
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #5
Sep 7th 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Please sign up for class mailing list by end
of today

• Quiz #1 will be on Thursday, Day after
tomorrow

Building a MAC with a
Blockcipher

• Let’s use AES to build a MAC
– A common method is the CBC MAC:

• CBC MAC is stateless (no nonce N is used)
• Proven security in the ACMA model provided messages are

all of once fixed length
• Resistance to forgery quadratic in the aggregate length of

adversarial queries plus any insecurity of AES
• Widely used: ANSI X9.19, FIPS 113, ISO 9797-1

AESK

M1

AESK AESK

tag

M2 Mm

Breaking CBC MAC

• If we allow msg lengths to vary, the MAC
breaks
– To “forge” we need to do some (reasonable)

number of queries, then submit a new
message and a valid tag

• Ask M1 = 0n we get t = AESK(0n) back
• We’re done!

– We announce that M* = 0n || t has tag t as well
– (Note that A || B denotes the concatenation of strings A

and B)

CBC MAC Attack (notes)
• Attack was “unfair”

– We used varying lengths which is not allowed for
CBC MAC

– Well, we were just demonstrating that the fixed-length
condition is necessary!

– And we were giving an example of the ACMA model
• Attack was adaptive

– We used the output, t, from our first query as a
message block in our forgery!

• Forged message wasn’t really meaningful
– Doesn’t matter, a forgery is a forgery

Varying Message Lengths: XCBC

• There are several well-known ways to overcome the
fixed-length limitation of CBC MAC

• XCBC, is the most efficient one known, and is provably-
secure (when the underlying block cipher is
computationally indistinguishable from random)
– Uses blockcipher key K1 and needs two additional n-bit keys K2

and K3 which are XORed in just before the last encipherment
• A proposed NIST standard (as “CMAC”)

AESK1

M1

AESK1 AESK1

tag

M2 Mm
K2 if n divides |M|
K3 otherwise

UMAC: MACing Faster

• In many contexts, cryptography needs to be as
fast as possible
– High-end routers process > 1Gbps
– High-end web servers process > 1000 requests/sec

• But AES (a very fast block cipher) is already
more than 15 cycles-per-byte on a PPro
– Block ciphers are relatively expensive; it’s possible

to build faster MACs
• UMAC is roughly ten times as fast as current

practice

UMAC follows the Wegman-Carter
Paradigm

• Since AES is (relatively) slow, let’s avoid using it
unless we have to
– Wegman-Carter MACs provide a way to process M

first with a non-cryptographic hash function to reduce
its size, and then encrypt the result

Message M

hash functionhash key

encryptencryption key

hash(M)

tag

The Ubiquitous HMAC

• The most widely-used MAC (IPSec, SSL, many
VPNs)

• Doesn’t use a blockcipher or any universal hash
family
– Instead uses something called a “collision resistant

hash function” H
• Sometimes called “cryptographic hash functions”
• Keyless object – more in a moment
• HMACK(M) = H(K ⊕ opad || H(K ⊕ ipad || M))
• opad is 0x36 repeated as needed
• ipad is 0x5C repeated as needed

Notes on HMAC

• Fast
– Faster than CBC MAC or XCBC

• Because these crypto hash functions are fast

• Slow
– Slower than UMAC and other universal-hash-family

MACs
• Proven security

– But these crypto hash functions have recently been
attacked and may show further weaknesses soon

What are cryptographic hash
functions?

Output

Message

e.g., MD5,SHA-1

Hash Function

• A cryptographic hash function takes a message from
{0,1}* and produces a fixed size output

• Output is called “hash” or “digest” or “fingerprint”
• There is no key
• The most well-known are MD5 and SHA-1 but there

are other options
• MD5 outputs 128 bits
• SHA-1 outputs 160 bits

% md5

Hello There

^D

A82fadb196cba39eb884736dcca303a6

%

T ← A << 5 + gt (B, C, D) + E + Kt + Wt

SHA-1
...M1 M2 Mm

for i = 1 to m do

Wt = { t-th word of Mi 0 ≤ t ≤ 15
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) << 1 16 ≤ t ≤ 79

A ← H0
i-1; B ← H1

i-1; C ← H2
i-1; D ← H3

i-1; E ← H4
i-1

for t = 1 to 80 do

E ← D; D ← C; C ← B >> 2; B ← A; A ← T

H0
i ← A + H0

i-1; H1
i ← B + H1

i-1; H2
i ← C+ H2

i-1;
H3

i ← D + H3
i-1; H4

i ← E + H4
i-1

end

end
return H0

m H1
m H2

m H3
m H4

m

512 bits

160 bits

Real-world applications

• Message authentication codes (HMAC)
• Digital signatures (hash-and-sign)
• File comparison (compare-by-hash, eg, RSYNC)
• Micropayment schemes
• Commitment protocols
• Timestamping
• Key exchange
• ...

