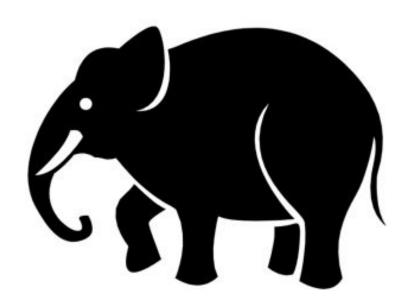
Representing and Storing Structured Data

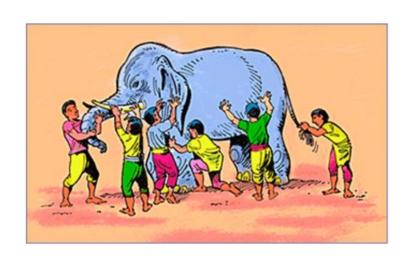
LBSC 690: Jordan Boyd-Graber

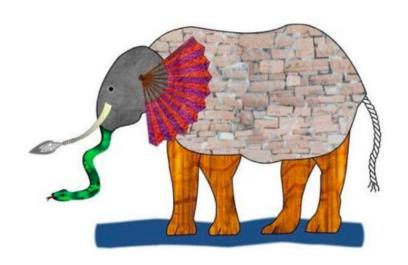
October 15, 2012

COLLEGE OF INFORMATION STUDIES

Adapted from Jimmy Lin's Slides




Goals


- Metadata: XML
- Databases

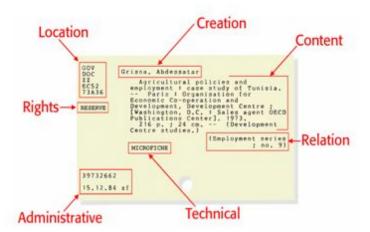
Outline

- The joys and sorrows of metadata
- 2 XML: a framework for data representation
- New and interesting things
- 4 Relational Databases
- 6 Relational Algebra

Take-Away Messages

- Metadata makes data useful
- XML is a way to encode data and metadata
- XML allows computers to exchange information in new and interesting ways

