Foundations of Network and
Computer Security

John Black

Lecture #9
Sep 215t 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements
Quiz #2, Tuesday, Sept 28th

Project #0 due Tuesday, Oct 5t

— A few words about testing output
Midterm, Thursday, Oct 14t
Exams are closed notes, calculators allowed

Remember to consult the class calendar

Prime Number Theorem

« Jeff asked last time about the distribution
of primes
— | gave a pretty non-rigorous answer; let me try
again

* PNT: n(n) ~ n/In(n) where mt(n) is the number of
primes smaller than n

* In other words, lim . . m(n) In(n)/n =1
— What does this mean?

* Primes get sparser as we go to the right on the
number line

n(n) versus n/In(n)

min)
- i(n)
175 A;“” | DR 3
e 7 Tpian— |

S —
- £ .~ Inn
125 -l

Li(n) = znﬁ_zfc

Sample Calculation

« Let's say we're generating an RSA modulus and we
need two 512-bit primes

— This will give us a 1024-bit modulus n

« Let's generate the first prime, p

— Question: if | start at some random 512-bit odd candidate c, what
is the probability that ¢ is prime?
* Ans: about 1/In(c) =~ 1/350

— Question: what is the expected number of candidates | have to
test before | find a prime, assuming | try every odd starting from
c?

* Ans: each number has a 1/350 chance, but I'm testing only odd
numbers, so my chance is 1/175; | therefore expect to test 175
numbers on average before | find a prime

» Of course | could do more sieving (eliminate multiples of 3, 5, etc)

Back to SSL/TLS

« SSL

— Secure Socket Layer
» Designed by Paul Kocher, consulting for Netscape

* TLS

— Transport Layer Security

* New version of SSL, and probably what we should
call it (but I'm used to SSL)

« Used for web applications (https)

— But also used many other places that aren't
as well-known

TLS — Sketch

« Let’s start by trying to design TLS ourselves and
see what else we'll need

— This will end up being only a sketch of the very
complex protocol TLS actually is

 We want:
— Privacy, authentication
— Protection against passive and active adversaries

 We have:
— Symmetric/asymmetric encryption and authentication

— Collision-resistant hash functions

A First Stab

 First we need a model
— Client/Server is the usual one
— Client and Server trust each other

— No shared keys between client and server
« Assuming a shared key is not realistic in most settings

— Adversary is active (but won't try DoS)

« Server generates RSA key pair for encryption
— PKg, Skg
— S subscript stands for “Server”

A First Stab (cont)

* Now client C comes along and wants to

communicate with server S

— C sends SSL HELLO to initiate session

— S responds by sending pkg

— C sends credit card number encrypted with
PKs

— S decrypts credit card number with skg and
charges the purchase

* What's wrong here?

Our First Protocol: Problems

* There are tons of problems here

— We don’t know how to encrypt {0,1}, only how to
encrypt elements of Z,’
« Ok, say we solve that problem (there are ways)

— It’s really SLOW to use RSA on big messages

« Ok, we mentioned this before... let's use symmetric
cryptography to help us

— There is no authentication going on here!

» Adversary could alter pkg on the way to the client
« We'd better add some authentication too

* Let's try again...

Second Stab

C says Hello
S sends pkgs to C
C generates two 128-bit session keys

— Kener Kiaer Used for encryption and MACing
C encrypts (K.,., K...) With pks and sends
to S

S recovers (K., K. .c) Using skg and both

parties use these “session keys” to encrypt
and MAC all further communication

Second Stab (cont)

* Problems?

— Good news: we're a lot more efficient now
since most crypto is done with symmetric key

— Good news: we're doing some authentication
now

— Bad news: Man-in-the-Middle attack still
possible

— Frustratingly close
* If we could get ka to the client, we’'d be happy

Man in the Middle

» Let's concretely state the problem
— Suppose an adversary A generates pk, and sk,

— Now S sends pkg to C, but A intercepts and sends pk,
to C instead

— C responds with (K., K.,.) encrypted under pk, and
sends to S

— A intercepts, decrypts (K,,., K 5c) Using sk, and re-
encrypts with pkq then sends on to S
* A doesn’t have to use (K,,., K,..) here... any keys would do

— |ldea is that A proxies the connection between C and
S and reads/alters any traffic he wishes

mac

MitM Attack

hello hello

v

v

A

A

A S

K, K,.) under pk, R (K, K,.) under pkg
“Welcome” under (K,,, K,) “Welcome” under (K, , K,)

A

A

CC#under (K, , K,) CC#under (K, ,K)

enc’ mac enc’ mac

How do we Stop This?

e |dea:

— Embed pkg in the browser
« A cannot impersonate S if the public key of S is already held
by C
* Problems:
— Scalability (10,000 public keys in your browser?)

