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Assignment #0

• Please add yourself to the class mailing 
list
– Send mail to listproc@lists.colorado.edu
– Subject is ignored
– In body of message write 

“subscribe CSCI-6268 Your Name”
• Due by September 7th (Tuesday)



Review

• Summing up last lecture on blockciphers:
– Small keysize bad (exhaustive search)
– Small blocksize bad (frequency analysis)
– Our first try at a 64-bit blockcipher (ie, 

blocksize is 64 bits) with a 64-bit key was no 
good

• C = P ⊕ K 
• Can distinguish from random with only two queries 

to one of the black boxes



Let’s build a Better Blockcipher
• DES – The Data Encryption Standard

– Formerly called “Lucifer”
• Developed by Horst Feistel at IBM in early 70’s

– Tweaked by the NSA
• No explanation given for tweaks
• Some people worried that NSA was adding 

backdoors/weaknesses to allow it to be cracked!
• NSA shortened key from 64 bits to 56 bits (definite added 

weakness)
– Adopted by NIST (then called NBS) as a Federal 

Information Processing Standard (FIPS 46-3)
• NIST is retiring it as a standard this year after nearly 30 years



The DES Key

• Was 64 bits

• But NSA added 8 parity bits

• Key is effectively only 56 bits!

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k60 k61 k62 k63

k0 k1 k2 k3 k4 k5 k6 P0 k8 k9 k60 k61 k62 P7



Exhaustive Key Search -- DES

• This meant that instead of 264 keys there 
were only 256 keys
– Expected number of keys to search before 

finding correct value is 255

• Note that we need a handful of plaintext-ciphertext 
pairs to test candidate keys

– NSA surely could do this in a reasonable 
amount of time, even in the 70’s



Exhaustive Key Search -- DES
• In 1994, Michael Wiener showed that you could 

build a DES-cracking machine for $1,000,000 
that would find the key in an expected 3.5 hours
– In 1998 he revised this to 35 minutes for the same 

cost
– In 1997, Rocke Verser used 10,000+ PCs to solve 

DES Challenge I to win $10,000 (Loveland, CO!)
– distributed.net solved the DES Challenge II in 41 days 

with 50,000 processors covering 85% of the keyspace
– Later the same year the EFF built the DES Cracker 

machine which found the same key in 56 hours
• $210,000 for the machine
• 92 billion key trials per second



No Better Attack has Ever Been 
Found against DES

• This is saying something:
– Despite lots of cryptanalysis, exhaustive key 

search is still the best known attack!

• Let’s have a look at (roughly) how DES 
works and see in what ways it’s still in use



DES -- Feistel Construction
• IP – Initial permutation swaps bits around for 
hardware purposes

• Adds no cryptographic strength; same for FP

• Each inner application of F and the XOR is called 
a “round”

• F is called the “round function”

• The cryptographic strength of DES lies in F

• DES uses 16 rounds 



One Round

Key

Li Ri

F

Ri+1Li+1

• Each half is 32 bits

• Round key is 48 bits

• Is this a permutation (as required)?

• How do we invert?

• Note that F need not be invertible with the round key fixed



Why so many Rounds?

• Can we just have one round of Feistel?
– Clearly this is insecure

• How about two rounds?
– Expect to be asked a related question on the first quiz

• DES has 16 rounds
– It’s easily broken with 8 rounds using differential 

cryptanalysis



The DES Round Function



DES Round Function (cont)

• F takes two inputs
– 32 bit round value
– 48 bits of key taken from 56 bit DES key

• A different subset of 48 bits selected in each round

– E is the “expansion” box
• Turns each set of 4 bits into 6, by merely repeating some bits

– S boxes take 6 bits back to 4 bits
• Non-linear functions and they are the cryptographic heart of 

DES
• S-boxes were tweaked by NSA back in the 70’s
• It is believed that they IMPROVED DES by doing this



Full Description of DES

• If you want all the gory details
http://en.wikipedia.org/wiki/DES

• Challenge Problem:
– Alter the S-boxes of DES any way you like so 

that with ONE plaintext-ciphertext pair you 
can recover all 56 key bits

– (Warning: you need some linear algebra here)



So if not DES, then what?