7/1/1988	OL.	950	20.3	13	0.8	-0.1	33.1	27.8	5.3	5.92
7/2/1988	OL	950	24.2	126	1	-0.1	27,8	23.9	3.8	4,56
7/3/1988	OL.								100	
7/4/1988	OL.	950	0.4	16,3	0.4	0.2	41	34.5	6.5	15.5
7/5/1988	OL.	1005	32.9	18.9	1.4	0.3	29.8	23.7	6.1	14,23
7/6/1988	OL.	1020	323	20.5	1.4	0.3	23.4	18.9	4.5	1297
7/7/1988	OL.	1015	36.8	24.9	1.7	0.5	18.6	153	3.2	13,92
7/8/1988	OL	925	428	25.6	25	0.6	23.7	19.9	3.9	15.18
7/9/1988	OL.	945	23.3	27,8	0.7	0.8	27.7	23.5	4.3	12.33
7/10/1988	OL	1030	49.8	26.2	2.6	0.6	40.3	34	6.3	22.14
7/11/1988	OL	940	44.8	25.2	25	0.8	34	29.2	4.8	16.76
7/12/1988	OL	1010	47.6	26,9	26	0.7	47.3	39.6	7.7	16,13
7/13/1988	OL.	945	36.5	22.6	1.9	0.6	36.7	32.6	4	15.5
7/14/1988	OL	950	19.5	18,6	0.4	0.5	302	39.1	262.9	11.07
7/15/1988	OL	955	31.7	15.7	1.5	0.4	29.7	25	4.7	9.49
7/16/1988	OL:	955	23.3	14,5	1,8	0.8	23,4	20.7	27	8,14
7/17/1988	OL	1015	23.8	16,6	1.6	0.6	27.7	24.1	3.7	9.17
7/18/1988	OL	934	32.9	16,7	21	0.7	34	28.9	5.1	9,49
7/19/1988	OL	1010	29.2	20,4	1.9	0.7	26	22.3	3.7	10,44
7/20/1988	OL.	952	44.8	24.8	21	0.8	31.7	27.5	42	10.75
7/21/1988	OL	1029	33.7	37.1	1.9	0.6	34.5	30.1	4.3	12.00
7/22/1988	OL	1017	34.3	32.9	2	0.7	31.4	26.2	5.1	1265
7/23/1988	OL	1040	35.7	24,6	2	0.8	23.7	20.4	3.3	15.5
7/24/1988	OL	923	47.6	28.9	29	0.8	67.3	58.9	8.4	20.87
7/25/1988	OL	1030	58.3	32.6	29	0.7	68	59.3	8.7	22.14
7/26/1988	OL	950	49.3	29.2	3.4	0.6	86	75.1	10.9	21.19
7/27/1988	OL.	1006	54.1	20.9	3.9	0.6	94	82.8	11.2	25.06
7/28/1988	OL	1010	40.5	16.5	1.7	0.3	41	34.4	6,6	6.54
7/29/1988	OL.	1000	25.5	23.6	1.4	0.1	41	35.4	5.6	3.82
7/30/1988	OL.	1005	47,9	17.6	0.8	0.1	18,3	15.9	23	4.19
7/31/1988	OL	1015	38	22.5	1.5	0.1	30	25.3	4.7	4,44
8/1/1988	OL.	1018	21,2	8.8	1,1	-0.1	24.7	21.1	3.6	4.81
8/2/1988	OL	1004	38.5	22.8	2.1	0.3	54	46.8	7.2	9.8
8/3/1988	OL	1011	94	32.6	21	0.3	45.5	38.9	6.6	9.49
8/4/1988	OL	955	58.3	43.1	25	1.1	41	33.1	7.9	9.8
O/ 1/ 1300	UL	300	30.3	43.1	23	141	-91	33.1	1.9	3.0


What's going on here? How do I use this?

Metadata

Literally "data about data"

"a set of data that describes and gives information about other data" – Oxford English Dictionary

Dublin Core

What is the Dublin Core?

- A metadata standard for describing digital resources
- An initiative to create a library card catalog for the Web
- Dublin Core fields:

Title	Creator	Subject			
Description	Publisher	Contributor			
Date	Type	Format			
Identifier	Source	Language			
Relation	Coverage	Rights			

Encoding Metadata

- Language for encoding metadata should be:
 - Universal so all can understand
 - Flexible to incorporate different types
 - Extensible flexible to custom types
 - Simple to encourage adoption
 - Modular so that schemes can be mixed, extended

How do we encode data for interoperability?

Challenges

January 31, 2001 31 janvier 2001 2001-01-31 01-31-2000 980942400

Outline

- The joys and sorrows of metadata
- 2 XML: a framework for data representation
- New and interesting things
- 4 Relational Databases
- 6 Relational Algebra

What is XML?

- XML = eXtensible Markup Language
- XML is a standard for exchanging structured data
 - Provides standardization at the syntactic level
 - Does not provide "meaning" for the tags
 - XML is a standard recommended by the W3C

Goals of XML

- Easy to use
- Easy to extend and adapt
- Easy to write programs that use XML
- Support a wide variety of applications
- Should be human legible
- Formal and concise

Refresher: Elements and Attributes

Attribute

<person age="28" />

Element

```
<person>
<age>28</age>
</person>
```

The Basic Rules

- XML is case sensitive
- All start tags must have end tags
- Elements must be properly nested
- XML declaration is the first statement

```
<?xml version="1.0"?>
```

- Every document must contain a root element
- Attribute values must have quotation marks

```
<item id="33905">
```

Certain characters are reserved for parsing

```
\ \& It: = ''<''
```



```
< rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc=" http://purl.org/dc/elements/1.1/">
    <rdf: Description
       rdf:about="http://media.example.com/audio/guide.ra">
<dc:creator>Rose Bush</dc:creator>
<dc:title>A Guide to Growing Roses</dc:title>
<dc:description>Describes process for planting and nurturing
  different kinds of rose bushes.</dc:description>
< dc: date > 2001 - 01 - 20 < /dc: date >
    </rdf:Description>
</rdf:RDF>
```

• What does XML do?

