Foundations of Network and Computer Security

John Black

Lecture \#4
Sep 2 ${ }^{\text {nd }} 2004$

CSCI 6268/TLEN 5831, Fall 2004

Announcements

- Please sign up for class mailing list
- Quiz \#1 will be on Thursday, Sep 9th
- About 30 mins
- At end of class
- Office hours day before and morning of
- Covers all lecture materials and assigned readings

Blockcipher Review

- DES
- Old, 64-bit blocksize, 56 bit keys
- Feistel construction
- Never broken except for exhaustive key search
- AES
- New, 128-bit blocksize, 128-256 bit keys
- Non-Feistel
- Fast, elegant, so far so good

Aren't We Done?

- Blockciphers are only a start
- They take n-bits to n-bits under a k-bit key
- Oftentimes we want to encrypt a message and the message might be less than or greater than n bits!
- We need a "mode of operation" which encrypts any $\mathrm{M} \in\{0,1\}^{*}$
- There are many, but we focus on three: ECB, CBC, CTR

ECB - Electronic Codebook

- This is the most natural way to encrypt
- It's what we used with the Substitution Cipher
- For blockcipher E under key K:
- First, pad (if required) to ensure $M \in\left(\{0,1\}^{n}\right)^{+}$
- Write $M=M_{1} M_{2} \ldots M_{m}$ where each M_{i} has size n-bits
- Then just encipher each chunk:
- $\mathrm{C}_{\mathrm{i}}=\mathrm{E}_{\mathrm{K}}\left(\mathrm{M}_{\mathrm{i}}\right)$ for all $1 \leq \mathrm{i} \leq \mathrm{m}$
- Ciphertext is $\mathrm{C}=\mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{m}}$

ECB (cont)

- What's bad about ECB?
- Repeated plaintext blocks are evident in the ciphertext
- Called "deterministic encryption" and considered bad
- This was the feature of the Substitution Cipher that allowed us to do frequency analysis
- Not as bad when n is large, but it's easy to fix, so why not fix it!
- Encrypting the same M twice will yield the same C
- Usually we'd like to avoid this as well

Goals of Encryption

- Cryptographers want to give up exactly two pieces of information when encrypting a message

1) That M exists
2) The approximate length of M

- The military sometimes does not even want to give up these two things!
- Traffic analysis
- We definitely don't want to make it obvious when a message repeats

CBC Mode Encryption

- Start with an n-bit "nonce" called the IV
- Initialization Vector
- Usually a counter or a random string
- Blockcipher E under key K, M broken into m blocks of n bits as usual
- $\mathrm{C}_{0}=\mathrm{IV}$
$-\mathrm{C}_{\mathrm{i}}=\mathrm{E}_{\mathrm{K}}\left(\mathrm{M}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{i}-1}\right)$ for all $1 \leq \mathrm{i} \leq \mathrm{m}$

Features of CBC Mode

- Ciphertext is $C=C_{0} C_{1} \ldots C_{m}$
- Ciphertext expansion of n-bits (because of C_{0})
- Same block M_{i}, or same message M looks different when encrypted twice under the same key (with different IV's)
- No parallelism when encrypting
- Need to know C_{i} before we can encipher $\mathrm{M}_{\mathrm{i}+1}$
- Decryption is parallelizable however
- CBC mode is probably the most widely-used mode of operation for symmetric key encryption

Digression on the One-Time Pad

- Suppose Alice and Bob shared a 10,000 bit string K that was secret, uniformly random
- Can Alice send Bob a 1KB message M with "perfect" security?
-1 KB is 8,000 bits; let X be the first 8,000 bits of the shared string K
- Alice sets $C=M \oplus X$, and sends C to Bob
- Bob computes $C \oplus X$ and recovers M
- Recall that $\mathrm{M} \oplus \mathrm{X} \oplus \mathrm{X}=\mathrm{M}$

