
Probabilistic Models in MapReduce

Jordan Boyd-Graber

April 7, 2011

Adapted from Jimmy Lin’s Slides

Roadmap

Homework

Midterm

Probabilistic Models

Hidden Markov Model

Topic Models

Homework

Project Proposal: Due 11

Homework 3?

Homework 4 is out

Homework 6

Midterm: Max

Obvious answer

Less obvious answer
Define grouper
Make sure values arrive in sorted order
Reducer only needs to look at first value
Not as efficient as using combiners (except in pathological
situations)

Rule-Based Systems

Until the 1990s, text processing relied on rule-based systems

Advantages

More predictable

Easy to understand

Easy to identify errors and fix them

Disadvantages

Extremely labor-intensive to create

Not robust to out of domain input

No partial output or analysis when failure occurs

Statistical Methods

Basic idea: learn from a large corpus of examples of what we wish
to model Training Data

Advantages

More robust to the complexities of real-world input

Creating training data is usually cheaper than creating rules

Even easier today thanks to Amazon Mechanical Turk

Data may already exist for independent reasons

Disadvantages

Systems often behave differently compared to expectations

Hard to understand the reasons for errors or debug errors

Learning from training data usually means estimating the
parameters of the statistical model

Estimation usually carried out via machine learning

Two kinds of machine learning algorithms
Supervised learning

Training data consists of the inputs and respective outputs

(labels)

Labels are usually created via expert annotation (expensive)

Difficult to annotate when predicting more complex outputs

Unsupervised learning
Training data just consists of inputs. No labels.

One example of such an algorithm: Expectation Maximization

(EM)

What Problems Can We Solve?

(Supervised) Part of speech tagging

(Unsupervised) Exploring large corpora

But first, a brief recap of estimating probability distributions

What Problems Can We Solve?

(Supervised) Part of speech tagging

(Unsupervised) Exploring large corpora

But first, a brief recap of estimating probability distributions

How do we estimate a probability?

Suppose we want to estimate P(wn = “dog”|zz = “NN”).

dog dog cat horse cow
cat horse cow fly mouse
fly dog cat fly dog

mouse dog fly cat cow

Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni�
k nk

(1)

Is this reasonable?

How do we estimate a probability?

Suppose we want to estimate P(wn = “dog”|zz = “NN”).

dog dog cat horse cow
cat horse cow fly mouse
fly dog cat fly dog

mouse dog fly cat cow

Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni�
k nk

(1)

Is this reasonable?

How do we estimate a probability?

Suppose we want to estimate P(wn = “dog”|zz = “NN”).

dog dog cat horse cow
cat horse cow fly mouse
fly dog cat fly dog

mouse dog fly cat cow

Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni�
k nk

(1)

Is this reasonable?

How do we estimate a probability?

Suppose we want to estimate P(wn = “dog”|zz = “NN”).

dog dog cat horse cow
cat horse cow fly mouse
fly dog cat fly dog

mouse dog fly cat cow

Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni�
k nk

(1)

Is this reasonable?

How do we estimate a probability?

In computational linguistics, we often have a prior notion of
what our probability distributions are going to look like (for
example, non-zero, sparse, uniform, etc.).

This estimate of a probability distribution is called the
maximum a posteriori (MAP) estimate:

θMAP = argmaxθf (x |θ)g(θ) (2)

How do we estimate a probability?

For a multinomial distribution (i.e. a discrete distribution, like
over words):

θi =
ni + αi�
k nk + αk

(3)

αi is called a smoothing factor, a pseudocount, etc.

When αi = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial
distributions (we talked about this before).

To geek out, the set {α1, . . . , αN} parameterizes a Dirichlet
distribution, which is itself a distribution over distributions
and is the conjugate prior of the Multinomial (more later).

How do we estimate a probability?

For a multinomial distribution (i.e. a discrete distribution, like
over words):

θi =
ni + αi�
k nk + αk

(3)

αi is called a smoothing factor, a pseudocount, etc.