- What does XML do? ... nothing
- Syntax vs. semantics
- XML vs HTML

Historic Perspective: Three Core Technologies

- HTTP HyperText Transfer Protocol
 - ▶ A protocol for transferring data between machines on the Internet
- URL Uniform Resource Locator
 - ▶ A scheme for referencing the specific location of a resource
- HTML HyperText Markup Language
 - ▶ A markup language for encoding information to be read by humans

HTTP and URLs have stood the test of time.

But by 1996, HTML was already showing signs of age . . .

HTML

- Started with very few tags
- Language evolved as more tags were added:
 - Forms
 - Tables
 - Fonts
 - Frames
 - **.**...

Problems with HTML

- I want personalized tags
 - ▶ HTML can't be extended
- I want to incorporate other types of data
 - ▶ Mathematics, database entries, literary text, poems, purchase orders
 - ▶ HTML can't accommodate other types of data
- I want to process pages automatically with software
 - HTML is too messy and inconsistent
 - Browsers are too forgiving

Back to Basics

- HTML was defined using SGML
 - Standard Generalized Markup Language
 - A meta-language for defining languages
 - Complex, sophisticated, powerful . . .

Back to Basics

- HTML was defined using SGML
 - Standard Generalized Markup Language
 - A meta-language for defining languages
 - Complex, sophisticated, powerful ... too difficult to use
 - Idea: create a simpler version of SGML . . .

Back to Basics

- HTML was defined using SGML
 - Standard Generalized Markup Language
 - A meta-language for defining languages
 - Complex, sophisticated, powerful ... too difficult to use
 - ▶ Idea: create a simpler version of SGML . . . the birth of XML!

XML Languages

- XML can be used to define other languages
- Many XML languages, optimized for different roles
 - XHTML: HTML by XML rules
 - MathML: for mathematics
 - ▶ EPUB: for creating eBooks
 - RSS: for news feeds
 - Civ IV: Create your own game
 - SVG: Create graphics

XHTML: Cleaning up HTML

```
<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns="http://www.w3.org/TR/xhtml1" >
<head>
   <title> Title of text XHTML Document </title>
</head>
<body>
<div class="myDiv">
    <h1> Heading of Page </h1>
     A paragraph this one with an
<img src="image.gif" alt="waste_of_time" />
  image, and a \langle br \rangle line break. \langle p \rangle
</div>
</body></html>
```

What's new?

New preamble to tell us what's here, and tags must have explicit ends.

MathML

An XML language for defining mathematic formulas

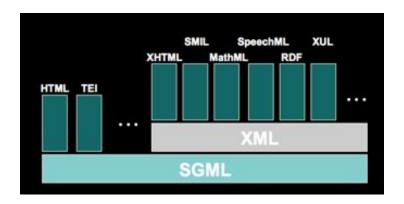
$$x^2 + 4x + 4 = 0$$

```
<mrow>
  <mrow>
<msup><mi>x</mi><mn>2</mn></msup>
<mo>+</mo>
<mrow>
  <mn>4</mn>
  <mo>&InvisibleTimes;</mo>
  < mi > x < / mi >
</mrow>
    <mo>+</mo><mn>4</mn>
  </mrow>
  <mo>=</mo><mn>0</mn>
</mrow>
```

EPUB

- Format for putting books on mobile readers (except Kindles)
- Divide up a book into XHTML files
- Create two additional XML files
 - opf (open packaging format)
 - ★ Metadata (using Dublin Core)
 - * All the files needed
 - ★ Linear reading order
 - ncx (navigation control file for XML)
 - ★ Hierarchical organization of content (for easy navigation)

RSS


- RSS = Really Simple Syndication or Rich Site Summary
- An XML format for distributing news headlines on the Web

And Others . . .

