Foundations of Network and Computer Security

John Black

Lecture \#6
Sep $9^{\text {th }} 2004$

CSCI 6268/TLEN 5831, Fall 2004

Announcements

- Quiz \#1 later today
- Still some have not signed up for class mailing list
- Perhaps people still in class but are intending to drop?!
- Please do this by end of today

The Big (Partial) Picture

Second-Level Protocols (Can do proofs)

First-Level Protocols
(Can do proofs)

Primitives

(No one knows how to prove security; make assumptions)

Symmetric vs. Asymmetric

- Thus far we have been in the symmetric key model
- We have assumed that Alice and Bob share some random secret string
- In practice, this is a big limitation
- Bootstrap problem
- Forces Alice and Bob to meet in person or use some mechanism outside our protocol
- Not practical when you want to buy books at Amazon
- We need the Asymmetric Key model!

Asymmetric Cryptography

- In this model, we no longer require an initial shared key
- First envisioned by Diffie in the late 70's
- Some thought it was impossible
- MI6 purportedly already knew a method
- Diffie-Hellman key exchange was first public system
- Later turned into El Gamal public-key system
- RSA system announced shortly thereafter

But first, a little math...

- A group is a nonempty set G along with an operation \#: $G \times G \rightarrow G$ such that for all a, b, c $\in \mathrm{G}$
$-(a \# b) \# c=a \#(b \# c)$
(associativity)
$-\exists e \in G$ such that $e \# a=a \# e=a$ (identity)
$-\exists a^{-1} \in G$ such that $a \#^{-1}=e$
(inverses)
- If $\forall a, b \in G, a \# b=b$ \# a we say the group is "commutative" or "abelian"
- All groups in this course will be abelian

Notation

- We'll get tired of writing the \# sign and just use juxtaposition instead
- In other words, a \# b will be written ab
- If some other symbol is conventional, we'll use it instead (examples to follow)
- We'll use power-notation in the usual way
- a^{b} means aaaa $\cdots a$ repeated b times
$-a^{-b}$ means $a^{-1} a^{-1} a^{-1} \cdots a^{-1}$ repeated b times
- Here $a \in G, b \in Z$
- Instead of e we'll use a more conventional identity name like 0 or 1
- Often we write G to mean the group (along with its operation) and the associated set of elements interchangeably

Examples of Groups

- Z (the integers) under + ?
- Q, R, C, under + ?
- N under + ?
- Qunder \times ?
- Z under \times ?
- 2×2 matrices with real entries under \times ?
- Invertible 2×2 matrices with real entries under \times ?
- Note all these groups are infinite
- Meaning there are an infinite number of elements in them
- Can we have finite groups?

Finite Groups

- Simplest example is $G=\{0\}$ under +
- Called the "trivial group"
- Almost as simple is $G=\{0,1\}$ under addition mod 2
- Let's generalize
$-Z_{m}$ is the group of integers modulo m
$-Z_{m}=\{0,1, \ldots, m-1\}$
- Operation is addition modulo m
- Identity is 0
- Inverse of any a $\in Z_{m}$ is $\mathrm{m}-\mathrm{a}$
- Also abelian

The Group Z_{m}

- An example

$$
\begin{aligned}
& - \text { Let } m=6 \\
& -Z_{6}=\{0,1,2,3,4,5\} \\
& -2+5=1 \\
& -3+5+1=3+0=3 \\
& - \text { Inverse of } 2 \text { is } 4 \\
& \quad \cdot 2+4=0
\end{aligned}
$$

- We can always pair an element with its inverse

$\mathrm{a}:$	0	1	2	3	4	5
$\mathrm{a}^{-1}:$	0	5	4	3	2	1

- Inverses are always unique
- An element can be its own inverse
- Above, 0 and 0,3 and 3

Another Finite Group

- Let $G=\{0,1\}^{\mathrm{n}}$ and operation is \oplus
- A group?
- What is the identity?
- What is the inverse of $a \in G$?
- We can put some familiar concepts into group-theoretic notation:
- Caesar cipher was just $\mathrm{P}+\mathrm{K}=\mathrm{C}$ in Z_{26}
- One-time pad was just $P \oplus K=C$ in the group just mentioned above

Multiplicative Groups

- Is $\{0,1, \ldots, m-1\}$ a group under multiplication mod m?
- No, 0 has no inverse
- Ok, toss out 0 ; is $\{1, \ldots, m-1\}$ a group under multiplication mod m ?
- Hmm, try some examples...
- $m=2$, so $G=\{1\}$
- $m=3$, so $G=\{1,2\}$
- $m=4$, so $G=\{1,2,3\}$ oops!
- $m=5$, so $G=\{1,2,3,4\} \quad \checkmark$

Multiplicative Groups (cont)

- What was the problem?
- 2,3,5 all prime
- 4 is composite (meaning "not prime")
- Theorem: $\mathrm{G}=\{1,2, \ldots, \mathrm{~m}-1\}$ is a group under multiplication mod m iff m is prime Proof:
\leftarrow : suppose m is composite, then $m=a b$ where $a, b \in$ G and $a, b \neq 1$. Then $a b=m=0$ and G is not closed
\rightarrow : follows from a more general theorem we state in a moment

