
Foundations of Network and Foundations of Network and
Computer SecurityComputer Security

JJohn Black

Lecture #4
Sep 2nd 2004

CSCI 6268/TLEN 5831, Fall 2004

Announcements

• Please sign up for class mailing list

• Quiz #1 will be on Thursday, Sep 9th

– About 30 mins
– At end of class
– Office hours day before and morning of
– Covers all lecture materials and assigned

readings

Blockcipher Review

• DES
– Old, 64-bit blocksize, 56 bit keys
– Feistel construction
– Never broken except for exhaustive key

search
• AES

– New, 128-bit blocksize, 128-256 bit keys
– Non-Feistel
– Fast, elegant, so far so good

Aren’t We Done?

• Blockciphers are only a start
– They take n-bits to n-bits under a k-bit key
– Oftentimes we want to encrypt a message

and the message might be less than or
greater than n bits!

– We need a “mode of operation” which
encrypts any M ∈ {0,1}*

– There are many, but we focus on three: ECB,
CBC, CTR

ECB – Electronic Codebook

• This is the most natural way to encrypt
– It’s what we used with the Substitution Cipher
– For blockcipher E under key K:
– First, pad (if required) to ensure M ∈ ({0,1}n)+

– Write M = M1 M2 … Mm where each Mi has
size n-bits

– Then just encipher each chunk:
• Ci = EK(Mi) for all 1 · i · m

– Ciphertext is C = C1 C2 … Cm

ECB (cont)

• What’s bad about ECB?
– Repeated plaintext blocks are evident in the

ciphertext
• Called “deterministic encryption” and considered bad
• This was the feature of the Substitution Cipher that allowed

us to do frequency analysis
• Not as bad when n is large, but it’s easy to fix, so why not fix

it!

– Encrypting the same M twice will yield the same C
• Usually we’d like to avoid this as well

Goals of Encryption
• Cryptographers want to give up exactly two

pieces of information when encrypting a
message
1) That M exists
2) The approximate length of M

• The military sometimes does not even want to
give up these two things!
– Traffic analysis

• We definitely don’t want to make it obvious when
a message repeats

CBC Mode Encryption
• Start with an n-bit “nonce” called the IV

– Initialization Vector
– Usually a counter or a random string

• Blockcipher E under key K, M broken into m blocks of n
bits as usual
– C0 = IV
– Ci = EK(Mi ⊕ Ci-1) for all 1 · i · m

EK EK EK

M2 MmM1

IV

C1 C2
Cm

Features of CBC Mode
• Ciphertext is C = C0 C1 … Cm

– Ciphertext expansion of n-bits (because of C0)
• Same block Mi, or same message M looks

different when encrypted twice under the same
key (with different IV’s)

• No parallelism when encrypting
– Need to know Ci before we can encipher Mi+1
– Decryption is parallelizable however

• CBC mode is probably the most widely-used
mode of operation for symmetric key encryption

Digression on the One-Time Pad

• Suppose Alice and Bob shared a 10,000
bit string K that was secret, uniformly
random
– Can Alice send Bob a 1KB message M with

“perfect” security?
– 1KB is 8,000 bits; let X be the first 8,000 bits

of the shared string K
– Alice sets C = M ⊕ X, and sends C to Bob
– Bob computes C ⊕ X and recovers M

• Recall that M ⊕ X ⊕ X = M

Security of the One-Time Pad

• Consider any bit of M, mi, and the
corresponding bits of X and C, (xi, ci)
– Then ci = mi ⊕ xi
– Given that some adversary sees ci go across

a wire, what can he discern about the bit mi?
• Nothing! Since xi is equally likely to be 0 or 1

– So why not use the one-time pad all the time?
• Shannon proved (1948) that for perfect security the

key must be at least as long as the message
– Impractical

One-Time Pad (cont)

• Still used for very-top-secret stuff
– Purportedly used by Russians in WW II

• Note that it is very important that each bit of the
pad be used at most one time!
– The infamous “two time pad” is easily broken

