CSCI 7000 Fall 2023: Inclusion–Exclusion

Joshua A. Grochow

Released: October 10, 2023
Due: Monday Oct 16, 2023

1. Generatingfunctionology Chapter 4 Exercise 9 (p. 159), reproduced verbatim here:

Let G be a graph of n vertices, and let positive integers x, λ be given. Let $P(\lambda; x; G)$ denote the number of ways of assigning one of λ given colors to each of the vertices of G in such a way that exactly x edges of G have both endpoints of the same color.

Formulate the question of determining P as a sieve [inclusion-exclusion] problem with a suitable set of objects and properties. Find a formula for $P(\lambda; x; G)$, and observe that it is a polynomial in the two variables λ and x. The chromatic polynomial of G is $P(\lambda; 0; G)$.

2. Given non-negative integers k, n, d, find the number of non-negative integer solutions to the equation

$$x_1 + x_2 + \cdots + x_k = n$$

such that all x_i satisfy $0 \leq x_i \leq d$.

3. (Stanley, Enumerative Combinatorics, Volume I, second edition, Chapter 2, Exercise 14). Let $A_k(n)$ denote the number of collections S of k subsets of $\{1, \ldots, n\}$ such that no element of S is a subset of another element of S. Show that $A_1(n) = 2^n$ and $A_2(n) = (1/2)(4^n - 2 \cdot 3^n + 2^n)$. Try to compute $A_k(n)$ for $k = 3, 4$. Can you see the pattern? See for how large a k can you get a general formula (as a function of n).
Resources

- [van Lint & Wilson](#) Chapter 10
- [Generatingfunctionology](#) Section 4.2 for a generating function view of inclusion–exclusion
- [Generatingfunctionology](#) p. 113 for average number of fixed points of a permutation via inclusion–exclusion
- [Enumerative Combinatorics](#) Chapter 2