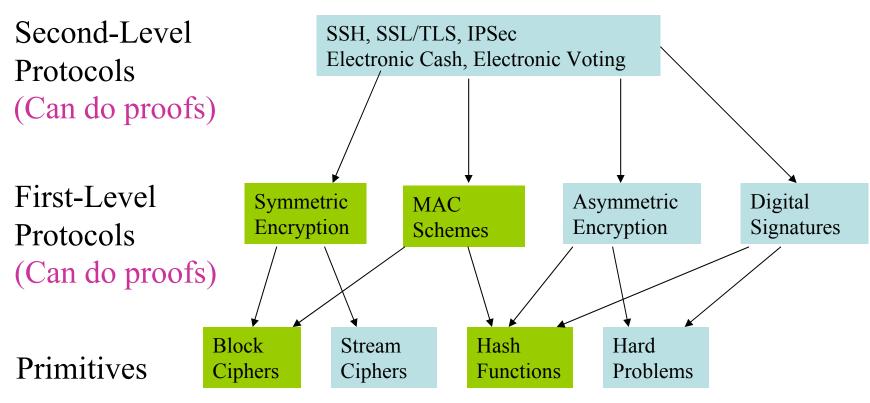
Foundations of Network and Computer Security

John Black

Lecture #7 Sep 14th 2004

CSCI 6268/TLEN 5831, Fall 2004

The Big (Partial) Picture



(No one knows how to prove security; make assumptions)

But first, a little math...

- A group is a nonempty set G along with an operation # : G × G → G such that for all a, b, c
 ∈ G
 - (a # b) # c = a # (b # c) (associativity)
 - $\exists e \in G$ such that e # a = a # e = a (identity)
 - ∃ a^{-1} ∈ G such that $a \# a^{-1} = e$ (inverses)
- If ∀ a,b ∈ G, a # b = b # a we say the group is "commutative" or "abelian"
 - All groups in this course will be abelian

Multiplicative Groups

- Is {0, 1, ..., m-1} a group under multiplication mod m?
 - No, 0 has no inverse
- Ok, toss out 0; is {1, ..., m-1} a group under multiplication mod m?
 - Hmm, try some examples...
 - m = 2, so $G = \{1\}$
 - m = 3, so G = $\{1,2\}$
 - m = 4, so $G = \{1,2,3\}$ oops!
 - m = 5, so G = $\{1,2,3,4\}$ \checkmark

Multiplicative Groups (cont)

- What was the problem?
 - 2,3,5 all prime
 - 4 is composite (meaning "not prime")
- Theorem: G = {1, 2, ..., m-1} is a group under multiplication mod m iff m is prime
 - Proof:
 - \rightarrow : suppose m is composite, then m = ab where a,b \in G and a, b \neq 1. Then ab = m = 0 and G is not closed
 - ← : follows from a more general theorem we state in a moment

The Group Z_m^*

- a,b ∈ N are relatively prime iff gcd(a,b) = 1
 - Often we'll write (a,b) instead of gcd(a,b)
- Theorem: G = {a : 1 ≤ a ≤ m-1, (a,m) = 1} and operation is multiplication mod m yields a group
 - We name this group Z_m*
 - We won't prove this (though not too hard)
 - If m is prime, we recover our first theorem

Examples of Z_m^{*}

- Let m = 15
 - What elements are in Z₁₅*?
 - {1,2,4,7,8,11,13,14}
 - What is 2^{-1} in Z_{15}^* ?
 - First you should check that 2 ∈ Z₁₅*
 - It is since (2,15) = 1
 - Trial and error:
 - 1, 2, 4, 7, 8 √
 - There is a more efficient way to do this called "Euclid's Extended Algorithm"
 - Trust me

Euler's Phi Function

- Definition: The number of elements of a group G is called the <u>order</u> of G and is written |G|
 - For infinite groups we say $|G| = \infty$
 - All groups we deal with in cryptography are finite
- Definition: The number of integers i < m such that (i,m) = 1 is denoted φ(m) and is called the "Euler Phi Function"
 - Note that $|Z_m^*| = \phi(m)$
 - This follows immediately from the definition of $\phi()$