• Imagine C = M ⊕ X, C’ = M’ ⊕ X
• Then C ⊕ C’ = M ⊕ X ⊕ M’ ⊕ X = M ⊕ M’
• Knowing the xor of the two messages is potentially very

useful
• n-time pad for large n is even worse (WEP does this)

Counter Mode – CTR

• Blockcipher E under key K, M broken into
m blocks of n bits, as usual

• Nonce N is typically a counter, but not
required

C0 = N
Ci = EK(N++) ⊕ Mi

• Ciphertext is C = C0 C1 … Cm

CTR Mode

• Again, n bits of ciphertext expansion
• Non-deterministic encryption
• Fully parallelizable in both directions
• Not that widely used despite being known

for a long time
– People worry about counter overlap producing

pad reuse

Why I Like Modes of Operation
• Modes are “provably secure”

– Unlike blockciphers which are deemed “hopefully
secure” after intense scrutiny by experts, modes can
be proven secure like this:

• Assume blockcipher E is secure (computationally
indistinguishable from random, as we described)

• Then the mode is secure in an analogous black-box
experiment

– The proof technique is done via a “reduction” much like you did
in your NP-Completeness class

– The argument goes like this: suppose we could break the mode
with computational resources X, Y, Z. Then we could
distinguish the blockcipher with resources X’, Y’, Z’ where these
resources aren’t that much different from X, Y, and Z

Security Model

• Alice and Bob
– Traditional names
– Let’s us abbreviate A and B
– Adversary is the bad guy

• This adversary is passive; sometimes called “eve”

– Note also the absence of side-channels
• Power consumption, timing, error messages, etc

Adversary

Alice

Key K Key K

Bob

Various Attack Models
• Known-Ciphertext Attack (KCA)

– You only know the ciphertext
– Requires you know something about the plaintext (eg,

it’s English text, an MP3, C source code, etc)
– This is the model for the Sunday cryptograms which

use a substitution cipher
• Known-Plaintext Attack (KPA)

– You have some number of plaintext-ciphertext pairs,
but you cannot choose which plaintexts you would
like to see

– This was our model for exhaustive key search and the
meet in the middle attack

Attack Models (cont)

• Chosen-Plaintext Attack (CPA)
– You get to submit plaintexts of your choice to an

encryption oracle (black box) and receive the
ciphertexts in return

– Models the ability to inject traffic into a channel
• Send a piece of disinformation to an enemy and watch for its

encryption
• Send plaintext to a wireless WEP user and sniff the traffic as

he receives it

– This is the model we used for defining blockcipher
security (computational indistinguishability)

Attack Models (cont)

• Chosen-Ciphertext Attack (CCA)
– The strongest definition (gives you the most

attacking power)
– You get to submit plaintexts and ciphertexts to

your oracles (black boxes)
– Sometimes called a “lunchtime attack”
– We haven’t used this one yet, but it’s a

reasonable model for blockcipher security as
well

So What about CBC, for example?

• CBC Mode encryption
– It’s computationally indistinguishable under

chosen plaintext attack
• You can’t distinguish between the encryption of

your query M and the encryption of a random
string of the same length

– In the lingo, “CBC is IND-CPA”
– It’s not IND-CCA

• You need to add authentication to get this

The Big (Partial) Picture

Primitives
Block
Ciphers

Hash
Functions

Hard
Problems

Stream
Ciphers

First-Level
Protocols

Symmetric
Encryption

Digital
Signatures

MAC
Schemes

Asymmetric
Encryption

Second-Level
Protocols

SSH, SSL/TLS, IPSec
Electronic Cash, Electronic Voting

(Can do proofs)

(Can do proofs)

(No one knows how to prove security; make assumptions)

Symmetric Authentication:
The Intuitive Model

• Here’s the intuition underlying the
authentication model:
– Alice and Bob have some shared, random string K
– They wish to communicate over some insecure

channel
– An active adversary is able to eavesdrop and

arbitrarily insert packets into the channel

Adversary

Alice

Key K Key K

Bob

Authentication: The Goal

• Alice and Bob’s Goal:
– Alice wishes to send packets to Bob in such a way

that Bob can be certain (with overwhelming
probability) that Alice was the true originator