Security of the One-Time Pad

- Consider any bit of $\mathrm{M}, \mathrm{m}_{\mathrm{i}}$, and the corresponding bits of X and $\mathrm{C},\left(\mathrm{x}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)$
- Then $c_{i}=m_{i} \oplus x_{i}$
- Given that some adversary sees c_{i} go across a wire, what can he discern about the bit m_{i} ?
- Nothing! Since x_{i} is equally likely to be 0 or 1
- So why not use the one-time pad all the time?
- Shannon proved (1948) that for perfect security the key must be at least as long as the message
- Impractical

One-Time Pad (cont)

- Still used for very-top-secret stuff
- Purportedly used by Russians in WW II
- Note that it is very important that each bit of the pad be used at most one time!
- The infamous "two time pad" is easily broken
- Imagine $C=M \oplus X, C^{\prime}=M^{\prime} \oplus X$
- Then $\mathrm{C} \oplus \mathrm{C}^{\prime}=\mathrm{M} \oplus \mathrm{X} \oplus \mathrm{M}^{\prime} \oplus \mathrm{X}=\mathrm{M} \oplus \mathrm{M}^{\prime}$
- Knowing the xor of the two messages is potentially very useful
- n -time pad for large n is even worse (WEP does this)

Counter Mode - CTR

- Blockcipher E under key K, M broken into m blocks of n bits, as usual
- Nonce N is typically a counter, but not required

$$
\begin{aligned}
& C_{0}=N \\
& C_{i}=E_{K}(N++) \oplus M_{i}
\end{aligned}
$$

- Ciphertext is $\mathrm{C}=\mathrm{C}_{0} \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{m}}$

CTR Mode

- Again, n bits of ciphertext expansion
- Non-deterministic encryption
- Fully parallelizable in both directions
- Not that widely used despite being known for a long time
- People worry about counter overlap producing pad reuse

Why I Like Modes of Operation

- Modes are "provably secure"
- Unlike blockciphers which are deemed "hopefully secure" after intense scrutiny by experts, modes can be proven secure like this:
- Assume blockcipher E is secure (computationally indistinguishable from random, as we described)
- Then the mode is secure in an analogous black-box experiment
- The proof technique is done via a "reduction" much like you did in your NP-Completeness class
- The argument goes like this: suppose we could break the mode with computational resources $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Then we could distinguish the blockcipher with resources $X^{\prime}, Y^{\prime}, Z^{\prime}$ where these resources aren't that much different from X, Y, and Z

Security Model

- Alice and Bob
- Traditional names
- Let's us abbreviate A and B
- Adversary is the bad guy
- This adversary is passive; sometimes called "eve"
- Note also the absence of side-channels
- Power consumption, timing, error messages, etc

Alice

Various Attack Models

- Known-Ciphertext Attack (KCA)
- You only know the ciphertext
- Requires you know something about the plaintext (eg, it's English text, an MP3, C source code, etc)
- This is the model for the Sunday cryptograms which use a substitution cipher
- Known-Plaintext Attack (KPA)
- You have some number of plaintext-ciphertext pairs, but you cannot choose which plaintexts you would like to see
- This was our model for exhaustive key search and the meet in the middle attack

Attack Models (cont)

- Chosen-Plaintext Attack (CPA)
- You get to submit plaintexts of your choice to an encryption oracle (black box) and receive the ciphertexts in return
- Models the ability to inject traffic into a channel
- Send a piece of disinformation to an enemy and watch for its encryption
- Send plaintext to a wireless WEP user and sniff the traffic as he receives it
- This is the model we used for defining blockcipher security (computational indistinguishability)

Attack Models (cont)

- Chosen-Ciphertext Attack (CCA)
- The strongest definition (gives you the most attacking power)
- You get to submit plaintexts and ciphertexts to your oracles (black boxes)
- Sometimes called a "lunchtime attack"
- We haven't used this one yet, but it's a reasonable model for blockcipher security as well

So What about CBC, for example?