When αi = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial
distributions (we talked about this before).

To geek out, the set {α1, . . . , αN} parameterizes a Dirichlet
distribution, which is itself a distribution over distributions
and is the conjugate prior of the Multinomial (more later).

How do we estimate a probability?

For a multinomial distribution (i.e. a discrete distribution, like
over words):

θi =
ni + αi�
k nk + αk

(3)

αi is called a smoothing factor, a pseudocount, etc.

When αi = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial
distributions (we talked about this before).

To geek out, the set {α1, . . . , αN} parameterizes a Dirichlet
distribution, which is itself a distribution over distributions
and is the conjugate prior of the Multinomial (more later).

Parts of Speech

The Art of Grammar circa 100 B.C.

Written to allow post-Classical Greek speakers to understand
Odyssey and other classical poets

[Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle,
Preposition]

Remarkably enduring list

Occur in almost every language

Defined primarily in terms of syntactic and morphological
criteria (affixes)

Categories of POS Tags

Closed Class

Relatively fixed membership

Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns

Function words: short and used primarily for structuring

Open Class

Nouns, Verbs, Adjectives, Adverbs

Frequent neologisms (borrowed/coined)

Most types

Tagsets

Several English tagsets have been developed (language
specific)

Vary in number of tags

Brown Tagset (87)

Penn Treebank (45) [More common]

Simple morphology = more ambiguity = smaller tagset

Size depends on language and purpose

Why?

Corpus-based Linguistic Analysis & Lexicography

Information Retrieval & Question Answering

Automatic Speech Synthesis

Word Sense Disambiguation

Shallow Syntactic Parsing

Machine Translation

What do we need to specify an FSM formally?

Finite number
of states

Transitions

Input alphabet

Start state

Final state(s)

Weighted FSM

0.5

0.25

0.25

0.25

0.75

1.0

a’ is twice as likely to
be seen in state 1 as
b’ or c’

c’ is three times as
likely to be seen in
state 2 as a’

P(ab�) = 0.50 ∗ 1.00 = 0.5,P(bc
�) = 0.25 ∗ 0.75 = 0.1875 (4)

Observable States and Probabilistic Emissions

This not a valid prob. FSM!

No start states

Use prior probabilities

Note that prob. of being in
any state ONLY depends on
previous state ,i.e., the (1st

order) Markov assumption

This extension of a prob.
FSM is called a Markov
Chain or an Observed
Markov Model

Each state corresponds to
an observable physical event

Observable States and Probabilistic Emissions

0.5!

0.2! 0.3!

This not a valid prob. FSM!

No start states

Use prior probabilities

Note that prob. of being in
any state ONLY depends on
previous state ,i.e., the (1st

order) Markov assumption

This extension of a prob.
FSM is called a Markov
Chain or an Observed
Markov Model

Each state corresponds to
an observable physical event

Are states observable?

What you actually observe:

Are states observable?

What you actually observe:

HMM Intuitions

Need to model problems where observed events don’t
correspond to states directly

Instead observations are probabilistic of hidden state

Solution: A Hidden Markov Model (HMM)

Assume two probabilistic processes
Underlying process is hidden (states = hidden events)
Second process produces sequence of observed events

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of
observations {x1, . . . , xN}, and a series of unobserved states
{z1, . . . , zN}.

π A distribution over start states (vector of length K):
πi = p(z1 = i)

θ Transition matrix (matrix of size K by K):
βi ,j = p(zn = j |zn−1 = i)

β An emission matrix (matrix of size K by V):
βk,v = p(xn = v |zn = k)

Two problems: How do we move from data to a model?
(Estimation) How do we move from a model and unlabled data to
labeled data? (Inference)

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of
observations {x1, . . . , xN}, and a series of unobserved states
{z1, . . . , zN}.