• Adversary’s Goal:
– The adversary will listen to the traffic and then (after

some time) attempt to impersonate Alice to Bob
– If there is a significant probability that Bob will accept

the forgery, the adversary has succeeded

The Solution: MACs

• The cryptographic solution to this problem is
called a Message Authentication Code (MAC)
– A MAC is an algorithm which accepts a message M, a

key K, and possibly some state (like a nonce N), and
outputs a short string called a “tag”

MAC
M
K

N

tag = MACK(M, N)

MACs (cont)
• Alice computes tag = MACK(M, N) and sends Bob the

message (M, N, tag)
• Bob receives (M’, N’, tag’) and checks if MACK(M’, N’) ==

tag’
– If YES, he accepts M’ as authentic
– If NO, he rejects M’ as an attempted forgery

• Note: We said nothing about privacy here! M might not
be encrypted

(M’, N’, tag’) MACK(M’, N’) == tag’
?? Y

N

ACCEPT

REJECT

Bob

Security for MACs
• The normal model is the ACMA model

– Adaptive Chosen-Message Attack
• Adversary gets a black-box called an “oracle”

– Oracle contains the MAC algorithm and the key K
– Adversary submits messages of his choice and the

oracle returns the MAC tag
– After some “reasonable” number of queries, the

adversary must “forge”
• To forge, the adversary must produce a new message M*

along with a valid MAC tag for M*

– If no adversary can efficiently forge, we say the MAC
is secure in the ACMA model

Building a MAC with a
Blockcipher

• Let’s use AES to build a MAC
– A common method is the CBC MAC:

• CBC MAC is stateless (no nonce N is used)
• Proven security in the ACMA model provided messages are

all of once fixed length
• Resistance to forgery quadratic in the aggregate length of

adversarial queries plus any insecurity of AES
• Widely used: ANSI X9.19, FIPS 113, ISO 9797-1

AESK

M1

AESK AESK

tag

M2 Mm

CBC MAC notes

• Just like CBC mode encryption except:
– No IV (or equivalently, IV is 0n)
– We output only the last value

• Not parallelizable
• Insecure if message lengths vary

Breaking CBC MAC

• If we allow msg lengths to vary, the MAC
breaks
– To “forge” we need to do some (reasonable)

number of queries, then submit a new
message and a valid tag

• Ask M1 = 0n we get t = AESK(0n) back
• We’re done!

– We announce that M* = 0n || t has tag t as well
– (Note that A || B denotes the concatenation of strings A

and B)

Varying Message Lengths: XCBC

• There are several well-known ways to overcome this
limitation of CBC MAC

• XCBC, is the most efficient one known, and is provably-
secure (when the underlying block cipher is
computationally indistinguishable from random)
– Uses blockcipher key K1 and needs two additional n-bit keys K2

and K3 which are XORed in just before the last encipherment
• A proposed NIST standard (as “CMAC”)

AESK1

M1

AESK1 AESK1

tag

M2 Mm
K2 if n divides |M|
K3 otherwise

UMAC: MACing Faster

• In many contexts, cryptography needs to be as
fast as possible
– High-end routers process > 1Gbps
– High-end web servers process > 1000 requests/sec

• But AES (a very fast block cipher) is already
more than 15 cycles-per-byte on a PPro
– Block ciphers are relatively expensive; it’s possible

to build faster MACs
• UMAC is roughly ten times as fast as current

practice

UMAC follows the Wegman-Carter
Paradigm

• Since AES is (relatively) slow, let’s avoid using it
unless we have to
– Wegman-Carter MACs provide a way to process M

first with a non-cryptographic hash function to reduce
its size, and then encrypt the result

Message M

hash functionhash key

encryptencryption key

hash(M)

tag

The Ubiquitous HMAC

• The most widely-used MAC (IPSec, SSL, many
VPNs)