- CML: chemical Markup Lang
- CelIML: biological models
- BSML: bioinformatic sequences
- MAGE-ML: Microarray Gene Expression
- XSTAR: for archaeological research
- MARCXML: MARC in XML
- AML: astronomy markup language
- SportsML: for sharing sports data
- List goes on and on and on . . .

The XML Family Tree

Mixing XML Dialects

- XML is designed to support the integration of multiple standards
- Allows users to mix elements from different standards
 - Snapping together XML dialects like Lego pieces
 - Based on the notion of "namespaces"

Example

```
<?xml version="1.0"?>
< rdf:RDF
  xmlns:rdf=" http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:rss="http://purl.org/rss/1.0/"
  xmlns:dc="http://purl.org/dc/elements/1.1/">
  <rss:channel rdf:about="http://www.xml.com/xml/news.rss">
    <rss:title>XML.com</rss:title>
    <rss:link>http://xml.com/pub</rss:link>
    <dc:description>
      XML.com features a rich mix of
      information and services for the XML community.
    </dc:description>
    <dc:subject>XML, RDF, metadata, information
      syndication services</dc:subject>
    <dc:identifier>http://www.xml.com</dc:identifier>
    <dc:publisher>O'Reilly _&_ Associates , _Inc.</dc:publisher>
___<dc:rights>Copyright_2000,_O'Reilly &
      Associates, Inc.</dc:rights>
  </rss:channel>
</rdf:RDF>
                                         ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● めぬぐ
```

Another Example

```
<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns="http://www.w3.org/TR/xhtml1" >
<head>
   <title> Title of XHTML Document </title>
</head>><body>
<div class="myDiv">
   <h1> Heading of Page </h1>
     <math xmlns="http://www.w3.org/1998/Math/MathML">
   ... MathML markup ...
    <p> more html stuff goes here </p>
   <smil xmlns="http://www.w3.org/TR/smil1">
   ... SMIL markup ...
    </smil>
</div>
</body></html>
```

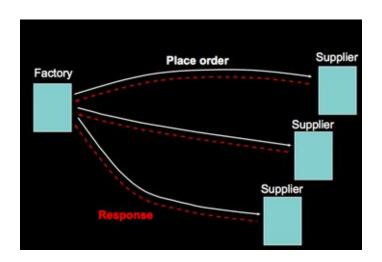
Outline

- The joys and sorrows of metadata
- 2 XML: a framework for data representation
- New and interesting things
- 4 Relational Databases
- 6 Relational Algebra

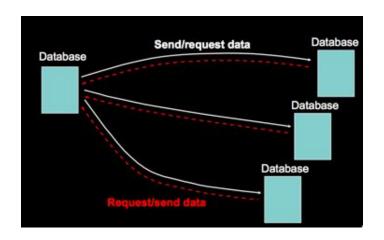
Interoperability

• What does it mean and what's the role of XML?

Interoperability


• What does it mean and what's the role of XML?

XML: universal format for data interchange


Software exchanges data as XML-format messages

- Advantages?
 - Eliminates proprietary data formats
 - Promotes interoperability
 - Encourages cooperation
 - Leverages lots of existing XML processing software

XML Messaging

XML Messaging

What's in it for me?

- Webapps
 - ▶ Lower overhead
 - Richer data
 - More portability
- Mashups
- Syntax vs. Semantics

Mashups

Mashups

XML Schema

- Defines what a valid XML document should look like
 - Fields
 - Attributes
 - Number of entries
- Has filename extension "xsd"
- There are plenty of XML validators out there
- Won't go into details ... think of it like a rulebook

Extensible Stylesheet Language Transformations

- XSLT transforms one XML document into another
- Often used to display XML to a user
 - Webpage
 - Graphics
- Syntax varies, semantics are fixed

