Probabilistic Models in MapReduce

Jordan Boyd-Graber

April 7, 2011
Sas’, COLLEGE OF
% INFORMATION

s STUDIES

Adapted from Jimmy Lin's Slides

Roadmap

m Homework

m Midterm

m Probabilistic Models
m Hidden Markov Model
m Topic Models

Homework

Project Proposal: Due 11
Homework 37

Homework 4 is out

Homework 6

Midterm: Max

m Obvious answer
m Less obvious answer

Define grouper

m Make sure values arrive in sorted order

m Reducer only needs to look at first value

m Not as efficient as using combiners (except in pathological
situations)

Rule-Based Systems

Until the 1990s, text processing relied on rule-based systems
Advantages
m More predictable

m Easy to understand

m Easy to identify errors and fix them

Disadvantages

m Extremely labor-intensive to create
m Not robust to out of domain input

m No partial output or analysis when failure occurs

Statistical Methods

Basic idea: learn from a large corpus of examples of what we wish
to model Training Data

Advantages

More robust to the complexities of real-world input
Creating training data is usually cheaper than creating rules

|
|
m Even easier today thanks to Amazon Mechanical Turk
|

Data may already exist for independent reasons

Disadvantages

m Systems often behave differently compared to expectations

m Hard to understand the reasons for errors or debug errors

m Learning from training data usually means estimating the
parameters of the statistical model

m Estimation usually carried out via machine learning

m Two kinds of machine learning algorithms
m Supervised learning
m Training data consists of the inputs and respective outputs
(labels)
m Labels are usually created via expert annotation (expensive)
m Difficult to annotate when predicting more complex outputs
m Unsupervised learning
m Training data just consists of inputs. No labels.

m One example of such an algorithm: Expectation Maximization
(EM)

What Problems Can We Solve?

m (Supervised) Part of speech tagging

m (Unsupervised) Exploring large corpora

What Problems Can We Solve?

m (Supervised) Part of speech tagging
m (Unsupervised) Exploring large corpora

m But first, a brief recap of estimating probability distributions

How do we estimate a probability?

m Suppose we want to estimate P(w, = “dog" |z, = "NN").

How do we estimate a probability?

m Suppose we want to estimate P(w,

dog dog cat
cat horse cow
fly dog cat
mouse dog fly

— udogu |ZZ — HNNH)
horse cow

fly mouse

fly dog

cat cow

How do we estimate a probability?

m Suppose we want to estimate P(w, = “dog" |z, = "NN").
dog dog cat horse cow
cat horse cow fly mouse
fly dog cat fly dog
mouse dog fly cat cow
m Maximum likelihood (ML) estimate of the probability is:

nj

6 —
>k Mk

How do we estimate a probability?

m Suppose we want to estimate P(w, = “dog" |z, = "NN").

dog dog cat horse cow
cat horse cow fly mouse

fly dog cat fly dog

mouse dog fly cat cow

m Maximum likelihood (ML) estimate of the probability is:

nj

B >k Mk

0;

m Is this reasonable?

How do we estimate a probability?

® In computational linguistics, we often have a prior notion of
what our probability distributions are going to look like (for
example, non-zero, sparse, uniform, etc.).

m This estimate of a probability distribution is called the
maximum a posteriori (MAP) estimate:

OMAP = argmaxyf(x|0)g(0) (2)

How do we estimate a probability?

m For a multinomial distribution (i.e. a discrete distribution, like

over words):
nj + «;

_ank—i-()ék

m «; is called a smoothing factor, a pseudocount, etc.

0; (3)

How do we estimate a probability?

m For a multinomial distribution (i.e. a discrete distribution, like

over words):
nj + «;

_ank—i-()ék

m «; is called a smoothing factor, a pseudocount, etc.

0; (3)

m When «; = 1 for all /, it's called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial
distributions (we talked about this before).

How do we estimate a probability?

m For a multinomial distribution (i.e. a discrete distribution, like

over words):
nj + «;

_ank—i-()ék

m «; is called a smoothing factor, a pseudocount, etc.

0; (3)

m When «; = 1 for all /, it's called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial
distributions (we talked about this before).

m To geek out, the set {aq,...,an} parameterizes a Dirichlet
distribution, which is itself a distribution over distributions
and is the conjugate prior of the Multinomial (more later).

Parts of Speech

m The Art of Grammar circa 100 B.C.

m Written to allow post-Classical Greek speakers to understand
Odyssey and other classical poets

[Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle,
Preposition]

m Remarkably enduring list
m Occur in almost every language

m Defined primarily in terms of syntactic and morphological
criteria (affixes)

Categories of POS Tags

Closed Class

m Relatively fixed membership
m Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns

m Function words: short and used primarily for structuring

Open Class

m Nouns, Verbs, Adjectives, Adverbs
m Frequent neologisms (borrowed/coined)

m Most types

Tagsets

Several English tagsets have been developed (language
specific)

Vary in number of tags

Brown Tagset (87)

Penn Treebank (45) [More common]

Simple morphology = more ambiguity = smaller tagset

m Size depends on language and purpose

Why?

