Foundations of Network and Computer Security

John Black

Lecture \#5
Sep 7th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

- Please sign up for class mailing list by end of today
- Quiz \#1 will be on Thursday, Day after tomorrow

Building a MAC with a Blockcipher

- Let's use AES to build a MAC
- A common method is the CBC MAC:
- CBC MAC is stateless (no nonce N is used)
- Proven security in the ACMA model provided messages are all of once fixed length
- Resistance to forgery quadratic in the aggregate length of adversarial queries plus any insecurity of AES
- Widely used: ANSI X9.19, FIPS 113, ISO 9797-1

Breaking CBC MAC

- If we allow msg lengths to vary, the MAC breaks
- To "forge" we need to do some (reasonable) number of queries, then submit a new message and a valid tag
- Ask $\mathrm{M}_{1}=0^{n} \quad$ we get $\mathrm{t}=\operatorname{AES}_{\mathrm{K}}\left(0^{\mathrm{n}}\right)$ back
- We're done!
- We announce that $\mathrm{M}^{*}=0^{n} \| t$ has tag t as well
- (Note that A || B denotes the concatenation of strings A and B)

CBC MAC Attack (notes)

- Attack was "unfair"
- We used varying lengths which is not allowed for CBC MAC
- Well, we were just demonstrating that the fixed-length condition is necessary!
- And we were giving an example of the ACMA model
- Attack was adaptive
- We used the output, t , from our first query as a message block in our forgery!
- Forged message wasn't really meaningful
- Doesn't matter, a forgery is a forgery

Varying Message Lengths: XCBC

- There are several well-known ways to overcome the fixed-length limitation of CBC MAC
- XCBC, is the most efficient one known, and is provablysecure (when the underlying block cipher is computationally indistinguishable from random)
- Uses blockcipher key K1 and needs two additional n-bit keys K2 and K3 which are XORed in just before the last encipherment
- A proposed NIST standard (as "CMAC")

UMAC: MACing Faster

- In many contexts, cryptography needs to be as fast as possible
- High-end routers process > 1Gbps
- High-end web servers process > 1000 requests/sec
- But AES (a very fast block cipher) is already more than 15 cycles-per-byte on a PPro
- Block ciphers are relatively expensive; it's possible to build faster MACs
- UMAC is roughly ten times as fast as current practice

UMAC follows the Wegman-Carter Paradigm

- Since AES is (relatively) slow, let's avoid using it unless we have to
- Wegman-Carter MACs provide a way to process M first with a non-cryptographic hash function to reduce its size, and then encrypt the result

The Ubiquitous HMAC

- The most widely-used MAC (IPSec, SSL, many VPNs)
- Doesn't use a blockcipher or any universal hash family
- Instead uses something called a "collision resistant hash function" H
- Sometimes called "cryptographic hash functions"
- Keyless object - more in a moment
- $\operatorname{HMAC}_{\mathrm{K}}(\mathrm{M})=\mathrm{H}(\mathrm{K} \oplus$ opad || $\mathrm{H}(\mathrm{K} \oplus$ ipad || M$))$
- opad is 0×36 repeated as needed
- ipad is $0 \times 5 \mathrm{C}$ repeated as needed

Notes on HMAC

- Fast
- Faster than CBC MAC or XCBC
- Because these crypto hash functions are fast
- Slow
- Slower than UMAC and other universal-hash-family MACs
- Proven security
- But these crypto hash functions have recently been attacked and may show further weaknesses soon

What are cryptographic hash functions?

