
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #6
Sep 9th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Quiz #1 later today

• Still some have not signed up for class
mailing list
– Perhaps people still in class but are intending

to drop?!

• Please do this by end of today

The Big (Partial) Picture

Primitives
Block
Ciphers

Hash
Functions

Hard
Problems

Stream
Ciphers

First-Level
Protocols

Symmetric
Encryption

Digital
Signatures

MAC
Schemes

Asymmetric
Encryption

Second-Level
Protocols

SSH, SSL/TLS, IPSec
Electronic Cash, Electronic Voting

(Can do proofs)

(Can do proofs)

(No one knows how to prove security; make assumptions)

Symmetric vs. Asymmetric

• Thus far we have been in the symmetric key
model
– We have assumed that Alice and Bob share some

random secret string
– In practice, this is a big limitation

• Bootstrap problem
• Forces Alice and Bob to meet in person or use some

mechanism outside our protocol
• Not practical when you want to buy books at Amazon

• We need the Asymmetric Key model!

Asymmetric Cryptography

• In this model, we no longer require an
initial shared key
– First envisioned by Diffie in the late 70’s
– Some thought it was impossible
– MI6 purportedly already knew a method
– Diffie-Hellman key exchange was first public

system
• Later turned into El Gamal public-key system

– RSA system announced shortly thereafter

But first, a little math…

• A group is a nonempty set G along with an
operation # : G × G → G such that for all a, b, c
∈ G
– (a # b) # c = a # (b # c) (associativity)
– ∃ e ∈ G such that e # a = a # e = a (identity)
– ∃ a-1 ∈ G such that a # a-1 = e (inverses)

• If ∀ a,b ∈ G, a # b = b # a we say the group is
“commutative” or “abelian”
– All groups in this course will be abelian

Notation
• We’ll get tired of writing the # sign and just use

juxtaposition instead
– In other words, a # b will be written ab
– If some other symbol is conventional, we’ll use it instead

(examples to follow)
• We’ll use power-notation in the usual way

– ab means aaaaLa repeated b times
– a-b means a-1a-1a-1La-1 repeated b times
– Here a ∈ G, b ∈ Z

• Instead of e we’ll use a more conventional identity name
like 0 or 1

• Often we write G to mean the group (along with its
operation) and the associated set of elements
interchangeably

Examples of Groups
• Z (the integers) under + ?
• Q, R, C, under + ?
• N under + ?
• Q under × ?
• Z under × ?
• 2 × 2 matrices with real entries under × ?
• Invertible 2 × 2 matrices with real entries under × ?

• Note all these groups are infinite
– Meaning there are an infinite number of elements in them

• Can we have finite groups?

Finite Groups
• Simplest example is G = {0} under +

– Called the “trivial group”
• Almost as simple is G = {0, 1} under addition

mod 2
• Let’s generalize

– Zm is the group of integers modulo m
– Zm = {0, 1, …, m-1}
– Operation is addition modulo m
– Identity is 0
– Inverse of any a ∈ Zm is m-a
– Also abelian

The Group Zm

• An example
– Let m = 6
– Z6 = {0,1,2,3,4,5}
– 2+5 = 1
– 3+5+1 = 3 + 0 = 3
– Inverse of 2 is 4

• 2+4 = 0
• We can always pair an element with its inverse

a : 0 1 2 3 4 5
a -1 : 0 5 4 3 2 1

• Inverses are always unique
• An element can be its own inverse

– Above, 0 and 0, 3 and 3

Another Finite Group
• Let G = {0,1}n and operation is ⊕

– A group?
– What is the identity?
– What is the inverse of a ∈ G?

• We can put some familiar concepts into
group-theoretic notation:
– Caesar cipher was just P + K = C in Z26
– One-time pad was just P ⊕ K = C in the group

just mentioned above

Multiplicative Groups

• Is {0, 1, …, m-1} a group under
multiplication mod m?
– No, 0 has no inverse

• Ok, toss out 0; is {1, …, m-1} a group
under multiplication mod m?
– Hmm, try some examples…

• m = 2, so G = {1} X
• m = 3, so G = {1,2} X
• m = 4, so G = {1,2,3} oops!
• m = 5, so G = {1,2,3,4} X

Multiplicative Groups (cont)
• What was the problem?