— Key freshening (if a key got compromised and it were already
embedding in your browser, how would S update?)

— New keys (how do you get new keys? A new browser?)

— Your crypto is only as reliable as the state of your browser
(what if someone gets you to install a bogus browser?)

« (Partial) Solution: Certificates

Certificates: Basic Idea

* Enter the “Certification Authority” (CA)

— Some trusted entity who signs S’s public key
« Well-known ones are Verisign, RSA
* Let's assume the entity is called “CA”
* CA generates keys VK-, and sk,
* CA signs pkg using sk,
» CA’'s vKg is embedded in all browsers

— Same problem with corrupted browsers as before, but
the scaling problem is gone

New Protocol

C sends Hello

S sends pkg and the signature of CA on pkg
— These two objects together are called a “certificate”

C verifies signature using vks, which is built in to
his browser

C generates (K
sends to S

S decrypts (K., Kinae) With skg
Session proceeds with symmetric cryptography

Kmac), €ncrypts with pkg and

enc’

mac)

SSH (A Different Model)

« SSH (Secure SHell)

— Replacement for telnet
— Allows secure remote logins

 Different model
— Too many hosts and too many clients
— How to distribute pk of host?
— Can be done physically
— Can pay a CA to sign your keys (not likely)

— Can run your own CA
« More reasonable, but still we have a bootstrapping problem

SSH: Typical Solution

 The most common “solution” is to accept initial
exposure

— When you connect to a host for the first time you get a
warning:
« “Warning: host key xxxxxx with fingerprint xx:xx:xx is not in

the .ssh_hosts file; do you wish to continue? Saying yes may
allow a man-in-the-middle attack.” (Or something like that)

* You take a risk by saying “yes”

* If the host key changes on your host and you didn’t expect
that to happen, you will get a similar warning

— And you should be suspicious

Key Fingerprints

* The key fingerprint we just saw was a
hash of the public key

— Can use this when you're on the road to verify
that it's the key you expect

* Write down the fingerprint on a small card and
check it

* When you log in from a foreign computer, verify
the fingerprint

— Always a risk to log in from foreign computers!

X.509 Certificates

« X.509 is a format for a certificate

— It contains a public key (for us, at least), email
address, and other information

— In order to be valid, it must be signed by the
CA

— In this class, our grader Mazdak, will be the
CA

Project #1

The next phase of the project
— Won’t be assigned for a while, but here is a heads-up

— You will generate an RSA pk,sk pair using OpenSSL
(genr sa command)

* Your private key should be password protected

« PEM stands for “Privacy Enhanced Mail” and is the default
format used by OpenSSL

% openssl genrsa —out john-priv.pem 1024

Generating RSA private key, 1024 bit | ong nodul us
++++++

R
e is 65537 (0x10001)

What does secret key look like?

