Foundations of Network and Computer Security

John Black

Lecture #2 Aug 26th 2004

CSCI 6268/TLEN 5831, Fall 2004

Economist Survey

• Please read it

Economist.com

- Main points
 - Security is a MUCH broader topic than just
 SSL and viruses
 - Firewalls don't always work
 - Economics are a factor
 - And more...

What IS Computer Security?

Cryptography

- Mostly based in mathematics
- Network Services
 - Offense: Overflows, SQL injection, format strings, etc
 - Defense: Firewalls, IDSes, Sandboxing, Honeypots

Software Engineering

- You have to find all flaws, they only have to find one

Policy

 Laws affect profoundly our security and privacy, as we have already seen

What IS Computer Security?

Soft Science

- Trust Models (Bell-LaPadula, Insider Threat, etc)
- Economics, Game Theory
- Social Engineering
- Education
 - Students become our programmers
 - Insufficient training in security issues
- Various
 - Credit Card Scanners
 - Should you trust your CC# on the Internet?
 - ATM story

Cryptography

- Introduction to cryptography
 - Why?
 - We're doing things bottom-up
 - Crypto is a fundamental building block for securing networks, but by NO MEANS a panacea
 - Often done well
 - Breaking the crypto is often not the easiest way in
 Instead exploit some of those other holes!
 - Long history
 - Based on lots of math

In the Beginning...

"Classical" cryptography

- Caesar cipher aka shift cipher

- A \rightarrow Z, B \rightarrow A, C \rightarrow B, etc...
- We are shifting by -1 or, equivalently, by 25
- Here the "domain" is A...Z and shifts are done modulo 26

- Ex: What happens to "IBM" with a shift of 25?

Kerckhoff

- Kerckhoff's principal

- Assume algorithm is public and all security rests with the "key"
- The opposite philosophy is sometimes called "security thru obscurity"
 - Often dubious
 - » Experts say you *want* people to see the algorithm... the more analysis it sees, the better!
 - Used in military settings however
 - » Why give them *any* information??
 - » Skipjack was this way

What is a "key"?

- We have a basic enciphering mechanism
 We just saw the Caesar cipher
- The "key" is the "variable" part of the algorithm
 - What was our key with the Caesar cipher?
 - How many keys were possible?
 - Why is this cipher insecure?

Digression on Blocksize

- The "blocksize" of a cipher is the size, in bits, of its domain
 - Caesar took 26 inputs, so about 4.7 bit blocksize
 - We take lg(|D|) to compute blocksize
 - Often it's already specified in bits
 - Keysize is analogous
 - What was the keysize of the Caesar cipher?
- A "blockcipher" always outputs the same number of bits as it takes in
 - Ciphers induce a "permutation" on their domain
 - This means they are 1-to-1
 - Without this, we couldn't decipher!

Improving Caesar

- Substitution Cipher
 - We allow each {A,..., Z} to map to any other character in this set
 - Ex: $A \rightarrow Q$, $B \rightarrow S$, $C \rightarrow A$, etc...
 - We must still ensure a 1-to-1 mapping!
 - How many mappings are possible?
 - What is the key here?
 - What is the keysize?

– Is exhaustive key-search feasible here?

Exhaustive Key-search

- We had 403291461126605635584000000 possible keys
 - Keysize is Ig of this, or about 88.4 bits
 - Infeasible even with a lot of money and resources!
- Rule of Thumb
 - 2³⁰ quite easily
 - 2⁴⁰ takes a while, but doable (exportable keysize!)
 - 2⁵⁰ special hardware, parallelism important
 - 2⁶⁰ only large government organizations
 - 2⁷⁰ approaching the (current) limits of imagination

So Substitution Cipher is Secure?

- Nope
 - Ever do the Sunday Cryptograms?
 - Attacks:
 - Frequency analysis
 - etaoinshrdlu...
 - Diphthongs, triphthongs
 - ST, TH, not QX
 - Word lengths
 - A and I are only 1-letter words
 - Other statistical measures
 - Index of Coincidence

What did we just Implicitly Assume?

• What assumption was made in these attacks?

 What was a central feature of the Substitution Cipher which permitted these attacks? (hard)

• How can we repair these problems?