• Doesn’t use a blockcipher or any universal hash
family
– Instead uses something called a “collision resistant

hash function” H
• Sometimes called “cryptographic hash functions”
• Keyless object – more in a moment
• HMACK(M) = H(K ⊕ opad || H(K ⊕ ipad || M))
• opad is 0x36 repeated as needed
• ipad is 0x5C repeated as needed

Notes on HMAC

• Fast
– Faster than CBC MAC or XCBC

• Because these crypto hash functions are fast

• Slow
– Slower than UMAC and other universal-hash-family

MACs
• Proven security

– But these crypto hash functions have recently been
attacked and may show further weaknesses soon

What are cryptographic hash
functions?

Output

Message

e.g., MD5,SHA-1

Hash Function

• A cryptographic hash function takes a message from
{0,1}* and produces a fixed size output

• Output is called “hash” or “digest” or “fingerprint”
• There is no key
• The most well-known are MD5 and SHA-1 but there

are other options
• MD5 outputs 128 bits
• SHA-1 outputs 160 bits

% md5

Hello There

^D

A82fadb196cba39eb884736dcca303a6

%

T ← A << 5 + gt (B, C, D) + E + Kt + Wt

SHA-1
...M1 M2 Mm

for i = 1 to m do

Wt = { t-th word of Mi 0 ≤ t ≤ 15
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) << 1 16 ≤ t ≤ 79

A ← H0
i-1; B ← H1

i-1; C ← H2
i-1; D ← H3

i-1; E ← H4
i-1

for t = 1 to 80 do

E ← D; D ← C; C ← B >> 2; B ← A; A ← T

H0
i ← A + H0

i-1; H1
i ← B + H1

i-1; H2
i ← C+ H2

i-1;
H3

i ← D + H3
i-1; H4

i ← E + H4
i-1

end

end
return H0

m H1
m H2

m H3
m H4

m

512 bits

160 bits

Real-world applications

• Message authentication codes (HMAC)
• Digital signatures (hash-and-sign)
• File comparison (compare-by-hash, eg, RSYNC)
• Micropayment schemes
• Commitment protocols
• Timestamping
• Key exchange
• ...

Hash functions are pervasive

A cryptographic property

BAD: H(M) = M mod 701

(quite informal)

1. Collision resistance given a hash function
it is hard to find two colliding inputs

HM

{0,1}n
H

M’

Strings

More cryptographic properties

1. Collision resistance given a hash function
it is hard to find two colliding inputs

3. Preimage resistance given a hash function and
given an hash output
it is hard to invert that output

2. Second-preimage given a hash function and
resistance given a first input,

it is hard to find a second input
that collides with the first

Merkle-Damgard construction

IV

M1 M2 M3

h1 h2 h3 = H (M)
n

k

Fixed initial value Chaining value

Compression function

f f f
k

MD Theorem: if f is CR, then so is H

Mi

T ← A << 5 + gt (B, C, D) + E + Kt + Wt

...M1 M2 Mm

for i = 1 to m do

Wt = { t-th word of Mi 0 ≤ t ≤ 15
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) << 1 16 ≤ t ≤ 79

A ← H0
i-1; B ← H1

i-1; C ← H2
i-1; D ← H3

i-1; E ← H4
i-1

for t = 1 to 80 do

E ← D; D ← C; C ← B >> 2; B ← A; A ← T

H0
i ← A + H0

i-1; H1
i ← B + H1

i-1; H2
i ← C+ H2

i-1;
H3

i ← D + H3
i-1; H4

i ← E + H4
i-1

end

end
return H0

m H1
m H2

m H3
m H4

m

512 bits

160 bits

H0..4
i-1

160 bits

160 bits

Hash Function Security

• Consider best-case scenario (random
outputs)

• If a hash function output only 1 bit, how
long would we expect to avoid collisions?
– Expectation: 1× 0 + 2 × ½ + 3 × ½ = 2.5

