A Cook–Reckhow proof system for a language L is a polynomial-time function P such that

1. For every $x \in L$, there exists a π such that $P(\pi) = x$; we call π a “P-proof” for x (or a P-proof that x is in L)

2. For every string π, $P(\pi) \in L$.

A proof system P is called polynomially bounded or p-bounded if for every x there exists a P-proof π for x such that $|\pi| \leq \text{poly}(|x|)$.

1. Prove that for any language L, L has a p-bounded Cook–Reckhow proof system iff $L \in \text{NP}$.

2. Let UNSAT denote the set of Boolean formulas that are unsatisfiable.

 (a) Show that UNSAT is coNP-complete. Hint: What is the complement of UNSAT?

 (b) Show that there is a p-bounded proof system for UNSAT iff $\text{NP} = \text{coNP}$.

3. When we think of Graph Isomorphism as a language, we consider it as the set of pairs $\{(G, H) : G$ is isomorphic to $H\}$.

 (a) Give a p-bounded Cook–Reckhow proof system for GI.

 (b) The k-dimensional Weisfeiler–Leman procedure (k-WL) to show two graphs G, H are non-isomorphic works as follows. It will iteratively color the k-tuples of vertices of G and H as follows. Two k-tuples (u_1, \ldots, u_k) and (v_1, \ldots, v_k) initially receive the same color iff $u_i = u_j \Leftrightarrow v_i = v_j$ for all $i \neq j$, and if the map $u_i \mapsto v_i$
induces an isomorphism on the corresponding induced subgraphs. At each iteration, the colors are refined similar to 2-WL: the new color of \((v_1, \ldots, v_k)\) consists of the tuple

\[(c_{t-1}, M_1, \ldots, M_k)\]

where \(c_{t-1}\) is the color of \((v_1, \ldots, v_k)\) at the previous time step \(t - 1\), and \(M_i\) is the multiset of colors of tuples of the form \((v_1, v_2, \ldots, v_{i-1}, *, v_{i+1}, \ldots, v_k)\). \(k\)-WL distinguishes \(G\) from \(H\) if at any point in this process, the multiset of all colors appearing in \(G\) differs from that in \(H\). (The process stops when the partition of \(G^k\) is no longer refined.)

Reformulate Weisfeler–Leman (of arbitrary dimension) as a Cook–Reckhow proof system for \(\text{coGI aka Graph Non-Isomorphism}\). Is it p-bounded?

4. Unsatisfiable formulas are also known as contradictions. Prove that any contradiction \(\varphi\) has a resolution refutation. Given an upper bound on the size of this refutation.

5. Show that unsatisfiable 2-CNF formulas variables have resolution refutations of polynomial size.

6. Show that resolution is p-simulated by sequent calculus where all cuts are on individual variables.

Resources

- [Paul Beame lecture notes](#) (notes by Ashish Sabharwal)
- [Beame–Pitassi Bull. EATCS survey](#)
- [Pitassi–Tzameret survey on algebraic proof complexity](#)
- [Razborov SIGACT News survey](#)
- [Razborov 2009 course](#)
- [Nate Segerlind 2007 Bull. Symb. Logic survey](#)
- [Krajicek book](#)