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Hensel lifting is a technique for taking solutions to systems of equations mod p and
“lifting” them to solutions mod p2, p4, p8, etc., to either get at the end an integer solution
or at least a p-adic solution. It is typically presented in the context of factoring polynomials
over the integers (e.g., [vzGG99, §15.4]) or complete local rings (e.g., [Mur05]), where the
corresponding systems have the same number of equations as variables. We are interested in
this note in what happens in the general case, with no restriction on the relationship between
the number n of variables and number m of equations; in particular we are interested in
the “over-constrained” case, i. e., when there are more equations than variables, though our
solution will be fully general. The author had difficulty finding the general situation worked
out online or in the literature.1 We claim no real novelty here, but hope these notes may
be useful for someone beyond the author (for whom they were certainly useful!).

Given a system of integer polynomial equations f1(x⃗) = · · · = fm(x⃗) = 0, and a solution
s⃗ ∈ (Z/pkZ)n (that is, f⃗(s⃗) ≡ 0 (mod pk)), a (quadratic) lift of s⃗ is a vector r⃗ ∈ (Z/p2kZ)n
such that r⃗ ≡ s⃗ (mod pk) and f⃗(r⃗) ≡ 0 (mod p2k).

Theorem 1. Let f1, . . . , fm ∈ Z[x1, . . . , xn], and suppose that s⃗ = (s1, . . . , sn) ∈ Zn is a
common root of these equations modulo pk, that is, f⃗(s⃗) ≡ 0⃗ (mod pk). Let J be the m× n
Jacobian matrix Jij =

∂fi
∂xj

. The lifts of s⃗ (mod pk) are in bijective correspondence with the

solutions, modulo pk, of the following integer linear equation:

−f⃗(s⃗)/pk = J(s⃗)x⃗

In particular, when m = n and J is invertible modulo pk—equivalently, is invertible
modulo p—then there is always a unique lift.

Proof. Let s⃗ ∈ Zn be a root of f⃗ modulo pk. Suppose r⃗ is a lift of s⃗. Since r⃗ ≡ s⃗ (mod pk),
write r⃗ as r⃗ = s⃗+ pkr⃗′. Since r⃗ is a root modulo p2k, we have

0⃗ ≡ f⃗(r⃗) (mod p2k)

≡ f⃗(s⃗+ pkr⃗′) (mod p2k)

≡ f⃗(s⃗) + pkJ(s⃗)r⃗′ (mod p2k),

where we treat r⃗′ as a n× 1 column vector. The last line follows from “Taylor expansion”
around s⃗, and noting that any term that involves two or more of the r⃗′ coordinates is
divisible by p2k.
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Now, since f⃗(s⃗) ≡ 0⃗ (mod pk), we can write the integer vector f⃗(s⃗) as pk t⃗ for some
t⃗ ∈ Zn. Thus we have an integer equation of the form

0⃗ = pk t⃗+ pkJ(s⃗)r⃗′ + p2km⃗

for some integer vector m⃗. Dividing through by pk, we get

0⃗ ≡ t⃗+ J(s⃗)r⃗′ (mod p2k−k)

−t⃗ ≡ J(s⃗)r⃗′ (mod pk).

Every lift is thus a solution to this equation modulo pk, and the same argument read
backwards gives the converse.

Let’s briefly recall what can happen for solving not-necessarily-square linear equations
modulo pk. We are solving an equation of the form t⃗ = Jx⃗ (mod pk), where J is m×n, x⃗ is
n×1, and t⃗ is m×1. By Smith Normal Form, there are invertible matrices A of size m×m
and B of size n× n (invertible modulo pk, which is equivalent to invertible modulo p) such
that AJB−1 is diagonal, where the diagonal entries are powers of p in nondecreasing order.
We thus reduce to solving

At⃗ = (AJB−1)(Bx⃗) (mod pk)

for Bx⃗ modulo pk, where AJB−1 is diagonal. For simplicity of notation, let us write

t⃗′ := At⃗ J ′ := AJB−1 x⃗′ := Bx⃗

so our equation becomes
t⃗′ = J ′x⃗′ (mod pk).

• When m = n and, for each i, the i-th diagonal entry of J ′ is pki , this equation
has a solution if and only if the i-th entry of t⃗′ is divisible by pki for all i. In this
case, the set of solutions consists of any one solution, plus any solution to the ho-
mogeneous equation 0 = J ′z⃗′ (mod pk). The solutions to the latter are precisely
z⃗′ = (z1p

k−k1 , z2p
k−k2 , · · · , znpk−kn)T modulo pk.

In particular, if m = n and ki = 0 for all i, then there is always a unique solution
modulo pk (hence, a unique lift).

• When m > n, the criterion is essentially the same, where we consider ki = k for all
i > n. That is, there exists a solution if and only if pki |t′i for all i; for i > n, by our
convention, this means that t′i = 0 modulo pk. The solutions to the homogeneous
equation have the same description as before.

In characteristic zero, the solvability of linear equations has a nice characterization in
terms of determinants (minors). For Z-linear equations modulo pk, the best analogue I could
find was [HS-G86]; I would be grateful for a reference to a more complete determinantal
characterization.

The following example shows that in the non-square case, the Jacobian being full rank
is not sufficient for existence of a lift (a mistake I made originally, which led me to work
out this note).
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Example 1. Consider the following integer equations:

0 = f1(x) := x2 + 1

0 = f2(x) := x2 − 4x+ 3.