Business Card: Source Data

Business Card: XSLT Transformation

```
< x s l : s t y l e s h e e t
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.
    xmlns="http://www.w3.org/1999/xhtml">
   <xsl:template match="card">
     < html>
       <head>>title>business card</title>>/head>
       <body>
 <xsl:apply -templates select="name"/>
 <xsl:apply -templates select=" title" />
 <xsl:apply -templates select="email"/>
 <xsl:apply -templates select="phone"/>
       </body>
     </html>
   </xsl:template>
```

Business Card: XSLT Transformation (cont.)

```
<xsl:template match="name">
     <h1>\timesxsl:value-of select="text()"/>\times/h1>
   </xsl:template>
   <xsl:template match="title">
     <b>Title:</b> <xsl:value-of select="text()"/> <br/>
   </xsl:template>
   <xsl:template match="email">
     <b>Email:</b> <a href="mailto:{text()}"><tt>
       <xsl:value-of select="text()"/>
     </tt></a><br/>br/>
   </xsl:template>
   <xsl:template match="phone">
     <b>Phone:</b> <xsl:value-of select="text()"/> <br/>
   </xsl:template>
</xsl:stylesheet>
```

Card with Style

In a browser . . .

John Doe

Title:CEO, Widget Inc.

Email: john.doe@widget.com

Phone: (202) 456-1414

XML isn't all there is

- S-Expressions
 - Based on logical statements
 - Not used outside academia (not in it too much, either)
- Protocol Buffers
 - Blazingly fast
 - More constrained than XML (have to specify data types, ranges)
- JSON
 - Designed specifically for web applications
 - Lighter weight than XML

Take-Away Messages

- Metadata makes data useful
- XML is a way to encode data and metadata
- XML allows computers to exchange information in new and interesting ways

Outline

- The joys and sorrows of metadata
- 2 XML: a framework for data representation
- New and interesting things
- Relational Databases
- 6 Relational Algebra

Take-Away Messages

- Databases are suitable for storing structured information
- Databases are important tools to organize, manipulate, and access structured information
- Databases are integral components of modern Web applications

Definitions

Structured Information

What you put in a database (e.g. from XML)

Database

What you put structured information in.

Database Management System (DBMS)

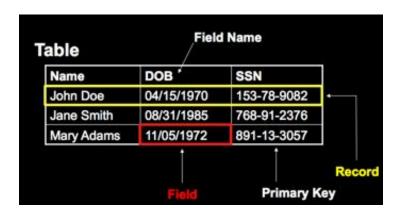
Software system designed to store, manage, and facilitate access to databases

What's a database?

An integrated collection of data organized according to some model ...

What's a relational database?

An integrated collection of data organized according to a relational model . . .


Databases (try to) model reality...

- Entities: things in the world (Example: airlines, tickets, passengers)
- Relationships: how different things are related (Example: the tickets each passenger bought)
- "Business Logic": rules about the world (Example: fare rules)

Components of a Relational Database

- Field: an "atomic" unit of data
- Record: a collection of related fields
- Table: a collection of related records
 - ▶ Each record is a row in the table
 - ▶ Each field is a column in the table
- Database: a collection of tables

A Simple Example

Components of a Relational Database

Why "Relational?"

View of the world in terms of entities and relations between them

- Tables represent "relations"
- Each row in the table is sometimes called a "tuple"
- Each tuple is "about" an entity
- Fields can be interpreted as "attributes" or "properties" of the entity

Data is manipulated by "relational algebra":

- Defines things you can do with tuples
- Expressed in SQL (Structured Query Language, next week)

The Registrar Example

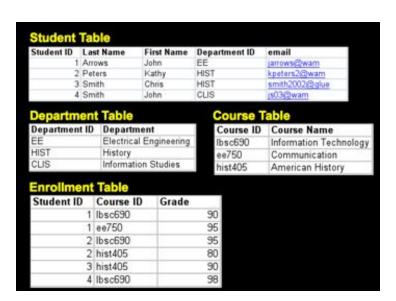
- What do we need to know?
 - Something about the students ?(e.g., first name, last name, email, department)
 - Something about the courses ?(e.g., course ID, description, enrolled students, grades)
 - Which students are in which courses
- How do we capture these things?