Hash functions are pervasive

A cryptographic property

BAD: H(M) = M mod 701

(quite informal)

1. Collision resistance given a hash function
it is hard to find two colliding inputs

HM

{0,1}n
H

M’

Strings

More cryptographic properties

1. Collision resistance given a hash function
it is hard to find two colliding inputs

3. Preimage resistance given a hash function and
given an hash output
it is hard to invert that output

2. Second-preimage given a hash function and
resistance given a first input,

it is hard to find a second input
that collides with the first

Merkle-Damgard construction

IV

M1 M2 M3

h1 h2 h3 = H (M)
n

k

Fixed initial value Chaining value

Compression function

f f f
k

MD Theorem: if f is CR, then so is H

Mi

T ← A << 5 + gt (B, C, D) + E + Kt + Wt

...M1 M2 Mm

for i = 1 to m do

Wt = { t-th word of Mi 0 ≤ t ≤ 15
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) << 1 16 ≤ t ≤ 79

A ← H0
i-1; B ← H1

i-1; C ← H2
i-1; D ← H3

i-1; E ← H4
i-1

for t = 1 to 80 do

E ← D; D ← C; C ← B >> 2; B ← A; A ← T

H0
i ← A + H0

i-1; H1
i ← B + H1

i-1; H2
i ← C+ H2

i-1;
H3

i ← D + H3
i-1; H4

i ← E + H4
i-1

end

end
return H0

m H1
m H2

m H3
m H4

m

512 bits

160 bits

H0..4
i-1

160 bits

160 bits

Hash Function Security

• Consider best-case scenario (random
outputs)

• If a hash function output only 1 bit, how
long would we expect to avoid collisions?
– Expectation: 1× 0 + 2 × ½ + 3 × ½ = 2.5

• What about 2 bits?
– Expectation: 1 × 0 + 2 × ¼ + 3 × ¾ ½ + 4 × ¾

½ ¾ + 5 × ¾ ½ ¼ ≈ 3.22
• This is too hard…

Birthday Paradox

• Need another method
– Birthday paradox: if we have 23 people in a

room, the probability is > 50% that two will
share the same birthday

• Assumes uniformity of birthdays
– Untrue, but this only increases chance of birthday match

• Ignores leap years (probably doesn’t matter much)
– Try an experiment with the class…

Birthday Paradox (cont)
• Let’s do the math

– Let n equal number of people in the class
– Start with n = 1 and count upward

• Let NBM be the event that there are No-Birthday-Matches
• For n=1, Pr[NBM] = 1
• For n=2, Pr[NBM] = 1 × 364/365 ≈ .997
• For n=3, Pr[NBM] = 1 × 364/365 × 363/365 ≈ .991
• …
• For n=22, Pr[NBM] = 1 × … × 344/365 ≈ .524
• For n=23, Pr[NBM] = 1 × … × 343/365 ≈ .493

– Since the probability of a match is 1 – Pr[NBM] we
see that n=23 is the smallest number where the
probability exceeds 50%

Occupancy Problems

• What does this have to do with hashing?
– Suppose each hash output is uniform and random on

{0,1}n

– Then it’s as if we’re throwing a ball into one of 2n bins
at random and asking when a bin contains at least 2
balls

• This is a well-studied area in probability theory called
“occupancy problems”

– It’s well-known that the probability of a collision
occurs around the square-root of the number of bins

• If we have 2n bins, the square-root is 2n/2

Birthday Bounds

• This means that even a perfect n-bit hash
function will start to exhibit collisions when
the number of inputs nears 2n/2

– This is known as the “birthday bound”
– It’s impossible to do better, but quite easy to

do worse
• It is therefore hoped that it takes Ω(264)

work to find collisions in MD5 and Ω(280)
work to find collisions in SHA-1

The Birthday Bound
1.0

Pr
ob

ab
ili

ty

0.0

0.5

2n

Number of Hash Inputs

2n/2

Latest News

• At CRYPTO 2004 (August)
– Collisions found in HAVAL, RIPEMD, MD4,

MD5, and SHA-0 (240 operations)
• Wang, Feng, Lai, Yu
• Only Lai is well-known

– HAVAL was known to be bad
– Dobbertin found collisions in MD4 years ago
– MD5 news is big!
– SHA-0 isn’t used anymore (but see next slide)

Collisions in SHA-0

T ← A << 5 + gt (B, C, D) + E + Kt + Wt

Wt = { t-th word of Mi 0 ≤ t ≤ 15
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) << 1 16 ≤ t ≤ 79

A ← H0
i-1; B ← H1

i-1; C ← H2
i-1; D ← H3

i-1; E ← H4
i-1

for t = 1 to 80 do

E ← D; D ← C; C ← B >> 2; B ← A; A ← T

H0
i ← Α + H0

i-1; H1
i ← A + H1

i-1; H2
i ← C+ H2

i-1;
H3

i ← D + H3
i-1; H4

i ← E + H4
i-1

end
H0..4

i-1

65

not in SHA-0

M1, M1
’

Collision!

What Does this Mean?

• Who knows
– Methods are not yet understood
– Will undoubtedly be extended to more attacks
– Maybe nothing much more will happen
– But maybe everything will come tumbling

down?!
• But we have OTHER ways to build hash

functions

A Provably-Secure Blockcipher-Based
Compression Function

E

Mi

hi-1 hi

n bits

n bits

n bits

The Big (Partial) Picture

Primitives
Block
Ciphers

Hash
Functions

Hard
Problems

Stream
Ciphers

First-Level
Protocols

Symmetric
Encryption

Digital
Signatures

MAC
Schemes

Asymmetric
Encryption

Second-Level
Protocols

SSH, SSL/TLS, IPSec
Electronic Cash, Electronic Voting

(Can do proofs)

(Can do proofs)

(No one knows how to prove security; make assumptions)