----- BEG N RSA PRI VATE KEY- - - - -

f FbkG Yxpp9dEpi q5p61Q DM Vz5X2Kpp2+11gFCKXLzxc8Z8zL7Xgi 30V5RUt S|
wkj ki JaPP7f yo/ X/ Swz OLOLQKVQ7 RDUe9NpnwTUBV44r t Qvs SW bgzd AAMAQT 945
wBl 27 CAJWYQTApEeM2IhgvqCSPt dl n9paC9yel zXLxwgr nl LCscGKncX53y3J30QG
KP1Uquj pdTYOFRM/bL6bMbcn1bQl6pShj nt gFi 5g4sdcwBN WeFy5BNf 4FnW k6
KdAQj FeZqnwR3eAPOkdl eosucPNZMkoQKaf si 19bG 9BDdR4AFoBdHy +K1sbXEnD
Z5+ncVPI | TmBOMyUQLZ/ AFguXHsxGDi H74es2Ahe 6 QACKW ge4dnf Fxi kXJf JIWBEY
9nzw8xSZV50v66BuUT6e/ K5cyr d2r Oml Ub9gooYoVZ9UoCf O Cemics7i 7MARNakv
t CLUkt 9FqVF14Bcr 10B4QEeK1oWNBQU2 TAr CWKc67sVe SBuvMlj Bd18Q+8AZ7GY
Jtt 4r cCELO/ EUJuMauv4Xl ACki Jc46qQ t kUo346+XMeR) Wiy Q@ e5A/ 3Fhpr at
7C10r el DQONnVi 5WoXr EUTKeoaJdgggZaeFhdpoee6DQePSW LKBO6u7qpJ6G 5XAd
NnBoHEVWBYH4COYc G 7 OmX7CbPaZi | r ha/ WJ7 mHUBXPUHDCONhY YQK8ui s ADKf mevV
XEzyl 3i K6hF3cJFDZJ5BBmM 774A0BsB/ vahLquBUj SPt Dr ui c24h6n2ZXcGCLi yc
redr 80 GRIOr 6 XF85GYKUCB2v Q6 ThSXgBgMbLI ot f 53gDZj MdT71eMkl 4F) 3PHI1
----- END RSA PRI VATE KEY- - - - -

(Not very useful, is it?)

OpenSSL RSA Private Key

% openssl rsa -in john-priv.pem -text -noout

Private-Key: (1024 bit)

modulus:
00:a3:8d:60:56:df:75:52:50:62:fb:6b:09:3a:2e:
e4:46:4e:e3:e2:d2:fe:c5:43:52:71:5a:47:ed:26:. . .
63:29:27:38:bf.df:cc:cd:0b

publicExponent: 65537 (0x10001)

privateExponent:
71:09:7¢:50:5€:27:¢9:f5:28:bd:33:29:aa:a8:eb:
a4:f4:f8:2b:a2:4a:44:3d:03:97:8a:51:9e:12:29:. . .
19:71:28:b4:ff:70:f8:99

prime1:
00:d9:12:85:e4:¢5:6f:23:7a:19:7¢:34:81:1a:20:
ac:80:ae:9a:0d:24:a8:ca:9d:43:06:7a:26:a1:02:. . .
Oc:8f:a5:8d:9f

prime2: ...

exponent1: ...

exponent2: ... Challenge Problem #2: Figure out what these are!

coefficient: ...

But Notice no Password!

« Shouldn’t leave your private key lying around
without password protection; let’s fix this

% openssl genrsa -aesl28 -out john-priv.pem 1024
Generating RSA private key, 1024 bit | ong nodul us
... ++++++

e is 65537 (0x10001)
Ent er pass phrase for john-priv.pem
Verifying - Enter pass phrase for john-priv.pem

% openssl rsa -in john-priv.pem-text -noout
Ent er pass phrase for john-priv.pem
Private-Key: (1024 bit)
nmodul us:
00: ca: 40: b9:ef:31:c2:84:73:ab: ef:e2:6d: 07:17... ...

What does key look like now?

This private key file is encrypted
----- BEG N RSA PRI VATE KAEY//
Proc- Type: 4, ENCRYPTED

DEK- I nf o: AES- 128- CBC, 1210A20F8F950B78E710B75AC837599B

f FbkG Yxpp9dEpi q5p61Q Dni Vz5X2Kpp2+11qFCKXLzxc828zL7Xgi 30V5RUt Sl

wkj ki JaPP7f yo/ X/ Swz OLOLQKVQ7 RDUe9NpnwTUBV44r t QVs SW bgzd AAMAQT945
wBI 270AJWYQTApEeM2JIhgvqCSPt dl n9paC9yel zXLxwgr nl LCscGKncX53y3J3QG
KP1Uquj pdTY9OFRM/bL6bNMbcN1bQLl6pShj nt gFi 5g4sdcwBNi WeFy5BNf 4FnW k6
KdAQ4| FeZgnwR3e APOkdl eosucPNZMko(XKaf si 19bG 9BDdR4FoBdHy +K1sbXEnD
Z5+ntVPI | TnBOMyUQLZ/ AFguXHsx GDi H74es2Ahe6 QACXW ge4dnf Fxi kXJf IWBEY
9nzw8xSZV50v66BuUT6e/ KScyr d2r Oml Ub9gooYoVZ9UoCf O Cémlcs7i 7MARNakv
t CLUKt 9FqVF14Bcr 10B4QEeK1oWNBQU2TAr CWQKc67sVe SBuvMIj Bd18Q+8AZ7GY
Jt t 4r cCELO/ EUJuMauv4 Xl Ak JcQ46qQ t kUo346+XMeR) Wiy @ e5A/ 3Fhpr at