π A distribution over start states (vector of length K):
πi = p(z1 = i)

θ Transition matrix (matrix of size K by K):
βi ,j = p(zn = j |zn−1 = i)

β An emission matrix (matrix of size K by V):
βk,v = p(xn = v |zn = k)

Two problems: How do we move from data to a model?
(Estimation) How do we move from a model and unlabled data to
labeled data? (Inference)

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Initial Probability π

POS Frequency Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234

N 0.1 0.021
PREP 0.1 0.021
PRO 0.1 0.021

V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.

Transition Probability θ

We can ignore the words; just look at the parts of speech.
Let’s compute one row, the row for verbs.

We see the following transitions: V → MOD, V → CONJ,
V → V, V → PRO, and V → PRO

POS Frequency Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193

N 0.1 0.018
PREP 0.1 0.018
PRO 2.1 0.368

V 1.1 0.193

And do the same for each part of speech ...

Emission Probability β

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1
Probability 0.011 0.011 0.121 0.011 0.011

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability 0.121 0.121 0.011 0.011 0.011

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability 0.011 0.011 0.011 0.121 0.011

Word of old people stared stood
Frequency 0.1 0.1 0.1 1.1 1.1
Probability 0.011 0.011 0.011 0.121 0.121

Viterbi Algorithm

Given an unobserved sequence of length L, {x1, . . . , xL}, we
want to find a sequence {z1 . . . zL} with the highest
probability.

It’s impossible to compute K
L possibilities.

So, we use dynamic programming to compute best sequence
for each subsequence from 0 to l .

Base case:
δ1(k) = πkβk,xi (5)

Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (6)

Viterbi Algorithm

Given an unobserved sequence of length L, {x1, . . . , xL}, we
want to find a sequence {z1 . . . zL} with the highest
probability.

It’s impossible to compute K
L possibilities.

So, we use dynamic programming to compute best sequence
for each subsequence from 0 to l .

Base case:
δ1(k) = πkβk,xi (5)

Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (6)

The complexity of this is now K
2
L.

But just computing the max isn’t enough. We also have to
remember where we came from. (Breadcrumbs from best
previous state.)

Ψn = argmaxjδn−1(j)θj ,k (7)

Let’s do that for the sentence “come and get it”

The complexity of this is now K
2
L.

But just computing the max isn’t enough. We also have to
remember where we came from. (Breadcrumbs from best
previous state.)

Ψn = argmaxjδn−1(j)θj ,k (7)

Let’s do that for the sentence “come and get it”

POS πk βk,x1 log δ1(k)
MOD 0.234 0.024 -5.18
DET 0.234 0.032 -4.89
CONJ 0.234 0.024 -5.18

N 0.021 0.016 -7.99
PREP 0.021 0.024 -7.59
PRO 0.021 0.016 -7.99

V 0.234 0.121 -3.56
come and get it

Why logarithms?

1 More interpretable than a float with lots of zeros.

2 Underflow is less of an issue

3 Addition is cheaper than multiplication

POS log δ1(j)

log δ1(j)θj ,CONJ

log δ1(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47 ??? -6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j)

log δ1(j)θj ,CONJ

log δ1(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 ???

-6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 ???

-6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

??? -6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

??? -6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and = − 5.21− 0.81

POS log δ1(j) log δ1(j)θj ,CONJ log δ1(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

???

-6.02
N -7.99 ≤ −7.99

PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21
come and get it

log
�
δ0(V)θV, CONJ

�
= log δ0(k)+log θV, CONJ = −3.56+−1.65

log δ1(k) = −5.21 + log βCONJ, and =

− 5.21− 0.81

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4

MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4

MOD -5.18 -0.00 X

-0.00 X -0.00 X

DET -4.89 -0.00 X

-0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99 -0.00 X

-0.00 X -0.00 X

PREP -7.59 -0.00 X

-0.00 X -0.00 X

PRO -7.99 -0.00 X

-0.00 X -14.6 V

V -3.56 -0.00 X

-9.03 CONJ -0.00 X

WORD come and get it

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4

MOD -5.18 -0.00 X -0.00 X

-0.00 X

DET -4.89 -0.00 X -0.00 X

-0.00 X

CONJ -5.18 -6.02 V -0.00 X

-0.00 X

N -7.99 -0.00 X -0.00 X

-0.00 X

PREP -7.59 -0.00 X -0.00 X

-0.00 X

PRO -7.99 -0.00 X -0.00 X

-14.6 V

V -3.56 -0.00 X -9.03 CONJ

-0.00 X

WORD come and get it

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4

MOD -5.18 -0.00 X -0.00 X -0.00 X

DET -4.89 -0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V -0.00 X -0.00 X