- CBC Mode encryption
- It's computationally indistinguishable under chosen plaintext attack
- You can't distinguish between the encryption of your query M and the encryption of a random string of the same length
- In the lingo, "CBC is IND-CPA"
- It's not IND-CCA
- You need to add authentication to get this

The Big (Partial) Picture

Second-Level Protocols (Can do proofs)

First-Level Protocols
(Can do proofs)

Primitives

(No one knows how to prove security; make assumptions)

Symmetric Authentication: The Intuitive Model

- Here's the intuition underlying the authentication model:
- Alice and Bob have some shared, random string K
- They wish to communicate over some insecure channel
- An active adversary is able to eavesdrop and arbitrarily insert packets into the channel

Alice

Authentication: The Goal

- Alice and Bob's Goal:
- Alice wishes to send packets to Bob in such a way that Bob can be certain (with overwhelming probability) that Alice was the true originator
- Adversary's Goal:
- The adversary will listen to the traffic and then (after some time) attempt to impersonate Alice to Bob
- If there is a significant probability that Bob will accept the forgery, the adversary has succeeded

The Solution: MACs

- The cryptographic solution to this problem is called a Message Authentication Code (MAC)
- A MAC is an algorithm which accepts a message M, a key K, and possibly some state (like a nonce N), and outputs a short string called a "tag"

MACs (cont)

- Alice computes tag $=\mathrm{MAC}_{K}(\mathrm{M}, \mathrm{N})$ and sends Bob the message (M, N, tag)
- Bob receives ($\mathrm{M}^{\prime}, \mathrm{N}^{\prime}$, tag') and checks if $\mathrm{MAC}_{\mathrm{K}}\left(\mathrm{M}^{\prime}, \mathrm{N}^{\prime}\right)==$ tag'
- If YES, he accepts M' as authentic
- If NO, he rejects M' as an attempted forgery
- Note: We said nothing about privacy here! M might not be encrypted

Security for MACs

- The normal model is the ACMA model
- Adaptive Chosen-Message Attack
- Adversary gets a black-box called an "oracle"
- Oracle contains the MAC algorithm and the key K
- Adversary submits messages of his choice and the oracle returns the MAC tag
- After some "reasonable" number of queries, the adversary must "forge"
- To forge, the adversary must produce a new message M^{*} along with a valid MAC tag for M ${ }^{*}$
- If no adversary can efficiently forge, we say the MAC is secure in the ACMA model

Building a MAC with a Blockcipher

- Let's use AES to build a MAC
- A common method is the CBC MAC:
- CBC MAC is stateless (no nonce N is used)
- Proven security in the ACMA model provided messages are all of once fixed length
- Resistance to forgery quadratic in the aggregate length of adversarial queries plus any insecurity of AES
- Widely used: ANSI X9.19, FIPS 113, ISO 9797-1

CBC MAC notes

- Just like CBC mode encryption except:
- No IV (or equivalently, IV is 0^{n})
- We output only the last value
- Not parallelizable
- Insecure if message lengths vary

Breaking CBC MAC

- If we allow msg lengths to vary, the MAC breaks
- To "forge" we need to do some (reasonable) number of queries, then submit a new message and a valid tag
- Ask $\mathrm{M}_{1}=0^{n} \quad$ we get $\mathrm{t}=\operatorname{AES}_{\mathrm{K}}\left(0^{\mathrm{n}}\right)$ back
- We're done!
- We announce that $\mathrm{M}^{*}=0^{n} \| t$ has tag t as well
- (Note that A || B denotes the concatenation of strings A and B)

Varying Message Lengths: XCBC

- There are several well-known ways to overcome this limitation of CBC MAC
- XCBC, is the most efficient one known, and is provablysecure (when the underlying block cipher is computationally indistinguishable from random)
- Uses blockcipher key K1 and needs two additional n-bit keys K2 and K3 which are XORed in just before the last encipherment
- A proposed NIST standard (as "CMAC")

UMAC: MACing Faster

- In many contexts, cryptography needs to be as fast as possible
- High-end routers process > 1Gbps
- High-end web servers process > 1000 requests/sec
- But AES (a very fast block cipher) is already more than 15 cycles-per-byte on a PPro
- Block ciphers are relatively expensive; it's possible to build faster MACs
- UMAC is roughly ten times as fast as current practice

UMAC follows the Wegman-Carter Paradigm

- Since AES is (relatively) slow, let's avoid using it unless we have to
- Wegman-Carter MACs provide a way to process M first with a non-cryptographic hash function to reduce its size, and then encrypt the result