7C10r el DQOnVi 5WXr EUTKeoadgggZaeFhdpoee6DQePSW LKBO6u7qpJ6G 5XAd
NnBoHEVWBYH4 C0Yc G 7OmX7 ChPaZi | r ha/ WJ7 mHUBXPUHDCOhyY YQK8ui s ADKf nEV
XEzyl 3i K6hF3cJFDZJ5BBmM 774A0BsB/ vahLquBUj SPt Dr ui c24h6n2ZXcGCLi yc
redr 80 GRJOr 6 XF85GYKUCB2v QB ThSXqBgMbLI ot f 53gDZj MiT71eMk| 4Fj 3PHI1

CSR: Certificate Request

* You will generate a CSR

— Certificate Request

« Has your name, email, other info, your public key, and you
sign it

« Send your CSR to the CA
— CA will sign itifitis properly formatted
— His signature overwrites your signature on the CSR

* Once CA signs your CSR it becomes a
certificate

Creating a CSR

% openssl req -key john-priv.pem-new -out john-req.pem
Enter pass phrase for john-priv.pem

You are about to be asked to enter information that wll
be incorporated into your certificate request.

Country Nane (2 letter code) [AU :US
State or Province Nane (full nane) [Sone-State]: Col orado
Locality Nanme (eg, city) []: Boul der

Organi zati on Nanme (eg, conpany) [Internet Wdgits Pty
Ltd] : Uni versity of Col orado

Organi zational Unit Nane (eg, section) []: Conmputer Science
Common Nane (eg, YOUR nane) []:John Bl ack
Email Address []:]jrblack@s. col orado. edu

(Leave the rest bl ank)

This outputs the file john-req. pemwhich is a cert request

Viewing a CSR

% openssl req -in john-reqg. pem -text -noout
Certificate Request: Note: not password protected
Dat a:
Version: 0 (0xO0)

Subj ect: C=US, ST=Col orado, L=Boul der, O=University of Col orado,
OU=Comnput er Sci ence, CN=John Bl ack/ emai | Addr ess=j r bl ack@s. col or ado. edu

Subj ect Public Key Info:
Public Key Algorithm rsaEncryption
RSA Public Key: (1024 bit)
Modul us (1024 bit):
00: ca: 40: b9: ef: 31: c2:84: 73: ab: ef : €2: 6d: 07: 17:
83: 5e: 96: 46: 24: 25: 38: ed: 7a: 60: 54: 58: e6: f 4: 7b:

27:de: 00: 09: 40: Oc: 5e: 80: 17
Exponent: 65537 (0x10001)
Attri butes:
a0: 00
Signature Al gorithm nmd5WthRSAEncryption
32:el: 3f:e2:12:47:74:88: a3:f9:f4: 44: 8a: f3: b7: 4e: d1: 14:
1f: Ob: be: b8: 19: be: 45: 40: ed: 5b: f b: ab: 9b: 01: e8: 9a: 26: Oc:

9c: el ‘\\\\\\\

CSR is signed by you

CSRs

 Why is your CSR signed by you?
— Ensures that the CSR author (you) have the private

key corresponding to the public key in the CSR

« If we didn’t do this, | could get the CA to sign anyone’s public
key as my own

— Not that big a deal since | can’t decrypt things without the
corresponding private key, but still we disallow this

 Why does the CA sign your public key

— Well, because that’s his reason for existence, as
discussed previously

— Ok, let's say | email my CSR to Mazdak and he signs
it... then what?