N -7.99 -0.00 X -0.00 X -0.00 X

PREP -7.59 -0.00 X -0.00 X -0.00 X

PRO -7.99 -0.00 X -0.00 X -14.6 V

V -3.56 -0.00 X -9.03 CONJ -0.00 X

WORD come and get it

MapReduce: HMM Learning

Mapper

def map(s e n t e n c e i d , s en t en c e) :
p r ev = None
f o r s t a t e , word i n s en t en c e :

i f prev == None :
emit ((”S” , 0 , −1) , 1)
emit ((”S” , 0 , s t a t e) , 1)

e l s e :
emit ((”T” , prev , word) , 1)
emit ((”T” , prev , word) , 1)

emit ((”E” , s t a t e , word) , 1)
emit ((”E” , s t a t e , word) , 1)

MapReduce: HMM Learning

Reducer

def r educe (key , v a l u e s) :
d i s t r i b u t i o n , i , j = key
i f j == −1:

n o rma l i z e r = sum(v a l u e s) +
p r i o r s s um [d i s t r i b u t i o n]

e l s e :
emit key , (sum(v a l u e s) +

p r i o r s e l em e n t [d i s t r i b u t i o n]) /
n o rma l i z e r

MapReduce: HMM Testing

Distributed parameters via distributed cache

Do Vitterbi for each sentence using parameters

Can happen independently in a mapper, output final
assignment

Use identity reducer

Output final POS sequence (See Lin & Dyer for the gory
details)

Why topic models?

Suppose you have a huge number of documents

You want to know what’s going on

Don’t have time to read them (e.g. every New York Times
article from the 50’s)

Topic models offer a way to get a corpus-level view of major
themes

Unsupervised

Why topic models?

Suppose you have a huge number of documents

You want to know what’s going on

Don’t have time to read them (e.g. every New York Times
article from the 50’s)

Topic models offer a way to get a corpus-level view of major
themes

Unsupervised

Conceptual Approach

Given a corpus, what topics (a priori number) are expressed
throughout the corpus?

For each document, what topics are expressed by that
document?

Conceptual Approach

Given a corpus, what topics (a priori number) are expressed
throughout the corpus?

For each document, what topics are expressed by that
document?

computer,

technology,

system,

service, site,

phone,

internet,

machine

play, film,

movie, theater,

production,

star, director,

stage

sell, sale,

store, product,

business,

advertising,

market,

consumer

TOPIC 1

TOPIC 2

TOPIC 3

Conceptual Approach

Given a corpus, what topics (a priori number) are expressed
throughout the corpus?

For each document, what topics are expressed by that
document?

computer,

technology,

system,

service, site,

phone,

internet,

machine

play, film,

movie, theater,

production,

star, director,

stage

sell, sale,

store, product,

business,

advertising,

market,

consumer

TOPIC 1

TOPIC 2

TOPIC 3

Forget the Bootleg, Just
Download the Movie Legally

Multiplex Heralded As
Linchpin To Growth

The Shape of Cinema,
Transformed At the Click of

a Mouse

A Peaceful Crew Puts
Muppets Where Its Mouth Is

Stock Trades: A Better Deal
For Investors Isn't Simple

The three big Internet
portals begin to distinguish

among themselves as
shopping mallsRed Light, Green Light: A

2-Tone L.E.D. to
Simplify Screens

TOPIC 2

TOPIC 3

TOPIC 1

Topics from Science

Why should you care?