The Jacobian matrix here is just the single column vector

(
2x

2x− 4

)
. Consider p = 5; the

solutions to the first equation mod 5 are ±2, and the only one of these that is also a root

of f2 is −2 (mod 5). The Jacobian evaluated at −2 is

(
1
2

)
(mod 5), which is full rank.

Despite J itself being full rank, the unique solution modulo 5 does not lift to any solution
modulo 25: Modulo 52 = 25, the only roots of f1 are ±7 (mod 25), and only −7 (mod 25)
is a lift of −2 (mod 5). But f2(−7) = 49 + 28 + 3 = 49 + 31 = 80 ̸≡ 0 (mod 25).

Following the theorem, we can see what the issue is. Namely, at −2 (mod 5), we have

f1(−2) = 5 and f2(−2) = 15, so f⃗(s⃗)/5 =

(
1
3

)
, and our lifting equation is

(
1
3

)
=

(
1
2

)
x (mod 5)

That is, we have the two equations x = 1 (mod 5) and 3 = 2x (mod 5), which clearly have
no solution (plug x = 1 into the second equation to get a contradiction).

This example can be analyzed more completely as follows. A little Gröbner basis com-
putation yields that ⟨10, 2x + 4, x2 + 1⟩ is a Gröbner basis over Z for the ideal ⟨f1, f2⟩.
In other words, any solution x to this equation in a ring R must come from a (unital)
ring homomorphism φ : Z[x]/⟨10, 2x + 4, x2 + 1⟩ → R as φ(x). As the former ring is
(Z/10Z)[x]/⟨2x + 4, x2 + 1⟩, we see that the only solutions to this pair of equations are
those that exist in rings admitting a homomorphism from Z/10Z, which is to say, rings of
characteristic dividing 10.

The following example even admits some solutions over Z, while having others mod p
that don’t lift to solutions mod p2.

Example 2. Consider

0 = g1(x) := x4 − 1

0 = g2(x) := (x− 1)(x− 2)

Over Z, the unique solution is x = 1, which works over every ring. However, modulo 5,
we also have that 2 (mod 5) is a solution to both equations. Our lifting equation at x = 2
(mod 5) is (

3
0

)
=

(
2
1

)
x (mod 5),

which we again see has no solution.
As before we can analyze this a bit more fully. By factoring x−1 out of both equations,

we see that the ideal ⟨g1, g2⟩ is equal to the product of ideals ⟨x−1⟩·⟨(x+1)(x2+1), (x−2)⟩.
The integer solution corresponds to the ideal ⟨x−1⟩. While we could use a Gröbner basis to
analyze the solutions to the other ideal, we can analyze it more directly because it contains
the monic linear polynomial x−2. Thus, we find that roots of the ideal ⟨(x+1)(x2+1), x−2⟩
are only possible when x = 2 is a solution to (x+1)(x2 +1), that is, in rings where 15 = 0,
or equivalently, in rings admitting a homomorphism from Z/15Z.
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One might hope for an example where the integer (or complex) solution was not “so
independent” from the unliftable solution mod p, for example, both living on the same
irreducible component. However, building and verifying such an example is beyond the
scope of this note.

Note that the phenomenon of Example 2—having solutions over C but also having
solutions modulo p that don’t lift to p2—cannot happen with linear equations Ax⃗ = b⃗: by
Smith Normal Form we may assume that A is diagonal with a11|a22| · · · |ann. Since we are
assuming the Jacobian is full rank modulo p, we must have all aii are units modulo p. To
have a solution modulo p but not modulo p2, it is necessary and sufficient for some entry
of b⃗ beyond the first n to be a multiple of p but not of p2. But since the rows of A after
the n-th are all zero, such a system does not have a solution over Q. As Z-linear equations
have solutions over Q iff they have solutions over C, it also cannot have solutions over C.

Remark 1 (Generalization to commutative rings). Since the case of lifting factorizations of
polynomials can also be generalized to an arbitrary (local) commutative ring, it is natural
to wonder whether the same could be true for generalizing Theorem 1. And indeed, the
proof goes through mutatis mutandis when we replace Z with a commutative ring R, and
we replace the prime p with an element π ∈ R that is a non-zerodivisor.

This generalization to commutative rings seems especially useful when the principal
ideal ⟨π⟩ is also maximal, for then R/⟨π⟩ is a field and finding a solution mod π can be
done using standard techniques over fields before attempting to lift.

Remark 2 (For the experts, from an expert). Daniel Litt (personal communication, 2024)
pointed out to us that Theorem 1 is a special case of the following more general fact.
Suppose R is any commutative ring and I ⊆ R is an ideal that squares to zero, and V is a
variety with a point x defined over R/I. Then, if there are any lifts of x to R-points of V ,
the set of all such lifts is a torsor for Hom(ΩV |x, I), where ΩV |x is the module of (Kähler)
differentials of V at x. He claims that the proof of this follows from [Stacks, Tag 08S3,
Lemma 91.2.1(2)], with a proof that is, and I quote, “the same as [what we wrote above], but
perhaps not obviously the same.” Furthermore, there is an element of Ext1R[V ](NLR[V ]/R, I)
whose vanishing is a necessary and sufficient condition for the existence of a lift, where NL
denotes the naive cotangent complex. I hope to someday understand this remark. As a
starting point, we can see that in our case we will have R = Z/p2kZ, I = ⟨pk⟩, ΩV |x
should correspond to our use of the Jacobian, and the element of Ext should generalize our
comments above about the existence of solutions to linear equations modulo pk.
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