Sample Certificate

MIIDkDCCAnigAwIBAgIBCzANBgkghkiGOWOBAQQFADCBgTEQMA4GA1UEAXMHSmM90
biBDQTERMA8SGA1UECBMIQ29sb3JhZG8xCzAJBgNVBAYTAIVTMSYwJAYJKoZlhveN
AQkBFhdgcmJsYWNrQGNzLmNvbG9yYWRvLMVkKdTEIMCMGA1UEChMcUm9vdCBDZXJ0
aWZpY2F0aW9ulEF1dGhvcmlOe TAeFWOWMzEXMTMyMDQ1MjFaFwOwWNDExMTlyMDQ1
MjFaMIGFMRIWEAYDVQQDEWIUZXNOIFVzZXIXETAPBgNVBAgTCENvVbG9yYWRvMQsw
CQYDVQQGEwWJVUzE]MCEGCSqGSIb3DQEJARYUdGVzdEBjcy5jb2xvemFkby5IZHUx
FIAUBgNVBAoTDVVuaXYgQ29sb3JhZG8xEjAQBgNVBAsTCUNTQOkgNDgzMDCCASIw
DQYJKoZlhveNAQEBBQADggEPADCCAQoCggEBAL1k6hJ9gwXIUYHIFOmMG6OHOf+8Y0
01b7WOexYfNDWm9HO0I7900wVgDj7waOgt4hz2FE2h+gArfGY5VsaSzmCHOEA4kDS
m/sPob3HTVpbIFwlbXTV7hC00Ox0OzRs8IphDdj1vaNDSnOwqOS1ADCfldaGEh9WK:i
rEdFdriiu7v1bw+c1ByM57v9aHO7RsIswRIENRFZPWYa8GpK+St0s8bZVfI8100k
H8HiliyVStSIAXRMnIxhYMG89tkkuCAwxgDD+7WqyETYxYOUCg/joFV4IKcC7W1b
CmvxsY6/H35UpGgv0anCkjyPOmKY/YWBI9KXwrR8NHC7/hacij0YNiV77EIMCAwWEA
AaMNMAswCQYDVROTBAIWADANBgkghkiGOWOBAQQFAAOCAQEAZr4hdQPcGnAY mk++
0bQ4UKILXj9wr7UZdgz3DKJNpMPkFjzU6wvJrd1C8KIKfJC63TKHJ7svmdZwTCB2
hNUFy8kbe2KvNWQiGoX3PaY 1eo3auLzli8IxPgN+W/p1z3MhtpQqgNIlgzG8G1050
QP2yAyj2V0rnwlRL3kZ7ibvXRnSB1Bz+6zJJLAQr4kTQD2EfxLhpks+iSE+m58PV
tfick2502IMJYYLAdtoNGjcFG9/aDk+GHbsx8LP/va6B6BI1zB3vrefuQvBu+7j/mz
aXP7QkuGYf1r4yyOiuMYnwOkwp5xndDKTzORsxksHQkSAWBXrDdGPZrb6i1UIOq
U/P3+A==

Ooh...how useful!

Viewing a Certificate

% openssl x509 -in john-cert.pem-text —noout
Cert 'D;'t g?‘t e: « Again, no encryption
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Al gorithm nd5WthRSAEncryption

| ssuer: C=US, ST=CO, L=DENVER, O=UCB, QU=CS
CN=MAZDAK/ emni | Addr ess=mazdak. hashem @ol or ado. edu

Validity
Not Before: Sep 17 20:57:44 2004 GVI
Not After : Sep 12 20:57:44 2005 GVI

Subj ect: C=US, ST=Col orado, L=Boul der, O=University of Col orado, OU=Conputer
Sci ence, CN=John Bl ack/ emai | Addr ess=jrbl ack@s. col orado. edu

Subj ect Public Key Info:
Public Key Al gorithm rsaEncryption
RSA Public Key: (1024 bit)
Modul us (1024 bit):
00:ca: 40: b9: ef : 31:c2:84: 73: ab: ef : e2: 6d: 07: 17:
83: 5e: 96: 46: 24: 25: 38: ed: 7a: 60: 54: 58: e6: f4: 7b: .
27:de: 00: 09: 40: Oc: 5e: 80: 17
Exponent: 65537 (0x10001)
Signature Al gorithm nd5WthRSAEncryption
97: 4a: 20: ea: a7: 5a: 4d: 4c: 77: b9: 3e: c0: 49: 9b: ab: 8f: 6f: 02:
53:24:a9:71:97: 2c: 1f : e8: e4: eb: dO: f 6: 6a: 7c: 74: 30: 1d: 9e:
3a: 59

Now it’s the CA’s signature

What have we Accomplished?