The Ubiquitous HMAC

- The most widely-used MAC (IPSec, SSL, many VPNs)
- Doesn't use a blockcipher or any universal hash family
- Instead uses something called a "collision resistant hash function" H
- Sometimes called "cryptographic hash functions"
- Keyless object - more in a moment
- $\operatorname{HMAC}_{\mathrm{K}}(\mathrm{M})=\mathrm{H}(\mathrm{K} \oplus$ opad || $\mathrm{H}(\mathrm{K} \oplus$ ipad || M$))$
- opad is 0×36 repeated as needed
- ipad is $0 \times 5 \mathrm{C}$ repeated as needed

Notes on HMAC

- Fast
- Faster than CBC MAC or XCBC
- Because these crypto hash functions are fast
- Slow
- Slower than UMAC and other universal-hash-family MACs
- Proven security
- But these crypto hash functions have recently been attacked and may show further weaknesses soon

What are cryptographic hash functions?

- A cryptographic hash function takes a message from $\{0,1\}^{*}$ and produces a fixed size output
- Output is called "hash" or "digest" or "fingerprint"
- There is no key
- The most well-known are MD5 and SHA-1 but there are other options
- MD5 outputs 128 bits
- SHA-1 outputs 160 bits

```
% md5
Hello There
^D
A82fadb196cba39eb884736dcca303a6

Message

Output

\section*{512 bits}

\section*{SHA-1}
\begin{tabular}{|l|l|l|l|}
\hline\(M_{1}\) & \(M_{2}\) & \(\ldots\) & \(M_{m}\) \\
\hline
\end{tabular}
for \(i=1\) to \(m\) do
\[
\begin{aligned}
& W_{t}=\left\{\begin{array}{lr}
t \text {-th word of } M_{i} & 0 \leq t \leq 15 \\
\left(\mathrm{~W}_{t-3} \oplus \mathrm{~W}_{t-8} \oplus \mathrm{~W}_{t-14} \oplus \mathrm{~W}_{t-16}\right) \ll 1 & 16 \leq t \leq 79
\end{array}\right. \\
& A \leftarrow H_{0}^{i-1} ; \quad B \leftarrow H_{1}^{i-1} ; \quad C \leftarrow H_{2}^{i-1} ; \quad D \leftarrow H_{3}^{i-1} ; \quad E \leftarrow H_{4}^{i-1}
\end{aligned}
\]
for \(t=1\) to 80 do
\[
\begin{aligned}
& T \leftarrow A \ll 5+g_{t}(B, C, D)+E+K_{t}+W_{t} \\
& E \leftarrow D ; \quad D \leftarrow C ; \quad C \leftarrow B \gg 2 ; \quad B \leftarrow A ; A \leftarrow T
\end{aligned}
\]
end
\[
\begin{array}{ll}
H_{0}{ }^{i} \leftarrow A+H_{0}{ }^{i-1} ; & H_{1}{ }^{i} \leftarrow B+H_{1}{ }^{i-1} ; \\
H_{3}{ }^{i} \leftarrow D+H_{3}{ }^{i-1} ; & H_{4}{ }^{i} \leftarrow E+H_{4}{ }^{i-1} \leftarrow C+H_{2}{ }^{i-1} ;
\end{array}
\]
end
return \(H_{0}{ }^{m} H_{1}{ }^{m} H_{2}{ }^{m} H_{3}{ }^{m} H_{4}^{m} \longleftarrow 160\) bits

\section*{Real-world applications}

Hash functions are pervasive
- Message authentication codes (HMAC)
- Digital signatures (hash-and-sign)
- File comparison (compare-by-hash, eg, RSYNC)
- Micropayment schemes
- Commitment protocols
- Timestamping
- Key exchange

\section*{A cryptographic property \\ (quite informal)}

\section*{1. Collision resistance given a hash function} it is hard to find two colliding inputs


\section*{More cryptographic properties}
1. Collision resistance given a hash function it is hard to find two colliding inputs
2. Second-preimage given a hash function and resistance given a first input, it is hard to find a second input that collides with the first
3. Preimage resistance given a hash function and given an hash output
it is hard to invert that output

\section*{Merkle-Damgard construction}

Compression function


MD Theorem: if \(f\) is \(C R\), then so is \(H\)


\section*{Hash Function Security}
- Consider best-case scenario (random outputs)