- A cryptographic hash function takes a message from $\{0,1\}^{*}$ and produces a fixed size output
- Output is called "hash" or "digest" or "fingerprint"
- There is no key
- The most well-known are MD5 and SHA-1 but there are other options
- MD5 outputs 128 bits
- SHA-1 outputs 160 bits

```
% md5
Hello There
^D
A82fadb196cba39eb884736dcca303a6

Message

Output

\section*{512 bits}

\section*{SHA-1}
\begin{tabular}{|l|l|l|l|}
\hline\(M_{1}\) & \(M_{2}\) & \(\ldots\) & \(M_{m}\) \\
\hline
\end{tabular}
for \(i=1\) to \(m\) do
\[
\begin{aligned}
& W_{t}=\left\{\begin{array}{lr}
t \text {-th word of } M_{i} & 0 \leq t \leq 15 \\
\left(\mathrm{~W}_{t-3} \oplus \mathrm{~W}_{t-8} \oplus \mathrm{~W}_{t-14} \oplus \mathrm{~W}_{t-16}\right) \ll 1 & 16 \leq t \leq 79
\end{array}\right. \\
& A \leftarrow H_{0}^{i-1} ; \quad B \leftarrow H_{1}^{i-1} ; \quad C \leftarrow H_{2}^{i-1} ; \quad D \leftarrow H_{3}^{i-1} ; \quad E \leftarrow H_{4}^{i-1}
\end{aligned}
\]
for \(t=1\) to 80 do
\[
\begin{aligned}
& T \leftarrow A \ll 5+g_{t}(B, C, D)+E+K_{t}+W_{t} \\
& E \leftarrow D ; \quad D \leftarrow C ; \quad C \leftarrow B \gg 2 ; \quad B \leftarrow A ; A \leftarrow T
\end{aligned}
\]
end
\[
\begin{array}{ll}
H_{0}{ }^{i} \leftarrow A+H_{0}{ }^{i-1} ; & H_{1}{ }^{i} \leftarrow B+H_{1}{ }^{i-1} ; \\
H_{3}{ }^{i} \leftarrow D+H_{3}{ }^{i-1} ; & H_{4}{ }^{i} \leftarrow E+H_{4}{ }^{i-1} \leftarrow C+H_{2}{ }^{i-1} ;
\end{array}
\]
end
return \(H_{0}{ }^{m} H_{1}{ }^{m} H_{2}{ }^{m} H_{3}{ }^{m} H_{4}^{m} \longleftarrow 160\) bits

\section*{Real-world applications}

Hash functions are pervasive
- Message authentication codes (HMAC)
- Digital signatures (hash-and-sign)
- File comparison (compare-by-hash, eg, RSYNC)
- Micropayment schemes
- Commitment protocols
- Timestamping
- Key exchange

\section*{A cryptographic property \\ (quite informal)}

\section*{1. Collision resistance given a hash function} it is hard to find two colliding inputs


\section*{More cryptographic properties}
1. Collision resistance given a hash function it is hard to find two colliding inputs
2. Second-preimage given a hash function and resistance given a first input, it is hard to find a second input that collides with the first
3. Preimage resistance given a hash function and given an hash output
it is hard to invert that output

\section*{Merkle-Damgard construction}

Compression function


MD Theorem: if \(f\) is \(C R\), then so is \(H\)


\section*{Hash Function Security}
- Consider best-case scenario (random outputs)
- If a hash function output only 1 bit, how long would we expect to avoid collisions?
- Expectation: \(1 \times 0+2 \times 1 / 2+3 \times 1 / 2=2.5\)
- What about 2 bits?
- Expectation: \(1 \times 0+2 \times 1 / 4+3 \times 3 / 41 / 2+4 \times 3 / 4\) \(1 / 23 / 4+5 \times 3 / 41 / 21 / 4 \approx 3.22\)
- This is too hard...

\section*{Birthday Paradox}
- Need another method
- Birthday paradox: if we have 23 people in a room, the probability is \(>50 \%\) that two will share the same birthday
- Assumes uniformity of birthdays
- Untrue, but this only increases chance of birthday match
- Ignores leap years (probably doesn't matter much)
- Try an experiment with the class...

\section*{Birthday Paradox (cont)}
- Let's do the math
- Let n equal number of people in the class
- Start with \(\mathrm{n}=1\) and count upward
- Let NBM be the event that there are No-Birthday-Matches
- For \(n=1, \operatorname{Pr}[N B M]=1\)
- For \(n=2\), \(\operatorname{Pr}[\mathrm{NBM}]=1 \times 364 / 365 \approx .997\)
- For \(n=3, \operatorname{Pr}[N B M]=1 \times 364 / 365 \times 363 / 365 \approx .991\)
- ...
- For \(n=22, \operatorname{Pr}[N B M]=1 \times \ldots \times 344 / 365 \approx .524\)
- For \(n=23, \operatorname{Pr}[N B M]=1 \times \ldots \times 343 / 365 \approx .493\)
- Since the probability of a match is \(1-\operatorname{Pr}[N B M]\) we see that \(\mathrm{n}=23\) is the smallest number where the probability exceeds 50\%

\section*{Occupancy Problems}
- What does this have to do with hashing?
- Suppose each hash output is uniform and random on \(\{0,1\}^{n}\)
- Then it's as if we're throwing a ball into one of \(2^{n}\) bins at random and asking when a bin contains at least 2 balls
- This is a well-studied area in probability theory called "occupancy problems"
- It's well-known that the probability of a collision occurs around the square-root of the number of bins
- If we have \(2^{n}\) bins, the square-root is \(2^{n / 2}\)

\section*{Birthday Bounds}
- This means that even a perfect n-bit hash function will start to exhibit collisions when the number of inputs nears \(2^{\text {n/2 }}\)
- This is known as the "birthday bound"
- It's impossible to do better, but quite easy to do worse
- It is therefore hoped that it takes \(\Omega\left(2^{64}\right)\) work to find collisions in MD5 and \(\Omega\left(2^{80}\right)\) work to find collisions in SHA-1

\section*{The Birthday Bound}


Number of Hash Inputs

\section*{Latest News}
- At CRYPTO 2004 (August)
- Collisions found in HAVAL, RIPEMD, MD4, MD5, and SHA-0 (2 \({ }^{40}\) operations)
- Wang, Feng, Lai, Yu
- Only Lai is well-known
- HAVAL was known to be bad
- Dobbertin found collisions in MD4 years ago
- MD5 news is big!
- SHA-0 isn't used anymore (but see next slide)

\section*{Collisions in SHA-0}

\section*{\(M_{1}, M_{1}{ }^{\prime}\)}



\section*{What Does this Mean?}
- Who knows
- Methods are not yet understood
- Will undoubtedly be extended to more attacks
- Maybe nothing much more will happen
- But maybe everything will come tumbling down?!
- But we have OTHER ways to build hash functions

\section*{A Provably-Secure Blockcipher-Based Compression Function}


\section*{The Big (Partial) Picture}

Second-Level Protocols (Can do proofs)

First-Level Protocols
(Can do proofs)

Primitives

(No one knows how to prove security; make assumptions)```