 We have an X.509 cert
— It contains our public key, name, email, and other stuff
— It is signed by the CA

* You have a private key in a password-protected
file
— Don't lose this file or forget the password!

 What else do we need?

— We need to be able to verify the CA’s signature on a
public key!
— We therefore need the CA'’s verification key

CA's Verification Key is a Cert!

 The CA generates a self-signed “root
certificate”

— This is his verification key (aka public key)
which he signs

— This certificate is what is embedded in your
browser

— This certificate is used to validate public keys
sent from other sources

— Mazdak’s root certificate will be used to
validate all public keys for our class

Mazdak’'s Root Cert

MIIDYjCCAsugAwIBAgIBADANBgkghkiGOWOBAQQFADCBgzELMAKGA1UEBhMCVVMXx
CzAJBgNVBAgTAKNPMQ8wDQYDVQQHEWZERUSWRVIXDDAKBgNVBAOTA1VDQJELMAKG
ATUECXxMCQ1MxDzANBgNVBAMTBKk1BWKRBSzEqMCgGCSqGSIb3DQEJARYbbWF6ZGFr
Lmhhc2hlbWIAY29sb3JhZG8uZWR1MB4XDTAOMDKXNzIyNTQwOVoXDTA3MDkxNzly
NTQwOVowgYMxCzAJBgNVBAYTAIVTMQswCQYDVQQIEwJDTzEPMAOGA1UEBXMGREVO
VKVSMQwwCgYDVQQKEWNVQOIXCzAJBgNVBASTAKNTMQ8wDQYDVQQDEWZNQVpEQUsx
KjAoBgkghkiGOwOBCQEWG21hemRhay50YXNoZW1pQGNvbG9yYWRvVLmMVkdTCBnzAN
BgkghkiGOwWOBAQEFAAOBjQAwWgYKCgYEA1A8CIwTUxKI/ehigMeTpU1gUmVIF/vXh
lYbBwz0CvXisMGq5U6JnGyianLmd+lJaE6NoSaEP3A4FZmDROAwW5abM695PT4zyS
7JO1JESAfRIRe83yKQ/EwQDsn/pYZvD5DXsqlL2GQj58 GggAdX0gNy2fKOyum8zj5
t7KQ14timQMCAwWEAAaOB4zCB4DAdBgNVHQ4EFgQU/Rp1mIPXUOwwteoAuXx4JrVf
vuYwgbAGA1UdIwSBqDCBpYAU/Rp1mIPXUOwwteoAuXx4JrVivuahgYmkgYYwgYMx
CzAJBgNVBAYTAIVTMQswCQYDVQQIEwJDTzEPMAOGA1UEBXMGREVOVKVSMQwwCgYD
VQQKEWNVQOIXCzAJBgNVBAsTAKNTMQ8wDQYDVQQDEwWZNQVpEQUsxKjAoBgkghkiG
IwOBCQEWG21hemRhay50YXNoZW1pQGNvbG9yYWRvLmMVkdYIBADAMBgNVHRMEBTAD
AQH/MAOGCSqGSIb3DQEBBAUAA4GBALTQurLtBbGJB1aarA+xmfgm7JPOK7exljAi
SuWuVpaG+C3IQWfrZwVdRYSQ4zIRUQzoi5AnEV5TYol18mM8xJASFVCYyTZZEMmv9
z1torlhq17Xuydg+YGNobUaw5eVdzjsxPJCS00iwhfRhQRZ59RY 10 TpwSux1Xd/O

asesXE40

How to Distribute the Root Cert?

* It's ridiculous for me to ask you to write
this down, right?
— If | email it to you, it might get altered by an
adversary

— If I put it on the web page, it might get altered
by an adversary

— Ok, this is probably not a REAL concern for
us, but we're practicing being paranoid

— What can we do?

Distributing the Root Cert

* Fingerprint the root certificate!