Neat way to explore / understand corpus collections

NLP Applications
POS Tagging [Toutanova and Johnson 2008]
Word Sense Disambiguation [Boyd-Graber et al. 2007]
Word Sense Induction [Brody and Lapata 2009]
Discourse Segmentation [Purver et al. 2006]

Psychology [Griffiths et al. 2007b]: word meaning, polysemy

Inference is (relatively) simple

Matrix Factorization Approach

M ! VM ! K K ! V "!

Topic Assignment

Topics

Dataset

K Number of topics

M Number of documents

V Size of vocabulary

If you use singular value
decomposition (SVD), this
technique is called latent
semantic analysis.

Popular in information
retrieval.

Matrix Factorization Approach

M ! VM ! K K ! V "!

Topic Assignment

Topics

Dataset

K Number of topics

M Number of documents

V Size of vocabulary

If you use singular value
decomposition (SVD), this
technique is called latent
semantic analysis.

Popular in information
retrieval.

Alternative: Generative Model

How your data came to be

Sequence of Probabilistic Steps

Posterior Inference

Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation
(1,0,0) (0,0,1)

(1/2,1/2,0)(1/3,1/3,1/3) (1/4,1/4,1/2)

(0,1,0)

Come from a Dirichlet distribution

Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation
(1,0,0) (0,0,1)

(1/2,1/2,0)(1/3,1/3,1/3) (1/4,1/4,1/2)

(0,1,0)

Come from a Dirichlet distribution

Dirichlet Distribution

Dirichlet Distribution

Dirichlet Distribution

Dirichlet Distribution

Generative Model Approach

MN
θd zn wn

K
βk

α

λ

For each topic k ∈ {1, . . . ,K}, draw a multinomial
distribution βk from a Dirichlet distribution with parameter λ

For each document d ∈ {1, . . . ,M}, draw a multinomial
distribution θd from a Dirichlet distribution with parameter α

For each word position n ∈ {1, . . . ,N}, select a hidden topic
zn from the multinomial distribution parameterized by θ.
Choose the observed word wn from the distribution βzn .

Generative Model Approach

MN
θd zn wn

K
βk

α

λ

For each topic k ∈ {1, . . . ,K}, draw a multinomial
distribution βk from a Dirichlet distribution with parameter λ

For each document d ∈ {1, . . . ,M}, draw a multinomial
distribution θd from a Dirichlet distribution with parameter α

For each word position n ∈ {1, . . . ,N}, select a hidden topic
zn from the multinomial distribution parameterized by θ.
Choose the observed word wn from the distribution βzn .

Generative Model Approach

MN
θd zn wn

K
βk

α

λ

For each topic k ∈ {1, . . . ,K}, draw a multinomial
distribution βk from a Dirichlet distribution with parameter λ

For each document d ∈ {1, . . . ,M}, draw a multinomial
distribution θd from a Dirichlet distribution with parameter α

For each word position n ∈ {1, . . . ,N}, select a hidden topic
zn from the multinomial distribution parameterized by θ.

Choose the observed word wn from the distribution βzn .

Generative Model Approach

MN
θd zn wn

K
βk

α

λ

For each topic k ∈ {1, . . . ,K}, draw a multinomial
distribution βk from a Dirichlet distribution with parameter λ

For each document d ∈ {1, . . . ,M}, draw a multinomial
distribution θd from a Dirichlet distribution with parameter α

For each word position n ∈ {1, . . . ,N}, select a hidden topic
zn from the multinomial distribution parameterized by θ.
Choose the observed word wn from the distribution βzn .

Generative Model Approach

MN
θd zn wn

K
βk

α

λ

For each topic k ∈ {1, . . . ,K}, draw a multinomial
distribution βk from a Dirichlet distribution with parameter λ
For each document d ∈ {1, . . . ,M}, draw a multinomial
distribution θd from a Dirichlet distribution with parameter α
For each word position n ∈ {1, . . . ,N}, select a hidden topic
zn from the multinomial distribution parameterized by θ.
Choose the observed word wn from the distribution βzn .

We use statistical inference to uncover the most likely unobserved
variables given observed data.