• Double DES?
• Let’s write DES(K, P) as DESK(P)
• Double DES (DDES) is a 64-bit blockcipher with 

a 112 bit key K = (K1, K2) and is

DDESK = DESK2(DESK1(P))

• We know 112 bits is out of exhaustive search 
range… are we now secure?



Meet in the Middle Attack
• With enough memory, DDES isn’t much better 

than single DES!
• Attack (assume we have a handful of pt-ct pairs 

P1,C1; P2, C2; …)
– Encipher P1 under all 256 possible keys and store the 

ciphertexts in a hash table
– Decipher C1 under all 256 possible keys and look for a 

match
– Any match gives a candidate 112-bit DDES key
– Use P2, C2 and more pairs to validate candidate 

DDES key until found



Meet in the Middle (cont)

• Complexity
– 256 + 256 = 257 DES operations
– Not much better than the 255 expected DES 

operations for exhaustive search!
– Memory requirements are quite high, but 

there are techniques to reduce them at only a 
slightly higher cost

– End result: no one uses DDES



How about Triple-DES!
• Triple DES uses a 168-bit key K=(K1, K2, K3)

TDESK = DESK3(DESK2(DESK1(P)))

• No known attacks against TDES
– Provides 112-bits of security against key-search
– Widely used, standardized, etc
– More often used in “two-key triple-DES” mode with 

EDE format (K is 112 bits like DDES):

TDESK = DESK1(DES-1
K2(DESK1(P)))

– Why is the middle operation a decipherment?



AES – The Advanced Encryption 
Standard

• If TDES is secure, why do we need 
something else?
– DES was slow
– DES times 3 is three times slower
– 64-bit blocksize could be bigger without 

adding much cost
– DES had other annoying weakness which 

were inherited by TDES
– We know a lot more about blockcipher design, 

so time to make something really cool!



AES Competition

• NIST sponsored a competition
– Individuals and groups submitted entries

• Goals: fast, portable, secure, constrained 
environments, elegant, hardware-friendly, patent-
free, thoroughly analyzed, etc

– Five finalists selected (Aug 1999)
• Rijndael (Belgium), MARS (IBM), Serpent (Israel), 

TwoFish (Counterpane), RC6 (RSA, Inc)
– Rijndael selected (Dec 2001)

• Designed by two Belgians



AES – Rijndael

• Not a Feistel construction!
– 128 bit blocksize
– 128, 192, 256-bit keysize
– SP network 

• Series of invertible (non-linear) substitutions and 
permutations

– Much faster than DES
• About 300 cycles on a Pentium III

– A somewhat risky choice for NIST



Security of the AES

• Some close calls last year (XL attack)
– Can be represented as an overdetermined set 

of very sparse equations
– Computer-methods of solving these systems 

would yield the key
– Turns out there are fewer equations than 

previously thought
– Seems like nothing to worry about yet



Block Ciphers – Conclusion 

• There are a bunch out there besides AES 
and DES
– Some are pretty good (IDEA, TwoFish, etc)
– Some are pretty lousy

• LOKI, FEAL, TEA, Magenta, Bass-O-Matic

• If you try and design your own, it will 
probably be really really bad
– Plenty of examples, yet it still keeps 

happening



Aren’t We Done?

• Blockciphers are only a start
– They take n-bits to n-bits under a k-bit key
– Oftentimes we want to encrypt a message 

and the message might be less than or 
greater than n bits!

– We need a “mode of operation” which 
encrypts any M ∈ {0,1}*

– There are many, but we focus on three: ECB, 
CBC, CTR



ECB – Electronic Codebook

• This is the most natural way to encrypt
– It’s what we used with the Substitution Cipher
– For blockcipher E under key K:
– First, pad (if required) to ensure M ∈ ({0,1}n)+

– Write M = M1 M2 … Mm where each Mi has 
size n-bits

– Then just encipher each chunk:
• Ci = EK(Mi) for all 1 · i · m

– Ciphertext is C = C1 C2 … Cm



ECB (cont)

• What’s bad about ECB?
– Repeated plaintext blocks are evident in the 

ciphertext
• Called “deterministic encryption” and considered bad
• This was the feature of the Substitution Cipher that allowed 

us to do frequency analysis
• Not as bad when n is large, but it’s easy to fix, so why not fix

it!