Corpus-based Linguistic Analysis & Lexicography
Information Retrieval & Question Answering
Automatic Speech Synthesis

Word Sense Disambiguation

Shallow Syntactic Parsing

Machine Translation

What do we need to specify an FSM formally?

Finite number
of states

m Transitions

m Input alphabet
m Start state
[

Final state(s)

Weighted FSM

m a’' is twice as likely to
be seen in state 1 as
b or ¢

m C’ is three times as
likely to be seen in
state 2 as a’

P(ab') = 0.50 % 1.00 = 0.5, P(bc’) = 0.25 % 0.75 = 0.1875 (4)

Observable States and Probabilistic Emissions

m This not a valid prob. FSM!

m No start states

Observable States and Probabilistic Emissions

This not a valid prob. FSM!
No start states

Use prior probabilities

Note that prob. of being in
any state ONLY depends on

previous state ,i.e., the (1%
order) Markov assumption
This extension of a prob.
FSM is called a Markov
Chain or an Observed
Markov Model

Each state corresponds to
an observable physical event

Are states observable?

Day: 1,2,3,4,5,6 1: Market is up
l: Market is down
T l % ,l, <> «<: Market hasn’t changed

What you actually observe:

Are states observable?

Day: 1,2,3,4,5,6 1: Market is up
l: Market is down
1]l o1l e > Market hasn’t changed

What you actually observe:

Day: 1,2,3,4,5,6 Bu: Bull Market
Be: Bear Market
[Bu, Be, S, Be, S, Bu J S : Static Market

HMM Intuitions

m Need to model problems where observed events don't
correspond to states directly

m Instead observations are probabilistic of hidden state

m Solution: A Hidden Markov Model (HMM)

m Assume two probabilistic processes

m Underlying process is hidden (states = hidden events)
m Second process produces sequence of observed events

HMM Definition

Assume K parts of speech, a lexicon size of V/, a series of
observations {xi,...,xn}, and a series of unobserved states
{z1,...,zn}-
7 A distribution over start states (vector of length K):
i =p(z1 =)
0 Transition matrix (matrix of size K by K):
ﬁi,j = p(Zn :./.|an1 = i)
[An emission matrix (matrix of size K by V):
Brv = p(xn = v|zn = k)

HMM Definition

Assume K parts of speech, a lexicon size of V/, a series of
observations {xi,...,xn}, and a series of unobserved states
{z1,...,zn}-
7 A distribution over start states (vector of length K):
i =p(z1 =)
0 Transition matrix (matrix of size K by K):
ﬁi,j = p(Zn :./.|an1 = i)
[An emission matrix (matrix of size K by V):
Brv = p(xn = v|zn = k)
Two problems: How do we move from data to a model?

(Estimation) How do we move from a model and unlabled data to
labeled data? (Inference)

Training Sentences

here come old flattop
MOD \% MOD N

a crowd of people stopped and stared
DET N PREP N \% CONJ \%

gotta get you into my life
\% V PRO PREP PRO V

and | love her
CONJ PRO V PRO

Initial Probability m

POS | Frequency | Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234

N 0.1 0.021
PREP 0.1 0.021
PRO 0.1 0.021

V 1.1 0.234

Remember, we're taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.

Transition Probability 6

m We can ignore the words; just look at the parts of speech.
Let's compute one row, the row for verbs.

m We see the following transitions: V — MOD, V — CONJ,
V —-V,V — PRO, and V — PRO

POS | Frequency | Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193

N 0.1 0.018
PREP 0.1 0.018
PRO 2.1 0.368

\Y 1.1 0.193

m And do the same for each part of speech ...

Emission Probability 3

Let's look at verbs ...

Word a and come crowd flattop

Frequency | 0.1 0.1 1.1 0.1 0.1

Probability | 0.011 0.011 0.121 0.011 0.011

Word get gotta her here [

Frequency 1.1 1.1 0.1 0.1 0.1

Probability | 0.121 0.121 0.011 0.011 0.011

Word into it life love my

Frequency | 0.1 0.1 0.1 1.1 0.1

Probability | 0.011 0.011 0.011 0.121 0.011

Word of old people stared stood

Frequency | 0.1 0.1 0.1 1.1 1.1

Probability | 0.011 0.011 0.011 0.121 0.121

Viterbi Algorithm

m Given an unobserved sequence of length L, {x1,...,x.}, we
want to find a sequence {z; ...z } with the highest
probability.