– 2,3,5 all prime
– 4 is composite (meaning “not prime”)

• Theorem: G = {1, 2, …, m-1} is a group under
multiplication mod m iff m is prime
Proof:
←: suppose m is composite, then m = ab where a,b ∈

G and a, b ≠ 1. Then ab = m = 0 and G is not closed
→: follows from a more general theorem we state in a

moment

The Group Zm
*

• a,b ∈ N are relatively prime iff gcd(a,b) = 1
– Often we’ll write (a,b) instead of gcd(a,b)

• Theorem: G = {a : 1 · a · m-1, (a,m) = 1}
and operation is multiplication mod m
yields a group
– We name this group Zm

*

– We won’t prove this (though not too hard)
– If m is prime, we recover our first theorem

Examples of Zm
*

• Let m = 15
– What elements are in Z_{15}^*?

• {1,2,4,7,8,11,13,14}

– What is 2-1 in Z15
*?

• First you should check that 2 ∈ Z15
*

• It is since (2,15) = 1

– Trial and error:
• 1, 2, 4, 7, 8 X

– There is a more efficient way to do this called
“Euclid’s Extended Algorithm”

• Trust me

Euler’s Phi Function

• Definition: The number of elements of a group G
is called the order of G and is written |G|
– For infinite groups we say |G| = ∞
– All groups we deal with in cryptography are finite

• Definition: The number of integers i < m such
that (i,m) = 1 is denoted φ(m) and is called the
“Euler Phi Function”
– Note that |Zm

*| = φ(m)
– This follows immediately from the definition of φ()

Evaluating the Phi Function

• What is φ(p) if p is prime?
– p-1

• What is φ(pq) if p and q are distinct
primes?
– If p, q distinct primes, φ(pq) = φ(p)φ(q)
– Not true if p=q
– We won’t prove this, though it’s not hard

Examples

• What is φ(3)?
– |Z3

*| = |{1,2}| = 2
• What is φ(5)?
• What is φ(15)?

– φ(15) = φ(3)φ(5) = 2 × 4 = 8
– Recall, Z15

* = {1,2,4,7,8,11,13,14}

LaGrange’s Theorem

• Last bit of math we’ll need for RSA
• Theorem: if G is any finite group of order

n, then ∀ a ∈ G, an = 1
– Examples:

• 6 ∈ Z22, 6+6+…+6, 22 times = 0 mod 22
• 2 ∈ Z15

*, 28 = 256 = 1 mod 15
• Consider {0,1}5 under ⊕

– 01011 ∈ {0,1}5, 0101132 = 0000016 =00000

– It always works (proof requires some work)

Basic RSA Cryptosystem

• Basic Setup:
– Alice and Bob do not share a key to start with
– Alice will be the sender, Bob the receiver

• Reverse what follows for Bob to reply
– Bob first does key generation

• He goes off in a corner and computes two keys
• One key is pk, the “public key”
• Other key is sk, the “secret key” or “private key”

– After this, Alice can encrypt with pk and Bob
decrypts with sk

Basic RSA Cryptosystem

• Note that after Alice encrypts with pk, she
cannot even decrypt what she encrypted
– Only the holder of sk can decrypt
– The adversary can have a copy of pk; we

don’t care

Adversary

Alice

Bob’s Public Key Bob’s Private Key

Bob
Bob’s Public Key

Key Generation

• Bob generates his keys as follows
– Choose two large distinct random primes p, q
– Set n = pq (in Z… no finite groups yet)
– Compute φ(n) = φ(pq) = φ(p)φ(q) = (p-1)(q-1)
– Choose some e ∈ Zφ(n)

*

– Compute d = e-1 in Zφ(n)
*

– Set pk = (e,n) and sk = (d,n)
• Here (e,n) is the ordered pair (e,n) and does not

mean gcd

Key Generation Notes

• Note that pk and sk share n
– Ok, so only d is secret

• Note that d is the inverse in the group Zφ(n)
*

and not in Zn
*

– Kind of hard to grasp, but we’ll see why
• Note that factoring n would leak d
• And knowing φ(n) would lead d

– Bob has no further use for p, q, and φ(n) so he
shouldn’t leave them lying around