- If a hash function output only 1 bit, how long would we expect to avoid collisions?
- Expectation: \(1 \times 0+2 \times 1 / 2+3 \times 1 / 2=2.5\)
- What about 2 bits?
- Expectation: \(1 \times 0+2 \times 1 / 4+3 \times 3 / 41 / 2+4 \times 3 / 4\) \(1 / 23 / 4+5 \times 3 / 41 / 21 / 4 \approx 3.22\)
- This is too hard...

\section*{Birthday Paradox}
- Need another method
- Birthday paradox: if we have 23 people in a room, the probability is \(>50 \%\) that two will share the same birthday
- Assumes uniformity of birthdays
- Untrue, but this only increases chance of birthday match
- Ignores leap years (probably doesn't matter much)
- Try an experiment with the class...

\section*{Birthday Paradox (cont)}
- Let's do the math
- Let n equal number of people in the class
- Start with \(\mathrm{n}=1\) and count upward
- Let NBM be the event that there are No-Birthday-Matches
- For \(n=1, \operatorname{Pr}[N B M]=1\)
- For \(n=2\), \(\operatorname{Pr}[\mathrm{NBM}]=1 \times 364 / 365 \approx .997\)
- For \(n=3, \operatorname{Pr}[N B M]=1 \times 364 / 365 \times 363 / 365 \approx .991\)
- ...
- For \(n=22, \operatorname{Pr}[N B M]=1 \times \ldots \times 344 / 365 \approx .524\)
- For \(n=23, \operatorname{Pr}[N B M]=1 \times \ldots \times 343 / 365 \approx .493\)
- Since the probability of a match is \(1-\operatorname{Pr}[N B M]\) we see that \(\mathrm{n}=23\) is the smallest number where the probability exceeds 50\%

\section*{Occupancy Problems}
- What does this have to do with hashing?
- Suppose each hash output is uniform and random on \(\{0,1\}^{n}\)
- Then it's as if we're throwing a ball into one of \(2^{n}\) bins at random and asking when a bin contains at least 2 balls
- This is a well-studied area in probability theory called "occupancy problems"
- It's well-known that the probability of a collision occurs around the square-root of the number of bins
- If we have \(2^{n}\) bins, the square-root is \(2^{n / 2}\)

\section*{Birthday Bounds}
- This means that even a perfect n-bit hash function will start to exhibit collisions when the number of inputs nears \(2^{\text {n/2 }}\)
- This is known as the "birthday bound"
- It's impossible to do better, but quite easy to do worse
- It is therefore hoped that it takes \(\Omega\left(2^{64}\right)\) work to find collisions in MD5 and \(\Omega\left(2^{80}\right)\) work to find collisions in SHA-1

\section*{The Birthday Bound}


Number of Hash Inputs

\section*{Latest News}
- At CRYPTO 2004 (August)
- Collisions found in HAVAL, RIPEMD, MD4, MD5, and SHA-0 (2 \({ }^{40}\) operations)
- Wang, Feng, Lai, Yu
- Only Lai is well-known
- HAVAL was known to be bad
- Dobbertin found collisions in MD4 years ago
- MD5 news is big!
- SHA-0 isn't used anymore (but see next slide)

\section*{Collisions in SHA-0}

\section*{\(M_{1}, M_{1}{ }^{\prime}\)}



\section*{What Does this Mean?}
- Who knows
- Methods are not yet understood
- Will undoubtedly be extended to more attacks
- Maybe nothing much more will happen
- But maybe everything will come tumbling down?!
- But we have OTHER ways to build hash functions

\section*{A Provably-Secure Blockcipher-Based Compression Function}


\section*{The Big (Partial) Picture}

Second-Level Protocols (Can do proofs)

First-Level Protocols
(Can do proofs)

Primitives

(No one knows how to prove security; make assumptions)```