Evaluating the Phi Function

- What is $\phi(p)$ if p is prime?
 - -p-1
- What is φ(pq) if p and q are distinct primes?
 - If p, q distinct primes, $\phi(pq) = \phi(p)\phi(q)$
 - Not true if p=q
 - We won't prove this, though it's not hard

Examples

- What is φ(3)?
 - $-|Z_3^*| = |\{1,2\}| = 2$
- What is φ(5)?
- What is φ(15)?
 - $\phi(15) = \phi(3)\phi(5) = 2 \times 4 = 8$
 - Recall, $Z_{15}^* = \{1,2,4,7,8,11,13,14\}$

LaGrange's Theorem

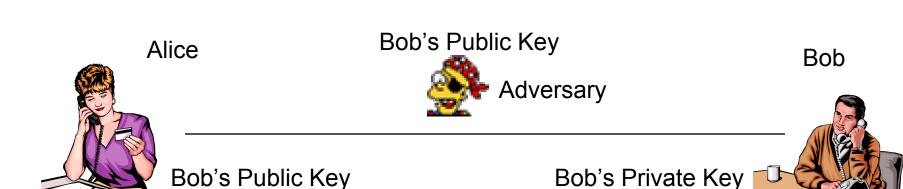
- Last bit of math we'll need for RSA
- Theorem: if G is any finite group of order n, then ∀ a ∈ G, aⁿ = 1
 - Examples:
 - $6 \in \mathbb{Z}_{22}$, 6+6+...+6, 22 times = 0 mod 22
 - $2 \in Z_{15}^*$, $2^8 = 256 = 1 \mod 15$
 - Consider $\{0,1\}^5$ under \oplus - 01011 $\in \{0,1\}^5$, 01011³² = 00000¹⁶ =00000
 - It always works (proof requires some work)

Basic RSA Cryptosystem

- Basic Setup:
 - Alice and Bob do not share a key to start with
 - Alice will be the sender, Bob the receiver
 - Reverse what follows for Bob to reply
 - Bob first does key generation
 - He goes off in a corner and computes two keys
 - One key is pk, the "public key"
 - Other key is sk, the "secret key" or "private key"
 - After this, Alice can encrypt with pk and Bob decrypts with sk

Basic RSA Cryptosystem

- Note that after Alice encrypts with pk, she cannot even decrypt what she encrypted
 - Only the holder of sk can decrypt
 - The adversary can have a copy of pk; we don't care



Key Generation

- Bob generates his keys as follows
 - Choose two large distinct random primes p, q
 - Set n = pq (in Z... no finite groups yet)
 - Compute $\phi(n) = \phi(pq) = \phi(p)\phi(q) = (p-1)(q-1)$
 - Choose some $e \in Z_{\phi(n)}^{*}$
 - Compute $d = e^{-1}$ in $Z_{\phi(n)}^*$
 - Set pk = (e,n) and sk = (d,n)
 - Here (e,n) is the ordered pair (e,n) and does not mean gcd

Key Generation Notes

- Note that pk and sk share n
 - Ok, so only d is secret
- Note that d is the inverse in the group $Z_{\phi(n)}^{*}$ and not in Z_n^{*}
 - Kind of hard to grasp, but we'll see why
- Note that factoring n would leak d
- And knowing φ(n) would lead d
 - Bob has no further use for p, q, and φ(n) so he shouldn't leave them lying around

RSA Encryption

- For any message M ∈ Z_n*
 - Alice has pk = (e,n)
 - Alice computes C = Me mod n
 - That's it

- To decrypt
 - Bob has sk = (d,n)
 - He computes C^d mod n = M
 - We need to prove this

RSA Example

- Let p = 19, q = 23
 - These aren't large primes, but they're primes!
 - -n = 437
 - $\phi(n) = 396$
 - Clearly $5 \in \mathbb{Z}^*_{396}$, so set e=5
 - Then d=317
 - ed = $5 \times 317 = 1585 = 1 + 4 \times 396$
 - pk = (5, 437)
 - -sk = (396, 437)

