
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #8
Sep 16th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements
• Quiz #2, Tuesday, Sept 28th

• Project #0 due Tuesday, Oct 5th

• Midterm, Thursday, Oct 14th

• Exams are closed notes, calculators allowed

• Remember to consult the class calendar

Key Generation

• Bob generates his keys as follows
– Choose two large distinct random primes p, q
– Set n = pq (in Z… no finite groups yet)
– Compute φ(n) = φ(pq) = φ(p)φ(q) = (p-1)(q-1)
– Choose some e ∈ Zφ(n)

*

– Compute d = e-1 in Zφ(n)
*

– Set pk = (e,n) and sk = (d,n)
• Here (e,n) is the ordered pair (e,n) and does not

mean gcd

RSA Encryption
• For any message M ∈ Zn

*

– Alice has pk = (e,n)
– Alice computes C = Me mod n
– That’s it

• To decrypt
– Bob has sk = (d,n)
– He computes Cd mod n = M

• We need to prove this

RSA Proof
• Need to show that for any M ∈ Zn

*, Med =
M mod n
– ed = 1 mod φ(n) [by def of d]
– So ed = kφ(n) + 1 [by def of modulus]
– So working in Zn

*, Med = Mkφ(n) + 1 = Mkφ(n) M1 =
(Mφ(n))k M = 1k M = M

• Do you see LaGrange’s Theorem there?

• This doesn’t say anything about the
security of RSA, just that we can decrypt

Security of RSA

• Clearly if we can factor efficiently, RSA
breaks
– It’s unknown if breaking RSA implies we can

factor
• Basic RSA is not good encryption

– There are problems with using RSA as I’ve
just described; don’t do it

– Use a method like OAEP
• We won’t go into this

Factoring Technology

• Factoring Algorithms
– Try everything up to sqrt(n)

• Good if n is small
– Sieving

• Ditto
– Quadratic Sieve, Elliptic Curves, Pollard’s Rho

Algorithm
• Good up to about 40 bits

– Number Field Sieve
• State of the Art for large composites

The Number Field Sieve

• Running time is estimated as

• This is super-polynomial, but sub-
exponential
– It’s unknown what the complexity of this

problem is, but it’s thought that it lies between
P and NPC, assuming P ≠ NP

NFS (cont)

• How it works (sort of)
– The first step is called “sieving” and it can be

widely distributed
– The second step builds and solves a system

of equations in a large matrix and must be
done on a large computer

• Massive memory requirements
• Usually done on a large supercomputer

The Record

• In Dec, 2003, RSA-576 was factored
– That’s 576 bits, 174 decimal digits
– The next number is RSA-640 which is

– Anyone delivering the two factors gets an
immediate A in the class (and 10,000 USD)

31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286
78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609

On the Forefront

• Other methods in the offing
– Bernstein’s Integer Factoring Circuits
– TWIRL and TWINKLE

• Using lights and mirrors

– Shamir and Tromer’s methods
• They estimate that factoring a 1024 bit RSA modulus would

take 10M USD to build and one year to run
– Some skepticism has been expressed

– And the beat goes on…
• I wonder what the NSA knows

Implementation Notes

• We didn’t say anything about how to
implement RSA
– What were the hard steps?!

• Key generation:
– Two large primes
– Finding inverses mode φ(n)

• Encryption
– Computing Me mod n for large M, e, n

– All this can be done reasonably efficiently

Implementation Notes (cont)

• Finding inverses
– Linear time with Euclid’s Extended Algorithm

• Modular exponentiation
– Use repeated squaring and reduce by the modulus to

keep things manageable
• Primality Testing

– Sieve first, use pseudo-prime test, then Rabin-Miller if
you want to be sure

• Primality testing is the slowest part of all this
• Ever generate keys for PGP, GPG, OpenSSL, etc?

Note on Primality Testing
• Primality testing is different from factoring

– Kind of interesting that we can tell something is
composite without being able to actually factor it

• Recent result from IIT trio
– Recently it was shown that deterministic primality

testing could be done in polynomial time
• Complexity was like O(n12), though it’s been slightly reduced

since then
– One of our faculty thought this meant RSA was

broken!
• Randomized algorithms like Rabin-Miller are far

more efficient than the IIT algorithm, so we’ll
keep using those

Digital Signatures

• Digital Signatures are authentication in the
asymmetric key model
– MAC was in the symmetric key model

• Once again, Alice wants to send an
authenticated message to Bob
– This time they don’t share a key
– The security definition is the same

• ACMA model

We Can Use RSA to Sign
• RSA gives us a signing primitive as well

– Alice generates her RSA keys
• Signing key sk = (d,n)
• Verification key vk = (e,n)
• Distributes verification key to the world
• Keeps signing key private

– To sign message M ∈ Zn
*

• Alice computes sig = Md mod n
• Alice sends (M, sig) to Bob

– To verify (M’, sig’)
• Bob checks to ensure M’ = sig’e mod n
• If not, he rejects

• Once again, don’t do this; use PSS or similar

Efficiency

• Why is this inefficient?
– Signature is same size as message!
– For MACs, our tag was small… that was good

• Hash-then-sign
– We normally use a cryptographic hash function on the

message, then sign the hash
– This produces a much smaller signature
– 2nd-preimage resistance is key here

• Without 2nd-preimage resistance, forgeries would be possible
by attacking the hash function

Let’s Sum Up
• Symmetric Key Model

– Encryption
• ECB (bad), CBC, CTR

– All these are modes of operation built on a blockcipher
– Authentication (MACs)