A first stab ...

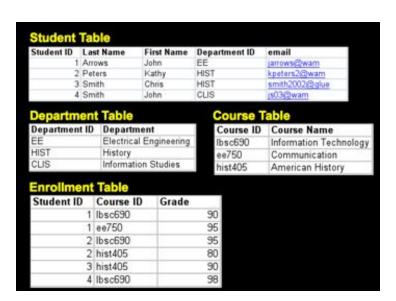
Put everything in a big table...

Student ID	Last Name	First Name	Dept ID	Dept	Course ID	Course name	Grade	email
1	Arrows	John	EE	EE	lbsc690	Information Technology	90	jarrows@wam
1	Arrows	John	EE	Elec Engin	ee750	Communication	95	ja 2002@yahoo
2	Peters	Kathy	HIST	HIST	lbsc690	Informatino Technology	95	kpeters2@wam
2	Peters	Kathy	HIST	history	hist405	American History	80	kpeters2@wma
3	Smith	Chris	HIST	history	hist405	American History	90	smith2002@glue
4	Smith	John	CLIS	Info Sci	lbsc690	Information Technology	98	js03@wam

A first stab . . .


Put everything in a big table... Student ID Last Name First Name Dept ID Dept Course ID Course name Grade email Arrows John EE EE lbsc690 Information Technology 90 arrows@wam EE Elec Engin | ee750 Communication 95 Arrows John ja 2002@yahoo 95 Peters HIST HIST lbsc690 Informatino Technology kpeters2@wam Kathy HIST 80 Peters Kathy history hist405 American History kpeters2@wma Smith Chris HIST hist405 American History 90 history smith2002@glue CLIS Information Technology 98 Smith John Info Sci lbsc690 js03@wam

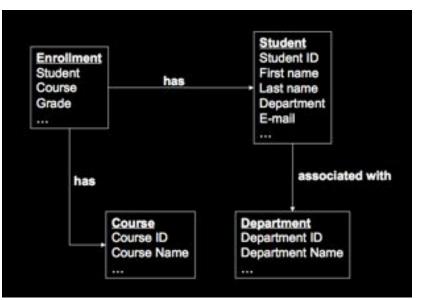
What's wrong with this?


Goals of "Normalization"

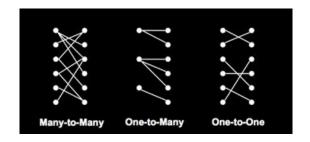
- Save space
 - ► Save each fact only once
- More rapid updates
 - Every fact only needs to be updated once
- More rapid search
 - Finding something once is good enough
- Avoid inconsistency
 - Changing data once changes it everywhere

Updated Organization

Updated Organization


Keys

- "Primary Key" uniquely identifies a record
 - e.g., student ID in the student table
- "Foreign Key" is primary key in the <u>other</u> table
 - ▶ It need not be unique in this table

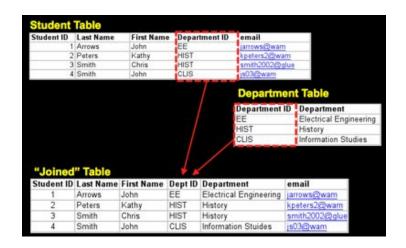

Approaches to Normalization

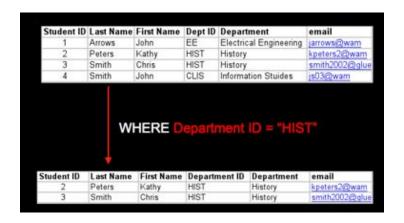
- For simple problems:
 - Start with the entities you're trying to model
 - Group together fields that "belong together"
 - Add keys where necessary to connect entities in different tables
- For more complicated problems:
 - Entity-relationship modeling (LBSC 670)