The Group $Z_{m}{ }^{*}$

- $a, b \in N$ are relatively prime iff $\operatorname{gcd}(a, b)=1$ - Often we'll write (a, b) instead of $\operatorname{gcd}(a, b)$
- Theorem: $\mathrm{G}=\{\mathrm{a}: 1 \leq \mathrm{a} \leq \mathrm{m}-1,(\mathrm{a}, \mathrm{m})=1\}$ and operation is multiplication $\bmod m$ yields a group
- We name this group $Z_{m}{ }^{*}$
- We won't prove this (though not too hard)
- If m is prime, we recover our first theorem

Examples of $Z_{m}{ }^{*}$

- Let $\mathrm{m}=15$
- What elements are in Z_\{15\}^*?
- $\{1,2,4,7,8,11,13,14\}$
- What is 2^{-1} in $Z_{15}{ }^{*}$?
- First you should check that $2 \in \mathrm{Z}_{15}{ }^{*}$
- It is since $(2,15)=1$
- Trial and error:
- 1, 2, 4, 7, 8
- There is a more efficient way to do this called "Euclid's Extended Algorithm"
- Trust me

Euler's Phi Function

- Definition: The number of elements of a group G is called the order of G and is written $|G|$
- For infinite groups we say $|\mathrm{G}|=\infty$
- All groups we deal with in cryptography are finite
- Definition: The number of integers $\mathrm{i}<\mathrm{m}$ such that $(i, m)=1$ is denoted $\phi(m)$ and is called the "Euler Phi Function"
- Note that $\left|Z_{m}{ }^{*}\right|=\phi(m)$
- This follows immediately from the definition of $\phi()$

Evaluating the Phi Function

-What is $\phi(p)$ if p is prime?

- p -1
- What is $\phi(p q)$ if p and q are distinct primes?
- If p , q distinct primes, $\phi(\mathrm{pq})=\phi(\mathrm{p}) \phi(\mathrm{q})$
- Not true if $p=q$
- We won't prove this, though it's not hard

Examples

- What is $\phi(3)$?

$$
-\left|Z_{3}^{*}\right|=|\{1,2\}|=2
$$

- What is $\phi(5)$?
- What is $\phi(15)$?
$-\phi(15)=\phi(3) \phi(5)=2 \times 4=8$
- Recall, $Z_{15}{ }^{*}=\{1,2,4,7,8,11,13,14\}$

LaGrange's Theorem

- Last bit of math we'll need for RSA
- Theorem: if G is any finite group of order
n , then $\forall \mathrm{a} \in \mathrm{G}$, $\mathrm{a}^{\mathrm{n}}=1$
- Examples:
- $6 \in Z_{22}, 6+6+\ldots+6,22$ times $=0 \bmod 22$
- $2 \in Z_{15}{ }^{*}, 2^{8}=256=1 \bmod 15$
- Consider $\{0,1\}^{5}$ under \oplus
$-01011 \in\{0,1\}^{5}, 01011^{32}=00000^{16}=00000$
- It always works (proof requires some work)

Basic RSA Cryptosystem

- Basic Setup:
- Alice and Bob do not share a key to start with
- Alice will be the sender, Bob the receiver
- Reverse what follows for Bob to reply
- Bob first does key generation
- He goes off in a corner and computes two keys
- One key is pk, the "public key"
- Other key is sk, the "secret key" or "private key"
- After this, Alice can encrypt with pk and Bob decrypts with sk

Basic RSA Cryptosystem

- Note that after Alice encrypts with pk, she cannot even decrypt what she encrypted
- Only the holder of sk can decrypt
- The adversary can have a copy of pk; we don't care

Key Generation

- Bob generates his keys as follows
- Choose two large distinct random primes p, q
- Set $\mathrm{n}=\mathrm{pq}$ (in Z ... no finite groups yet)
- Compute $\phi(\mathrm{n})=\phi(\mathrm{pq})=\phi(\mathrm{p}) \phi(\mathrm{q})=(\mathrm{p}-1)(\mathrm{q}-1)$
- Choose some e $\in Z_{\phi(n)}{ }^{*}$
- Compute $d=e^{-1}$ in $Z_{\phi(n)}{ }^{*}$
- Set pk = (e, n) and sk = (d,n)
- Here (e,n) is the ordered pair (e,n) and does not mean gcd

Key Generation Notes

- Note that pk and sk share n
- Ok, so only d is secret
- Note that d is the inverse in the group $Z_{\phi(n)}{ }^{*}$ and not in $\mathrm{Z}_{\mathrm{n}}{ }^{*}$
- Kind of hard to grasp, but we'll see why
- Note that factoring n would leak d
- And knowing $\phi(\mathrm{n})$ would lead d
- Bob has no further use for p, q, and $\phi(n)$ so he shouldn't leave them lying around