– Encrypting the same M twice will yield the same C
• Usually we’d like to avoid this as well



Goals of Encryption
• Cryptographers want to give up exactly two 

pieces of information when encrypting a 
message
1) That M exists
2) The approximate length of M

• The military sometimes does not even want to 
give up these two things!
– Traffic analysis

• We definitely don’t want to make it obvious when 
a message repeats



CBC Mode Encryption
• Start with an n-bit “nonce” called the IV

– Initialization Vector
– Usually a counter or a random string

• Blockcipher E under key K, M broken into m blocks of n 
bits as usual
– C0 = IV
– Ci = EK(Mi ⊕ Ci-1) for all 1 · i · m

EK EK EK

M2 MmM1

IV

C1 C2
Cm



Features of CBC Mode
• Ciphertext is C = C0 C1 … Cm

– Ciphertext expansion of n-bits (because of C0)
• Same block Mi, or same message M looks 

different when encrypted twice under the same 
key (with different IV’s)

• No parallelism when encrypting
– Need to know Ci before we can encipher Mi+1
– Decryption is parallelizable however

• CBC mode is probably the most widely-used 
mode of operation for symmetric key encryption



Digression on the One-Time Pad

• Suppose Alice and Bob shared a 10,000 
bit string K that was secret, uniformly 
random
– Can Alice send Bob a 1KB message M with 

“perfect” security?
– 1KB is 8,000 bits; let X be the first 8,000 bits 

of the shared string K
– Alice sets C = M ⊕ X, and sends C to Bob
– Bob computes C ⊕ X and recovers M

• Recall that M ⊕ X ⊕ X = M



Security of the One-Time Pad

• Consider any bit of M, mi, and the 
corresponding bits of X and C, (xi, ci)
– Then ci = mi ⊕ xi
– Given that some adversary sees ci go across 

a wire, what can he discern about the bit mi?
• Nothing!  Since xi is equally likely to be 0 or 1

– So why not use the one-time pad all the time?
• Shannon proved (1948) that for perfect security the 

key must be at least as long as the message
– Impractical



One-Time Pad (cont)

• Still used for very-top-secret stuff
– Purportedly used by Russians in WW II

• Note that it is very important that each bit of the 
pad be used at most one time!
– The infamous “two time pad” is easily broken

• Imagine C = M ⊕ X, C’ = M’ ⊕ X
• Then C ⊕ C’ = M ⊕ X ⊕ M’ ⊕ X = M ⊕ M’
• Knowing the xor of the two messages is potentially very

useful
• n-time pad for large n is even worse (WEP does this)



Counter Mode – CTR 

• Blockcipher E under key K, M broken into 
m blocks of n bits, as usual

• Nonce N is typically a counter, but not 
required

C0 = N
Ci = EK(N++) ⊕ Mi

• Ciphertext is C = C0 C1 … Cm



CTR Mode

• Again, n bits of ciphertext expansion
• Non-deterministic encryption
• Fully parallelizable in both directions
• Not that widely used despite being known 

for a long time
– People worry about counter overlap producing 

pad reuse



Why I Like Modes of Operation
• Modes are “provably secure”

– Unlike blockciphers which are deemed “hopefully 
secure” after intense scrutiny by experts, modes can 
be proven secure like this:

• Assume blockcipher E is secure (computationally 
indistinguishable from random, as we described)

• Then the mode is secure in an analogous black-box 
experiment

– The proof technique is done via a “reduction” much like you did 
in your NP-Completeness class

– The argument goes like this: suppose we could break the mode 
with computational resources X, Y, Z.  Then we could 
distinguish the blockcipher with resources X’, Y’, Z’ where these 
resources aren’t that much different from X, Y, and Z



The Big (Partial) Picture

Primitives
Block 
Ciphers

Hash 
Functions

Hard 
Problems

Stream 
Ciphers

First-Level
Protocols

Symmetric 
Encryption

Digital 
Signatures

MAC 
Schemes

Asymmetric 
Encryption

Second-Level
Protocols

SSH, SSL/TLS, IPSec
Electronic Cash, Electronic Voting

(Can do proofs)

(Can do proofs)

(No one knows how to prove security; make assumptions)