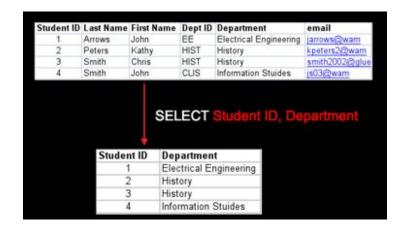
Entity Relationship Modeling

Entity Relationship Modeling

Database Integrity


- Registrar database must be internally consistent
 - All enrolled students must have an entry in the student table
 - ▶ All courses must have a name
 - Grades can't be negative
- What happens:
 - When a student withdraws from the university?
 - When a course is taken off the books?


Integrity Constraints


- Conditions that must be true of the database at any time
 - Specified when the database is designed
 - Checked when the database is modified
- RDBMS ensures that integrity constraints are always kept
 - So that database contents remain faithful to the real world
 - Helps avoid data entry errors
- Where do integrity constraints come from?

Outline

- The joys and sorrows of metadata
- 2 XML: a framework for data representation
- New and interesting things
- 4 Relational Databases
- Relational Algebra

- Joining tables: JOIN
- Choosing columns: SELECT

Based on their labels (field names)

Choosing rows: WHERE

Based on their contents

These can be specified together

How is a database more than a spreadsheet?

Database in the "Real World"

- Typical database applications:
 - Banking (e.g., saving/checking accounts)
 - ► Trading (e.g., stocks)
 - Traveling (e.g., airline reservations)
 - Networking (e.g., Facebook)
- Characteristics:
 - Lots of data
 - Lots of concurrent operations
 - Must be fast
 - "Mission critical" (well . . . sometimes)

Operational Requirements

- Must hold a lot of data
 - Use lots of computers, each with a small slice
 - So which machine has your data?
- Must be reliable
 - Use lots of computers with duplicate copies
 - How do you keep copies consistent
- Must be fast
 - Use lots of computers
 - Share the load
- Must support concurrent operations
 - This is hard
 - But often not needed

Database Transactions

- Transaction = sequence of database actions grouped together
 - e.g., transfer \$500 from checking to savings
- ACID properties:
 - Atomicity: all-or-nothing
 - Consistency: each transaction must take the DB between consistent states
 - ▶ Isolation: concurrent transactions must appear to run in isolation
 - ▶ **Durability**: results of transactions must survive even if systems crash

Making Transactions

- Idea: keep a log (history) of all actions carried out while executing transactions
 - Before a change is made to the database, the corresponding log entry is forced to a safe location
- Recovering from a crash:
 - Effects of partially executed transactions are undone
 - Effects of committed transactions are redone
 - Trickier than it sounds!

Discussion Question

RideFinder

Design a database to match drivers with passengers (e.g., for road trips)

- Drivers post available seats; they want to know about interested passengers
- Passengers call up looking for rides: they want to know about available rides (they don't get to post "rides wanted" ads)
- These things happen in no particular order

Discussion Goals

- Design the tables you will need
 - First decide what information you need to keep track of
 - Then design tables to capture this information
- Design queries (using join, project, and restrict)
 - What happens when a passenger comes looking for a ride?
 - What happens when a driver comes to find out who his passengers are?
- Role play!

Exercise solution: tables

- Ride: Ride ID, Driver ID, Origin, Destination, Departure Time, Arrival Time, Available Seats
- Passenger: Passenger ID, Name, Address, Phone Number
- Driver: Driver ID, Name, Address, Phone Number
- Booking: Ride ID, Passenger ID

Exercise solution: queries

- Passenger calls: Can I get a ride?
 - ▶ Join: Ride, Driver
 - Project: Departure Time, Name, Phone Number
 - ► Restrict: Origin, Destination, Available Seats > 0
- Driver calls: Who are my passengers?
 - Join: Ride, Passenger, Booking
 - Project: Name, Phone Number
 - Restrict: (Driver) Name, Origin, Destination, Departure Time