1. (a) Consider Boolean functions on \(n \) variables, but which only depend on the first \(m \) variables (for some fixed \(m \leq n \)). That is, functions of the form \(f(\bar{x}) \) such that \(f(x_1, \ldots, x_m, x_{m+1}, \ldots, x_n) = f(x_1, \ldots, x_m, x'_m+1, \ldots, x'_n) \), regardless of the values of \(x'_m+1, \ldots, x'_n \). Give an upper bound on the size of circuit needed to compute such functions. \textit{Hint}: Use DNF. Your upper bound should depend only on \(m \), not on \(n \).

(b) How many such functions are there? Your answer should depend only on \(m \), not on \(n \).

(c) Find a value of \(m \), as a function of \(n \) and \(k \) (that is, \(m = m(n, k) \)), such that all Boolean functions that depend only on their first \(m \) variables can be computed by circuits of size at most \(n^{k+1} \). Try to make \(m \) as large as possible subject to this condition.

(d) Fix \(k \geq 1 \). How many Boolean circuits are there using AND, OR, NOT gates, which take \(n \) inputs, and have size at most \(n^k \)?

(e) Fix \(k \geq 1 \). Using the value of \(m \) from part (c), compare the count from part (b) with the count from part (d) to conclude that there exist Boolean functions computable by circuits of size \(n^{k+1} \) but not of size \(n^k \). (If you can’t get \(n^{k+1} \) vs \(n^k \), see if you can get your counting arguments to work to show the existence of a function computable by circuits of size \(n^{3k} \) but not of size \(n^k \).)

2. (Kannan’s Theorem)

(a) Fix \(k \geq 1 \). Try to write down the statement “There is a polynomial-size circuit \(C \) that computes a function that isn’t computable by
any circuit of size at most \(n^k \), using as few quantifier alternations as possible. (It is possible to do with at most 4 quantifier alternations, but even if you do more that is fine, as long as it’s a fixed number.)

(b) Use your answer from the previous part to build a language in \(\text{PH} \) that is not computable by circuits of size \(n^k \). \textit{Hint:} You need to make sure that on all inputs of a given length \(n \), the \textit{same} circuit \(C \) is chosen by the existential quantifier. One way to do this is to enforce that \(C \) is the circuit whose description is lexicographically first, among circuits satisfying the property from part (a).

(c) Use the preceding part to show that in fact there is a language \(L_k \in \Sigma_2^P \) such that \(L_k \) is not computable by circuits of size \(n^k \), as follows. If \(\text{NP} \not\subseteq \text{P/poly} \), then we are done (why?). If \(\text{NP} \subseteq \text{P/poly} \), then what can we say about \(\text{PH} \)? \textit{(Hint: Combine part (b) with the Karp--Lipton Theorem.)}

3. \textit{(Shannon’s Theorem)} Using similar counting as in Question 1 (but with \(m = n \)), show that most \(n \)-variable Boolean functions cannot be computed by circuits smaller than size \(2^n/(10n) \) (the value of 10 is not crucial—if you can do it with 1000 instead of 10 that’s fine—but you will need some constant \(> 1 \) in the denominator to get the counting to work out).

\textbf{Resources}

- \textbf{Arora & Barak} Section 6.3 for Shannon’s Theorem, Section 6.4 for the circuit size hierarchy theorem (a tighter version of what is asked in Question 1 above)
- \textbf{Homer & Selman} Proposition 8.1 for counting Boolean circuits of a given size
- Du & Ko Theorem 6.1 gives Shannon’s Theorem.
- \textbf{Lecture notes by Paul Beame} on Karp–Lipton and Kannan’s Theorems are pretty good, and in line with how we’ve been covering them in class.