Small Blocksizes are Bad

- Ok, we had a blocksize of < 5 bits
 - So fix it!
 - Try 64 bits instead
 - All is well?
 - How many permutations are there now? $-2^{64}! \approx 2^{2^{70}}$
 - Stirling's formula: $n! pprox (n/e)^n \sqrt{2\pi n}$
 - What is the keysize (in bits)?
 - About 2⁷⁰ bits! Yow!
 - $64 \text{ GB} \text{ is } 2^6 * 2^{30} * 2^3 = 2^{39}$

Key is too Large

- We can't store 2⁷⁰ bit keys
 - What can we do then?
 - Idea: instead of representing ALL 2⁶⁴! permutations we select a "random looking" subset of them!
 - We will implement the map via an algorithm
 - Our subset will be MUCH smaller than the set of all permutations

Example Blockcipher

- Suppose we have 64-bit blocksize
- Suppose we have 64-bit keys
 - Notice this is FAR smaller than 2⁷⁰-bit keys, so we will be representing a *vastly* smaller set of permutations
 - Select a key K at random from {0,1}⁶⁴
 - {0,1}⁶⁴ is the set of all length-64 binary strings
- Let $C = P \oplus K$
 - Here \oplus means XOR

Digression on Terminology

- Note that we used specific letters in our formula C = P ⊕ K
 - P is the "plaintext"
 - C is the "ciphertext"
 - K is usually used for "key"
- Call this blockcipher X
 - $-X: \{0,1\}^{64} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$
 - This means E takes two 64-bit strings and produces a 64-bit output

Looking at Blockcipher X

- First, is it even a valid cipher?
 - Is it 1-to-1?
 - Basic facts on xor's:
 - $-A \oplus A = 0 \qquad A \oplus B = B \oplus A$
 - $-A \oplus 0 = A$ $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
 - So prove 1-to-1:
 - Suppose $P \neq P'$ but C = C
 - Then P \oplus K = P' \oplus K
 - so P \oplus P' = K \oplus K
 - and P \oplus P' = 0
 - so P = P', contradiction

So it's Syntactically Valid

- What about its security?
 - It's terrible, but before we can really look more closely at it we need to learn more about what "secure" means
 - A second problem is that we still haven't said how to "encrypt," only to "encipher"
 - Encryption handles a bunch of variable-length messages
 - Enciphering handles inputs of one fixed size; ergo the term "blockcipher"

Background

- So really we've been talking about things like encryption and security with proper definitions!
 - Although it may be a pain, definitions are a central (and often ignored) part of doing "science"
 - You will see textbooks teach cryptography without defining the terms they use
 - We have an intuitive sense of these things, but we can't do <u>science</u> without writing down precise meanings for the terms we're using
 - The network security part of the course won't be much like this

Blockciphers

- One of the most basic components
 - Used EVERYWHERE in cryptography
 - Blockcipher E maps a k-bit key K and an n-bit plaintext P to an n-bit ciphertext C
 - Requirement: for any fixed K, E(K, ·) is a permutation (ie, is 1-to-1)

Security

• Intuition:

 A "secure" blockcipher under a (uniformly-chosen) random key should "look random"

• More precisely (but still informal):

- Suppose you are given a black-box which contains blockcipher E with a secret, random, fixed key K embedded within it
- Suppose you are also given another black-box (looks identical) which has a permutation π from n-bits to n-bits embedded within it, and π was chosen uniformly at random from the set of all 2ⁿ! possible permutations
- You are allowed to submit arbitrary plaintexts and ciphertexts of your choice to either box
- Could you tell which was which using a "reasonable" amount of computation?

Blockcipher Security (cont.)

- A "good" blockcipher requires that, on average, you must use a TON of computational resources to distinguish these two black-boxes from one another
 - A good blockcipher is therefore called "computationally indistinguishable" from a random permutation
 - If we had 2⁷⁰-bit keys, we could have *perfect* 64-bit blockciphers
 - Since we are implementing only a small fraction, we had better try and ensure there is no computationallysimple way to recognize this subset

Blockcipher Security (cont.)

- If we can distinguish between black-boxes quickly, we say there is a "distinguishing attack"
 - Practical uses?
 - Notice that we might succeed here even without getting the key!
 - Certainly getting the key is sufficient since we assume we know the underlying algorithm
 - What is the attack if we know the key?

Theme to Note

- Note that our notion of security asks for MORE than we often need in practice
 - This is a common theme in cryptography: if it is reasonable and seemingly achievable to efficiently get more than you might need in practice, then require that your algorithms meet these higher requirements.

Our Blockcipher X

- So is X secure under this definition?
 - No, simple distinguishing attack:
 - Select one black-box arbitrarily (doesn't matter which one)
 - Submit plaintext P=0⁶⁴ receiving ciphertext C
 - Submit plaintext P'=1⁶⁴ receiving ciphertext C'
 - If black-box is our friend X (under key K) then we will have
 - C = K and C' = K \oplus 1⁶⁴
 - So if C \oplus C' = 1⁶⁴ we guess that this box is blockcipher X
 - If not, we guess that this box is the random permutation

Analysis of X (cont.)

- What is the probability that we guess wrong?
 - Ie, what is the chance that two random distinct 64-bit strings are 1's complements of each other?

- 1/(2⁶⁴-1) ... about 1 in 10²⁰

 Note that this method does not depend on the key K