Topic Models: What’s Important

A generative probabilistic model of document collections that
posits a hidden topical structure which is inferred from data

A topic is a distribution over words

Have semantic coherence because of language use

We use latent Dirichlet allocation (LDA) [Blei et al. 2003], a
fully Bayesian version of pLSI [Hofmann 1999]

Learning topics

What we want: a (topic) model

This is represented by a configuration latent variables z

What we have: our data D, any hyperparameters Ξ

Compute likelihood L = p(D|z ,Ξ).

Higher this number is, the better we’re doing

Expectation Maximization Algorithm

Input: z (hidden variables), ξ (parameters), D (data)

Start with initial guess of z

Repeat
Compute the parameters ξ that maximize likelihood L (use
calculus)
Compute the expected value of latent variables z

With each iteration, objective function goes up

Expectation Maximization Algorithm

Input: z (hidden variables), ξ (parameters), D (data)

Start with initial guess of z

Repeat
Compute the parameters ξ that maximize likelihood L (use
calculus)
E-Step Compute the expected value of latent variables z

With each iteration, objective function goes up

Expectation Maximization Algorithm

Input: z (hidden variables), ξ (parameters), D (data)

Start with initial guess of z

Repeat
M-Step Compute the parameters ξ that maximize likelihood L

(use calculus)
E-Step Compute the expected value of latent variables z

With each iteration, objective function goes up

Theory

Sometimes you can’t actually optimize L

So we instead optimize a lower bound based on a
“variational” distribution q

L = q [log (p(D|Z)p(Z |ξ))]− q [log q(Z)] (8)

L− L = KL(p||q)

This is called variational EM (normal EM is when p = q)

Makes the math possible to optimize L

Variational distribution

!k
K

zn

wn

"d#

M
Nd

(a) LDA

M
Nd

!d"d

zn#n

(b) Variational

Updates - Important Part

φ How much the n
th word in

a document expressed topic
k

γd ,k How much the k
th topic

is expressed in a document d

βv ,k How much word v is
associated with topic k

φd ,n,k ∝ βwd,n,k · eΨ(γk)

γd ,k = αk +
Nd�

n=1

φd ,n,k ,

βv ,k ∝
C�

d=1

(w (d)
v φd ,v ,k)

This is the algorithm!

Updates - Important Part

φ How much the n
th word in

a document expressed topic
k

γd ,k How much the k
th topic

is expressed in a document d

βv ,k How much word v is
associated with topic k

φd ,n,k ∝ βwd,n,k · eΨ(γk)

γd ,k = αk +
Nd�

n=1

φd ,n,k ,

βv ,k ∝
C�

d=1

(w (d)
v φd ,v ,k)

This is the algorithm!

Objective Function

Expanding Equation 8 gives us L(γ, φ;α, β) for one document:

L(γ, φ; α, β) =
CX

d=1

Ld (γ, φ; α, β)

=
CX

d=1

Ld (α)

| {z }
Driver

+
CX

d=1

(Ld (γ, φ) + Ld (φ) + Ld (γ)
| {z }

computed in mapper

)

| {z }
computed in Reducer

,

where

Ld (α) = log Γ
“PK

k=1 αk

”
−

KX

i=1

log Γ (αk) ,

Objective Function

Expanding Equation 8 gives us L(γ, φ;α, β) for one document:

L(γ, φ; α, β) =
CX

d=1

Ld (γ, φ; α, β)

=
CX

d=1

Ld (α)

| {z }
Driver

+
CX

d=1

(Ld (γ, φ) + Ld (φ) + Ld (γ)
| {z }

computed in mapper

)

| {z }
computed in Reducer

,

where

Ld (γ, φ) =
KX

k=1

"
VX

v=1

φv,k −
VX

v=1

φv,kwv

h
Ψ(γk)−Ψ

“PK
i=1 γi

”i
,

Objective Function

Expanding Equation 8 gives us L(γ, φ;α, β) for one document:

L(γ, φ; α, β) =
CX

d=1

Ld (γ, φ; α, β)

=
CX

d=1

Ld (α)

| {z }
Driver

+
CX

d=1

(Ld (γ, φ) + Ld (φ) + Ld (γ)
| {z }

computed in mapper

)

| {z }
computed in Reducer

,

where

Ld (φ) =
VX

v=1

KX

k=1

φv,k (log φv,k +
VX

i=1

wi log βi,k),

Objective Function

Expanding Equation 8 gives us L(γ, φ;α, β) for one document:

L(γ, φ; α, β) =
CX

d=1

Ld (γ, φ; α, β)

=
CX

d=1

Ld (α)

| {z }
Driver

+
CX

d=1

(Ld (γ, φ) + Ld (φ) + Ld (γ)
| {z }

computed in mapper

)

| {z }
computed in Reducer

,

where

Ld (γ) = − log Γ
“PK

k=1 γk

”
+

KX

k=1

log Γγk

Document Mapper: Update !, "

Test Likelihood
Convergence

Parameters

Reducer

Document Mapper: Update !, "

Document Mapper: Update !, "

Document Mapper: Update !, "

Reducer

Reducer

Write #

Sufficient
Statistics for
Update

Driver: Update $

Write $

Hessian
Terms

Distributed Cache

Map(d , �w)

1: repeat
2: for all v ∈ [1, V] do
3: for all k ∈ [1, K] do
4: Update φv,k = βv,k × exp(Ψ

`
γd,k

´
).

5: end for

6: Normalize row φv,∗, such that
KX

k=1

φv,k = 1.

7: Update σ = σ + �wvφv , where φv is a K -dimensional vector, and �wv is the
count of v in this document.

8: end for
9: Update row vector γd,∗ = α + σ.
10: until convergence
11: for all k ∈ [1, K] do
12: for all v ∈ [1, V] do
13: Emit key-value pair �k,�� : �wvφv .

14: Emit key-value pair �k, v� : �wvφv . {order inversion}
15: end for
16: Emit key-value pair ��, k� : (Ψ

`
γd,k

´
−Ψ

“PK
l=1 γd,l

”
).

{emit the γ-tokens for α update}
17: Output key-value pair �k, d� − γd,k to file.
18: end for
19: Emit key-value pair ��,�� − L, where L is log-likelihood of this document.

Input:
Key - key pair �pleft, pright�.
Value - an iterator I over sequence of values.

Configuration

1: Initialize the total number of topics as K .
2: Initialize a normalization factor n = 0.

Reduce

1: Compute the sum σ over all values in the sequence I.
2: if pleft = � then
3: if pright = � then
4: Output key-value pair ��,�� − σ to file.

{output the model likelihood L for convergence checking}
5: else
6: Output key-value pair ��, pright� − σ to file.

{output the γ-tokens to update α-vectors, Section ??}
7: end if
8: else
9: if pright = � then
10: Update the normalize factor n = σ. {order inversion}
11: else
12: Output key-value pair �k, v� : σ

n . {output normalized β value}
13: end if
14: end if

Applicatons

What’s a document?

What’s a word?

What’s your vocabulary?

How do you evaluate?

Applications

Computer Vision [Li Fei-Fei and Perona 2005]

Applications

Social Networks [Airoldi et al. 2008]

Applications

Music [Hu and Saul 2009]

Figure 2: The C major and C minor key-profiles learned by our model, as encoded by the β matrix.
Resulting key-profiles are obtained by transposition.

Figure 3: Key judgments for the first 6 measures of Bach’s Prelude in C minor, WTC-II. Annotations
for each measure show the top three keys (and relative strengths) chosen for each measure. The top
set of three annotations are judgments from our LDA-based model; the bottom set of three are from
human expert judgments [3].

identified with the 24 major and minor modes of classical western music. We note that our approach
is still regarded as unsupervised because we do not learn from labeled or annotated data.