RSA Encryption
• For any message M ∈ Zn

*

– Alice has pk = (e,n)
– Alice computes C = Me mod n
– That’s it

• To decrypt
– Bob has sk = (d,n)
– He computes Cd mod n = M

• We need to prove this

RSA Example

• Let p = 19, q = 23
– These aren’t large primes, but they’re primes!
– n = 437
– φ(n) = 396
– Clearly 5 ∈ Z*396, so set e=5
– Then d=317

• ed = 5 × 317 = 1585 = 1 + 4 × 396 X
– pk = (5, 437)
– sk = (396, 437)

RSA Example (cont)

• Suppose M = 100 is Alice’s message
– Ensure (100,437) = 1 \checkmark
– Compute C = 100^5 mod 437 = 85
– Send 85 to Bob

• Bob receives C = 85
– Computes 85^{317} mod 437 = 100 \checkmark

• We’ll discuss implementation issues later

RSA Proof
• Need to show that for any M ∈ Zn

*, Med =
M mod n
– ed = 1 mod φ(n) [by def of d]
– So ed = kφ(n) + 1 [by def of modulus]
– So working in Zn

*, Med = Mkφ(n) + 1 = Mkφ(n) M1 =
(Mφ(n))k M = 1k M = M

• Do you see LaGrange’s Theorem there?

• This doesn’t say anything about the
security of RSA, just that we can decrypt

Security of RSA

• Clearly if we can factor efficiently, RSA
breaks
– It’s unknown if breaking RSA implies we can

factor
• Basic RSA is not good encryption

– There are problems with using RSA as I’ve
just described; don’t do it

– Use a method like OAEP
• We won’t go into this

Factoring Technology

• Factoring Algorithms
– Try everything up to sqrt(n)

• Good if n is small
– Sieving

• Ditto
– Quadratic Sieve, Elliptic Curves, Pollard’s Rho

Algorithm
• Good up to about 40 bits

– Number Field Sieve
• State of the Art for large composites

The Number Field Sieve

• Running time is estimated as

• This is super-polynomial, but sub-
exponential
– It’s unknown what the complexity of this

problem is, but it’s thought that it lies between
P and NPC, assuming P ≠ NP

NFS (cont)

• How it works (sort of)
– The first step is called “sieving” and it can be

widely distributed
– The second step builds and solves a system

of equations in a large matrix and must be
done on a large computer

• Massive memory requirements
• Usually done on a large supercomputer

The Record

• In Dec, 2003, RSA-576 was factored
– That’s 576 bits, 174 decimal digits
– The next number is RSA-640 which is

– Anyone delivering the two factors gets an
immediate A in the class (and 10,000 USD)

31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286
78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609

On the Forefront

• Other methods in the offing
– Bernstein’s Integer Factoring Circuits
– TWIRL and TWINKLE

• Using lights and mirrors

– Shamir and Tromer’s methods
• They estimate that factoring a 1024 bit RSA modulus would

take 10M USD to build and one year to run
– Some skepticism has been expressed

– And the beat goes on…
• I wonder what the NSA knows

Implementation Notes

• We didn’t say anything about how to
implement RSA
– What were the hard steps?!

• Key generation:
– Two large primes
– Finding inverses mode φ(n)

• Encryption
– Computing Me mod n for large M, e, n

– All this can be done reasonably efficiently

Implementation Notes (cont)

• Finding inverses
– Linear time with Euclid’s Extended Algorithm

• Modular exponentiation
– Use repeated squaring and reduce by the modulus to

keep things manageable
• Primality Testing

– Sieve first, use pseudo-prime test, then Rabin-Miller if
you want to be sure

• Primality testing is the slowest part of all this
• Ever generate keys for PGP, GPG, OpenSSL, etc?

Note on Primality Testing
• Primality testing is different from factoring

– Kind of interesting that we can tell something is
composite without being able to actually factor it

• Recent result from IIT trio
– Recently it was shown that deterministic primality

testing could be done in polynomial time
• Complexity was like O(n12), though it’s been slightly reduced

since then
– One of our faculty thought this meant RSA was

broken!
• Randomized algorithms like Rabin-Miller are far

more efficient than the IIT algorithm, so we’ll
keep using those