RSA Encryption

- For any message $M \in Z_{n}{ }^{*}$
- Alice has pk = (e,n)
- Alice computes $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$
- That's it
- To decrypt
- Bob has sk = (d,n)
- He computes $C^{d} \bmod n=M$
- We need to prove this

RSA Example

- Let $p=19, q=23$
- These aren't large primes, but they're primes!
$-\mathrm{n}=437$
- $\phi(\mathrm{n})=396$
- Clearly $5 \in Z^{*}{ }_{396}$, so set e=5
- Then $\mathrm{d}=317$
- ed $=5 \times 317=1585=1+4 \times 396$
$-\mathrm{pk}=(5,437)$
$-\mathrm{sk}=(396,437)$

RSA Example (cont)

- Suppose $\mathrm{M}=100$ is Alice's message
- Ensure $(100,437)=1 \quad$ lcheckmark
- Compute C = 100^5 mod $437=85$
- Send 85 to Bob
- Bob receives $C=85$
- Computes $85^{\wedge}\{317\} \bmod 437=100$ lcheckmark
- We'll discuss implementation issues later

RSA Proof

- Need to show that for any $M \in Z_{n}{ }^{*}$, $M^{\text {ed }}=$ $M \bmod n$
- ed $=1 \bmod \phi(n) \quad[b y \operatorname{def}$ of $d]$
- So ed $=k \phi(n)+1$ [by def of modulus]
- So working in $Z_{n}{ }^{*}$, $M^{\text {ed }}=M^{k \phi(n)+1}=M^{k \phi(n)} M^{1}=$ $\left(M^{\phi(n)}\right)^{k} M=1^{k} M=M$
- Do you see LaGrange's Theorem there?
- This doesn't say anything about the security of RSA, just that we can decrypt

Security of RSA

- Clearly if we can factor efficiently, RSA breaks
- It's unknown if breaking RSA implies we can factor
- Basic RSA is not good encryption
- There are problems with using RSA as l've just described; don't do it
- Use a method like OAEP
- We won't go into this

Factoring Technology

- Factoring Algorithms
- Try everything up to sqrt(n)
- Good if n is small
- Sieving
- Ditto
- Quadratic Sieve, Elliptic Curves, Pollard's Rho Algorithm
- Good up to about 40 bits
- Number Field Sieve
- State of the Art for large composites

The Number Field Sieve

- Running time is estimated as

$$
e^{(1.526+o(1))(\log n)^{1 / 3}(\log \log n)^{2 / 3}}
$$

- This is super-polynomial, but subexponential
- It's unknown what the complexity of this problem is, but it's thought that it lies between P and NPC, assuming $P \neq N P$

NFS (cont)

- How it works (sort of)
- The first step is called "sieving" and it can be widely distributed
- The second step builds and solves a system of equations in a large matrix and must be done on a large computer
- Massive memory requirements
- Usually done on a large supercomputer

The Record

- In Dec, 2003, RSA-576 was factored
- That's 576 bits, 174 decimal digits
- The next number is RSA-640 which is

$$
\begin{aligned}
& 31074182404900437213507500358885679300373460228427 \\
& 27545720161948823206440518081504556346829671723286 \\
& 78243791627283803341547107310850191954852900733772 \\
& 4822783525742386454014691736602477652346609
\end{aligned}
$$

- Anyone delivering the two factors gets an immediate A in the class (and 10,000 USD)

On the Forefront

- Other methods in the offing
- Bernstein's Integer Factoring Circuits
- TWIRL and TWINKLE
- Using lights and mirrors
- Shamir and Tromer's methods
- They estimate that factoring a 1024 bit RSA modulus would take 10M USD to build and one year to run
- Some skepticism has been expressed
- And the beat goes on...
- I wonder what the NSA knows

Implementation Notes

- We didn't say anything about how to implement RSA
- What were the hard steps?!
- Key generation:
- Two large primes
- Finding inverses mode $\phi(\mathrm{n})$
- Encryption
- Computing M^{e} mod n for large $\mathrm{M}, \mathrm{e}, \mathrm{n}$
- All this can be done reasonably efficiently

Implementation Notes (cont)

- Finding inverses
- Linear time with Euclid's Extended Algorithm
- Modular exponentiation
- Use repeated squaring and reduce by the modulus to keep things manageable
- Primality Testing
- Sieve first, use pseudo-prime test, then Rabin-Miller if you want to be sure
- Primality testing is the slowest part of all this
- Ever generate keys for PGP, GPG, OpenSSL, etc?

Note on Primality Testing

- Primality testing is different from factoring
- Kind of interesting that we can tell something is composite without being able to actually factor it
- Recent result from IIT trio
- Recently it was shown that deterministic primality testing could be done in polynomial time
- Complexity was like $\mathrm{O}\left(\mathrm{n}^{12}\right)$, though it's been slightly reduced since then
- One of our faculty thought this meant RSA was broken!
- Randomized algorithms like Rabin-Miller are far more efficient than the IIT algorithm, so we'll keep using those