2.3 Results & Applications

Our learnt key-profiles are shown in Figure 2. We note that these key-profiles are consistent with
music theory principals: In both major and minor modes, weights are given in descending order to
degrees of the triad, diatonic, and finally chromatic scales. Intuitively, these key-profiles represent
the underlying distributions that are used to characterize all the songs in the corpus.

We also show how to do key-finding and modulation-tracking using the representations learned by
our model. The goal of key-finding is to determine the overall key of a musical piece, given the
notes of the composition. Since the key weight vector θ represents the most likely keys present in
each song, we classify each song as the key that is given the largest weight in θ. A related task is
modulation-tracking, which identifies where the modulations occur within a piece. We achieve this
by determining the key of each segment from the most probable values of its topic latent variable z.

We estimated our model from a collection of 235 MIDI files compiled from
classicalmusicmidipage.com. The collection included works by Bach, Vivaldi, Mozart,
Beethoven, Chopin, and Rachmaninoff. These composers were chosen to span the baroque through
romantic periods of western, classical music. Our results for key-finding achieved an accuracy of
86%, out-performing several other key-finding algorithms, including the popular KS model [3]. We
also show in Figure 3 that our annotations for modulation-tracking are comparable to those given
by music theory experts. More results can be found in our paper [1].

3

Nonparametric Models

We’ve always assumed a fixed number of topics

Topic modeling inspired resurgence of nonparametric Bayesian
statistics that can handle infinitely many mixture
components [Antoniak 1974]

Equivalent to Rational Model of
Categorization [Griffiths et al. 2007a]

For the rest of this talk, cartoon version - details similar to
LDA

Active research

Combining these models with models of syntax

Scaling up to larger corpora

Making topics relevant to social scientists

Humans in the loop

Modeling metadata in document collections

Recap

Probabilistic models - way of learning what data you have

Make predictions about the future

Require a little bit of math to figure out, but fairly easy to
implement in MapReduce

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.

2008.
Mixed membership stochastic blockmodels.
J. Mach. Learn. Res., 9:1981–2014.

Charles E. Antoniak.

1974.
Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems.
The Annals of Statistics, 2(6):1152–1174.

David M. Blei, Andrew Ng, and Michael Jordan.

2003.
Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022.

Jordan Boyd-Graber, David M. Blei, and Xiaojin Zhu.

2007.
A topic model for word sense disambiguation.
In Proceedings of Emperical Methods in Natural Language Processing.

Samuel Brody and Mirella Lapata.

2009.
Bayesian word sense induction.
In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 103–111,
Athens, Greece, March. Association for Computational Linguistics.

T. L. Griffiths, K. R. Canini, A. N. Sanborn, and D. J. Navarro.

2007a.
Unifying rational models of categorization via the hierarchical Dirichlet process.
In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society.

Thomas L. Griffiths, Mark Steyvers, and Joshua Tenenbaum.

2007b.
Topics in semantic representation.
Psychological Review, 114(2):211–244.

Thomas Hofmann.

1999.
Probabilistic latent semantic analysis.
In Proceedings of Uncertainty in Artificial Intelligence, Stockholm.

Diane Hu and Lawrence K. Saul.

2009.
A probabilistic model of unsupervised learning for musical-key profiles.
In International Society for Music Information Retrieval Conference.

Li Fei-Fei and Pietro Perona.

2005.
A Bayesian hierarchical model for learning natural scene categories.
In CVPR ’05 - Volume 2, pages 524–531, Washington, DC, USA. IEEE Computer Society.

Matthew Purver, Konrad Körding, Thomas L. Griffiths, and Joshua Tenenbaum.

2006.
Unsupervised topic modelling for multi-party spoken discourse.
In Proceedings of the Association for Computational Linguistics.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei.

2006.
Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581.

Kristina Toutanova and Mark Johnson.

2008.
A Bayesian LDA-based model for semi-supervised part-of-speech tagging.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 1521–1528. MIT Press, Cambridge, MA.

	Probabilistic Models
	Probability Distributions
	POS Tagging
	HMM Recapitulation
	HMM Estimation
	Topic Model Introduction