— We'll just distribute the fingerprint as a verification
check

— The cert itself will be distributed via some insecure
means

— The fingerprint will use a collision-resistant hash
function, so it cannot be altered

— But now we have to distribute the fingerprint

« This you can write down, or | can hand you a hardcopy on a
business card, etc

* People used to have a fingerprint of their PGP public key on
their business cards at conferences... haven’t seen this in a
while though

Root Cert Fingerprint

% openssl x509 -in cacert.pem-fingerprint -noout

MDS5 Fingerprint =

FE:EF:31:32:22:1D:93:29:
6C:14:2E:79:73:63:9A:02

 Please write this down now

 And, yes, some is going to point out that perhaps my powerpoint
was infiltrated during the night, so I'll check against my hardcopy

Overall Idea of the Project

Each student has a cert containing a public key corresponding to his
private key

Each student knows the verification key of the CA

Student A wants to send secure mail message M to student B
— A obtains B’s cert and verifies it is correctly signed by the CA

— A chooses a random session key K and RSA encrypts using B’s public
key (from B’s cert)

— A writes out the encrypted K followed by M encrypted symmetrically,
then signs each of these with her private key and sends to B

B receives all of this and...
— Obtains A’s cert and verifies it is signed by CA
— B verifies A’s signature on the message
— B uses his private key to decrypt K (session key used by A)
— B uses K to decrypt M

Sample Message from A to B

RSA Encrypted Session Key K
----- BEG N CSCl 6268 MESSAGE--- - -
hj h2vke SGoWwehAwgMOEbKonsWBI Td8BBBr Ef FchbAZpnbc+O7wel 80TOg9WPOi PV
K92xbz Al VI AN7ZFOW x/ i X2XQ bUQ@BUGKI 7NOyPTt SzZ/ 5+9JHVDY1TFZG3cG V] 5
SeJ97+kvuVkZvNcKj Aec 1 YbRYpXRGAMRNPt z+05VWWIWPV6El QWY bN4J c+w2 el
FKR7t 0Zsi 5RcnEwM n+cZt uTe3QWM/ i nMAVBFgbX] A2E6VU7zn62BdBHh7S1/ 0BR
tt 84Rr 4/ oXXJhr EASdZJEdGABt r hOFPd48i oHElI T7 TNGWK4YJKHBV1+EM TcHMIN

DCr 29AZ2Qy Dh/ pHYqvJmvg==
AES-128-CBC encrypted message M

U2FsdGVvk X1/ QU gf w4 EV34P/ Ef n8Ub7NDz V5QL+uWeDbl spQ z2Bi PgQEalach
CD2+XgD36 Frmt POVW DOd Q63 Al X2K4t 4SdSy TT8uk9YpdUCOt hqCXFk DAVBPOU7 XX
gBxP0OsOnt cNFKbcpwm Ep5K8ay GHs YWsl M2veFcl VL75x Re QGA8T kj Z30QQeR+nz
NQTg2Hni yani wbb11YgBnyWXbsVK5UD®DI Yab100cvPU FZXr MrK4aunmviNt C+0Z
+Syj 4FaPzUphhebhuhsU29t ahd8hL9DZ(6ZuzZi Zi 5hy0nG5z45FHkt ap/ bwwOGC

| uBmMRMBZqoTVWWanTqf 0cBaRA5c+XJbhuXLxj S44vi FKSKENnZ7pEPZt di svd/ ag2
weZblantCy2j nPOxQ ol 8Lc/ zkno5XRVW21bGH3kWe GBKkMuOr BKVy s 2FCEps| O0THO
Ul zck095R4) nPUI +e7S85z1Wk1ToyM 3Ub/ Mee3MyI t 60H2r 2LC4Asp9COLYn4t YN
pA4ULY3DhFy4z9x4bX+aUt+tbSym qgf 5JvS) MXS/ zQYERWH1f hOKnU3f | 518nE9Ghx
t IBJIm nPxWWWHSJj vG7gEAdy/ Pi bcD8YPXn3NZ7) 1mJ8SgYog9vwlwz 3f sKaCS6

APALTLNOef 5Hb/ STt vA+OW==
----- END CSCl 6268 MESSAGE- - - - - \

RSA signature on first two chunks