• What about 2 bits?
– Expectation: 1 × 0 + 2 × ¼ + 3 × ¾ ½ + 4 × ¾

½ ¾ + 5 × ¾ ½ ¼ ≈ 3.22
• This is too hard…

Birthday Paradox

• Need another method
– Birthday paradox: if we have 23 people in a

room, the probability is > 50% that two will
share the same birthday

• Assumes uniformity of birthdays
– Untrue, but this only increases chance of birthday match

• Ignores leap years (probably doesn’t matter much)
– Try an experiment with the class…

Birthday Paradox (cont)
• Let’s do the math

– Let n equal number of people in the class
– Start with n = 1 and count upward

• Let NBM be the event that there are No-Birthday-Matches
• For n=1, Pr[NBM] = 1
• For n=2, Pr[NBM] = 1 × 364/365 ≈ .997
• For n=3, Pr[NBM] = 1 × 364/365 × 363/365 ≈ .991
• …
• For n=22, Pr[NBM] = 1 × … × 344/365 ≈ .524
• For n=23, Pr[NBM] = 1 × … × 343/365 ≈ .493

– Since the probability of a match is 1 – Pr[NBM] we
see that n=23 is the smallest number where the
probability exceeds 50%

Occupancy Problems

• What does this have to do with hashing?
– Suppose each hash output is uniform and random on

{0,1}n

– Then it’s as if we’re throwing a ball into one of 2n bins
at random and asking when a bin contains at least 2
balls

• This is a well-studied area in probability theory called
“occupancy problems”

– It’s well-known that the probability of a collision
occurs around the square-root of the number of bins

• If we have 2n bins, the square-root is 2n/2

Birthday Bounds

• This means that even a perfect n-bit hash
function will start to exhibit collisions when
the number of inputs nears 2n/2

– This is known as the “birthday bound”
– It’s impossible to do better, but quite easy to

do worse
• It is therefore hoped that it takes Ω(264)

work to find collisions in MD5 and Ω(280)
work to find collisions in SHA-1

The Birthday Bound
1.0

Pr
ob

ab
ili

ty

0.0

0.5

2n

Number of Hash Inputs

2n/2

Latest News

• At CRYPTO 2004 (August)
– Collisions found in HAVAL, RIPEMD, MD4,

MD5, and SHA-0 (240 operations)
• Wang, Feng, Lai, Yu
• Only Lai is well-known

– HAVAL was known to be bad
– Dobbertin found collisions in MD4 years ago
– MD5 news is big!
– SHA-0 isn’t used anymore (but see next slide)

Collisions in SHA-0

T ← A << 5 + gt (B, C, D) + E + Kt + Wt

Wt = { t-th word of Mi 0 ≤ t ≤ 15
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) << 1 16 ≤ t ≤ 79

A ← H0
i-1; B ← H1

i-1; C ← H2
i-1; D ← H3

i-1; E ← H4
i-1

for t = 1 to 80 do

E ← D; D ← C; C ← B >> 2; B ← A; A ← T

H0
i ← Α + H0

i-1; H1
i ← A + H1

i-1; H2
i ← C+ H2

i-1;
H3

i ← D + H3
i-1; H4

i ← E + H4
i-1

end
H0..4

i-1

65

not in SHA-0

M1, M1
’

Collision!

What Does this Mean?

• Who knows
– Methods are not yet understood
– Will undoubtedly be extended to more attacks
– Maybe nothing much more will happen
– But maybe everything will come tumbling

down?!
• But we have OTHER ways to build hash

functions

A Provably-Secure Blockcipher-Based
Compression Function

E

Mi

hi-1 hi

n bits

n bits

n bits

The Big (Partial) Picture

Primitives
Block
Ciphers

Hash
Functions

Hard
Problems

Stream
Ciphers

First-Level
Protocols

Symmetric
Encryption

Digital
Signatures

MAC
Schemes

Asymmetric
Encryption

Second-Level
Protocols

SSH, SSL/TLS, IPSec
Electronic Cash, Electronic Voting

(Can do proofs)

(Can do proofs)

(No one knows how to prove security; make assumptions)

