1YbRYpXRGwRmqPtz+o5WYWqWmqPV6lQWjbN4Jc+w2Gcl
FKR7t0Zsi5RcnEwIn+cZtuTe3QWW4/inMGMBFgbXjA2E6VU7zn62BdBHh7S1/oBR
tt84Rr4/oXXJhrEASdZJEdGw8trh0FPd48ioHElT7TNGMx4YJKHBV1+EMjTcHwdN
DCr29AZ2QyDh/pHYqvJmVg==

U2FsdGVkX1/QUjgfw4jEV34P/Efn8Ub7NDzV5QL+uWoeDblspQiz2BiPqQEa1acb
CD2+XgD36FmmcP9WxDOdQ63AlX2K4t4SdSyTT8uk9YpdUC0thqCXFkDGM6P0u7Xx
gBxP0s0mtcNFKbcpwmiEp5K8ayGHsYW5lM2veFclVL75xReQGA8fkjZ3OQQeR+nz
nQTg2Hniyaniwbb11YgBmyWQ4bsVK5UDG0iYab100cvPUlFZXrMmK4aumMNtC+0Z
+Syj4FaPzUphhebhuhsU29tahd8hL9DZQ5ZuzZiZi5hy0nG5z45FHktap/bwwOGC

Iu3mRM6ZqoTVVanTqf0cBaRA5c+XJbhuXLxjS44viFKSKENmZ7pEPZtdisvd/aq2
weZb1amCy2jnP0xQioI8Lc/zkno5XRW21bGH3kWeG8kMuOrBKVyms2FOEpsI0TH0
UIzck095R4jnPUI+e7S85z1Wx1ToyMI3Ub/Mee3MyIt60H2r2LC4sp9CO1Yn4tYN
pA4ULy3DhFy4z9x4bX+aU+bSymiqf5JvSjMXS/zQYERW+1fhOKnU3fI518mE9Gbx
tJBJJmjnPxWhWpSJjvG7qEAdy/PibcD8YPXn3NZ7j1mU8SgYog9vwJwz3fsKaCS6
AP4LTLN9ef5Hb/STtvA+ow==
-----END CSCI 6268 MESSAGE-----

RSA Encrypted Session Key K

AES-128-CBC encrypted message M

RSA signature on first two chunks