RSA Example (cont)

- Suppose M = 100 is Alice's message
 - Ensure (100,437) = 1 ✓
 - Compute C = $100^5 \mod 437 = 85$
 - Send 85 to Bob
- Bob receives C = 85
 - Computes $85^{317} \mod 437 = 100 \checkmark$
- We'll discuss implementation issues later

RSA Proof

- Need to show that for any M ∈ Z_n*, M^{ed} = M mod n
 - $ed = 1 \mod \phi(n)$ [by def of d]
 - So ed = $k\phi(n)$ + 1 [by def of modulus]
 - So working in Z_n^* , $M^{ed} = M^{k\phi(n)+1} = M^{k\phi(n)} M^1 = (M^{\phi(n)})^k M = 1^k M = M$
 - Do you see LaGrange's Theorem there?
- This doesn't say anything about the security of RSA, just that we can decrypt

Security of RSA

- Clearly if we can factor efficiently, RSA breaks
 - It's unknown if breaking RSA implies we can factor
- Basic RSA is not good encryption
 - There are problems with using RSA as I've just described; don't do it
 - Use a method like OAEP
 - We won't go into this

Factoring Technology

- Factoring Algorithms
 - Try everything up to sqrt(n)
 - Good if n is small
 - Sieving
 - Ditto
 - Quadratic Sieve, Elliptic Curves, Pollard's Rho
 Algorithm
 - Good up to about 40 bits
 - Number Field Sieve
 - State of the Art for large composites

The Number Field Sieve

Running time is estimated as

$$e^{(1.526+o(1))(\log n)^{1/3}(\log\log n)^{2/3}}$$

- This is super-polynomial, but subexponential
 - It's unknown what the complexity of this problem is, but it's thought that it lies between P and NPC, assuming P ≠ NP

NFS (cont)

- How it works (sort of)
 - The first step is called "sieving" and it can be widely distributed
 - The second step builds and solves a system of equations in a large matrix and must be done on a large computer
 - Massive memory requirements
 - Usually done on a large supercomputer

The Record

- In Dec, 2003, RSA-576 was factored
 - That's 576 bits, 174 decimal digits
 - The next number is RSA-640 which is

31074182404900437213507500358885679300373460228427 27545720161948823206440518081504556346829671723286 78243791627283803341547107310850191954852900733772 4822783525742386454014691736602477652346609

 Anyone delivering the two factors gets an immediate A in the class (and 10,000 USD)

On the Forefront

- Other methods in the offing
 - Bernstein's Integer Factoring Circuits
 - TWIRL and TWINKLE
 - Using lights and mirrors
 - Shamir and Tromer's methods
 - They estimate that factoring a 1024 bit RSA modulus would take 10M USD to build and one year to run
 - Some skepticism has been expressed
 - And the beat goes on...
 - I wonder what the NSA knows

Implementation Notes

- We didn't say anything about how to implement RSA
 - What were the hard steps?!
 - Key generation:
 - Two large primes
 - Finding inverses mode $\phi(n)$
 - Encryption
 - Computing Me mod n for large M, e, n
 - All this can be done reasonably efficiently

Implementation Notes (cont)

- Finding inverses
 - Linear time with Euclid's Extended Algorithm
- Modular exponentiation
 - Use repeated squaring and reduce by the modulus to keep things manageable
- Primality Testing
 - Sieve first, use pseudo-prime test, then Rabin-Miller if you want to be sure
 - Primality testing is the slowest part of all this
 - Ever generate keys for PGP, GPG, OpenSSL, etc?

Note on Primality Testing

- Primality testing is different from factoring
 - Kind of interesting that we can tell something is composite without being able to actually factor it
- Recent result from IIT trio
 - Recently it was shown that deterministic primality testing could be done in polynomial time
 - Complexity was like O(n¹²), though it's been slightly reduced since then
 - One of our faculty thought this meant RSA was broken!
- Randomized algorithms like Rabin-Miller are far more efficient than the IIT algorithm, so we'll keep using those