• CBC MAC, XCBC, UMAC, HMAC
• Asymmetric Key Model

– Encryption
• RSA-OAEP

– Assumes factoring product of large primes is hard
– Authentication

• RSA signatures
– Usually hash-then-sign

Next Up: SSL

• Next we’ll look at how to put all this
together to form a network security
protocol

• We will use SSL/TLS as our model since
it’s ubiquitous

• But first, we’ll digress to talk about
OpenSSL, and our first part of the project
(a warm-up)

OpenSSL
• Was SSLeay
• Open Source
• Has everything we’ve talked about and a lot

more
• Most everything can be done on the command

line
• Ungainly, awkward, inconsistent

– Mostly because of history
– Have fun, it’s the only game in town

• http://www.openssl.org/

Brief Tutorial

• This is a grad class; you can figure it out
from the man page, but…
– Syntax is
% openssl <cmd> <parms>
– cmd can be ‘enc’, ‘rsautl’, ‘x509’, and more
– We’ll start with the ‘enc’ command (symmetric

encryption)
– Let’s look at the enc command in more detail

OpenSSL enc command
• openssl enc -ciphername [-in filename] [-out filename] [-pass arg] [-e] [-d] [-

a] [-K key] [-iv IV] [-p] [-P]
• -ciphername can be

– des-ecb (yuk!), des-cbc (hmm), des (same as des-cbc), des-ede3-cbc, des3
(same), aes-128-cbc, bf, cast, idea, rc5

– Can omit the ‘enc’ command if specifying these… kind of hokey
• If you don’t specify filenames, reads from and writes to stdin/stdout

– Looks like garbage, of course
• If you don’t specify a password on the command line, it prompts you for one

– Why are command-line passwords bad?
– You can use environment variables but this is bad too
– You can point to a file on disk… less bad

• What does the password do?
– Password is converted to produce IV and blockcipher key

enc (cont)
% openssl aes-128-cbc –P

• salt is a random number generated for each encryption in order to
make the key and iv different even with the same password
– Begins to get confusing… didn’t we just change the IV before?
– Use this mode only when deriving a new key for each encryption

• Eg, when encrypting a file on disk for our own use
– If key is fixed, we specify it and the iv explicitly

% openssl aes-128-cbc –K FB7D6E2490318E5CFC113751C10402A4 –iv
6ED946AD35158A2BD3E7B5BAFC9A83EA

salt=39A9CF66C733597E
key=FB7D6E2490318E5CFC113751C10402A4
iv =6ED946AD35158A2BD3E7B5BAFC9A83EA

Understanding Passwords vs. a
Specified IV and Key

• So there are two modes you can use with enc
– 1) Specify the key and IV yourself

• This means YOU are in charge of ensuring the IV doesn’t
repeat

– Use a good random number source or
– Use a counter (which you have to maintain… headache!)

– 2) Use a passphrase
• OpenSSL uses randomness for you by generating a salt

along with the IV and AES key
• Passphrases are less secure (more guessable) in general

• Either way, we get non-deterministic encryption

Passphrase-Based enc
Passphrase

hash function

AES-128-CBC

iv, key (128 bits each)

$

salt iv, ciphertext

Things to think about:
• How to decrypt?
• Is the passphrase safe even though the salt and iv are known?

plaintext

So How to Encrypt

• Let’s encrypt the file ‘test’
% cat test

hi there

% openssl aes-128-cbc -in test

enter aes-128-cbc encryption password:

Verifying - enter aes-128-cbc encryption password:

Salted__mTR&Qi¦¹K¯¿Óàg&5&kE

• What’s up with the garbage?
– Of course the AES outputs aren’t ASCII!
– Use –base64 option

base64

• This is an encoding scheme (not cryptographic)
– Translates each set of 6 bits into a subset of ASCII

which is printable
– Makes ‘garbage’ binary into printable ASCII

• Kind of like uuencode

– Of course this mapping is invertible
– For encryption we want to do this after we encrypt
– For decryption, we undo this before we decrypt
– This is the –a flag for ‘enc’ but –base64 works as well

and is preferable

Example: base64

• Let’s encrypt file ‘test’ again, but output
readable ciphertext

% openssl aes-128-cbc -in test -base64

enter aes-128-cbc encryption password:

Verifying - enter aes-128-cbc encryption password:

U2FsdGVkX1/tdjfZnPrD+mSjBBO7InU8Mo4ttzTk8eY=

• We’ll always use this option when dealing
with portability issues
– Like sending ciphertext over email

Decrypting

• The command to decrypt is once again
‘enc’
– This makes no sense; get used to it
– Use the –d flag to tell enc to decrypt
– Let’s decrypt the string
U2FsdGVkX1/tdjfZnPrD+mSjBBO7InU8Mo4ttzTk8eY=

which I’ve placed into a file called ‘test.enc’
% openssl enc -d -in test.enc

U2FsdGVkX18FZENOZFZdYvLoqPdpRTgZw2CZIQs6bMQ=

Hunh?

• It just gave back the ciphertext?!
– We didn’t specify an encryption algorithm
– Default is the identity map (get used to it)
– Let’s try again

% openssl aes-128-cbc -d -in test.enc

enter aes-128-cbc decryption password:

bad magic number

• Ok, now what’s wrong?

Error messages not useful

• We forgot to undo the –base64
– The error msg didn’t tell us that (get used to it)
– One more try:
% openssl aes-128-cbc -d -in test.enc -base64

enter aes-128-cbc decryption password:

hi there

– It was all worth it, right?
– Now it’s your turn

Project #0

• I’ll give you a ciphertext, you find the
password
– Password is a three-letter lowercase alpha

string
– Main purpose is to get you to figure out where

openssl lives on your computer(s)
– Don’t do it by hand
– Full description on our web page

• Due Oct 5th, in class