Viterbi Algorithm

m Given an unobserved sequence of length L, {x1,...,x.}, we
want to find a sequence {z; ...z } with the highest
probability.

m It's impossible to compute KL possibilities.

m So, we use dynamic programming to compute best sequence
for each subsequence from 0 to /.

m Base case:
01(k) = TP x (5)

m Recursion:

on(k) = max (0n-10)0 k) Bk x, (6)

m The complexity of this is now K2L.

m But just computing the max isn't enough. We also have to
remember where we came from. (Breadcrumbs from best
previous state.)

Wn = argmaxjén_l(j)ﬁjyk

m The complexity of this is now K2L.

m But just computing the max isn't enough. We also have to
remember where we came from. (Breadcrumbs from best
previous state.)

Wn = argmaxjén_l(j)é?jyk (7)

m Let's do that for the sentence “come and get it"

POS Tk ,3;(7)(1 Iog 51(/()
MOD | 0.234 | 0.024 -5.18
DET | 0.234 | 0.032 -4.89
CONJ | 0.234 | 0.024 -5.18
N 0.021 | 0.016 -7.99
PREP | 0.021 | 0.024 -7.59
PRO | 0.021 | 0.016 -7.99
V 0.234 | 0.121 -3.56

Why logarithms?

More interpretable than a float with lots of zeros.

Underflow is less of an issue

come and get it

Addition is cheaper than multiplication

POS | logd1()) log 61(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18
N -7.99
PREP -7.59
PRO -7.99
V -3.56

come and get it

POS | logd1()) log 61(CONJ)
MOD -5.18
DET -4.89
CONJ | -5.18 [
N -7.99
PREP -7.59
PRO -7.99
V -3.56

come and get it

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 777
N -7.99
PREP | -7.59
PRO -7.99
\Y -3.56

come and get it

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 777
N -7.99
PREP | -7.59
PRO -7.99
\Y -3.56

come and get it

log (90(V)0y, cony) = log do(k)+log by, cony = —3.56+1.65

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 777
N -7.99
PREP | -7.59
PRO -7.99
\Y -3.56 -5.21

come and get it

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 777
N -7.99 < —=7.99
PREP | -7.59 < —7.59
PRO -7.99 < -7.99
\Y -3.56 -5.21

come and get it

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 777
N -7.99 < —=7.99
PREP | -7.59 < —7.59
PRO -7.99 < -7.99
\Y -3.56 -5.21

come and get it

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 777
N -7.99 < —=7.99
PREP | -7.59 < —7.59
PRO -7.99 < -7.99
\Y -3.56

come and get it

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ | -5.18 -8.47
N -7.99 < —=7.99
PREP | -7.59 < —7.59
PRO -7.99 < -7.99
\Y -3.56

come and get it

log d1(k) = —5.21 + log BCONJ. and =

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ | -5.18 -8.47
N -7.99 < —=7.99
PREP | -7.59 < —7.59
PRO -7.99 < -7.99
\Y -3.56

come and get it

log (51(/() =-521+ IOg/@CONJ, and = — 5.21 -0.81

POS | logd1(j) | logd1(j)¢; cony | log 61(CONJ)

MOD -5.18 -8.48

DET -4.89 -7.72

CONJ -5.18 -8.47 -6.02
N -7.99 < —=7.99

PREP | -7.59 < —7.59

PRO -7.99 < -7.99
\Y -3.56

come and get it

POS 01(k) | da(k) | b2 | 93(k) bz 04(k) | ba
MOD | -5.18
DET -4.89
CONJ | -5.18 | -6.02 | V
N -7.99
PREP | -7.59
PRO -7.99
\% -3.56
WORD | come and get it

POS 01(k) | d2(k) | b2 | 03(k) bs 0a(k) | ba
MOD | -5.18 | -0.00 | X
DET -489 | -0.00 | X
CONJ | -5.18 | -6.02 | V
N -7.99 | -0.00 | X
PREP | -7.59 | -0.00 | X
PRO -7.99 | -0.00 | X
\Y, -3.56 | -0.00 | X
WORD | come and get it

POS 01(k) | d2(k) | b2 | 03(k) bs 0a(k) | ba
MOD | -5.18 | -0.00 | X | -0.00 X
DET -4.89 | -0.00 | X | -0.00 X
CONJ -5.18 | -6.02 | V | -0.00 X
N -7.99 | -0.00 | X | -0.00 X
PREP | -7.59 | -0.00 | X | -0.00 X
PRO -7.99 | -0.00 | X | -0.00 X
\Y, -3.56 | -0.00 | X | -9.03 | CON
WORD | come and get it

POS 01(k) | da(k) | b2 | 93(k) b3 04(k) | ba
MOD | -5.18 | -0.00 | X | -0.00 X -0.00 | X
DET | -4.89 | -0.00 | X | -0.00 X -0.00 | X
CONJ | -5.18 | -6.02 | V | -0.00 X -0.00 | X
N -7.99 | -0.00 | X | -0.00 X -0.00 | X
PREP | -7.59 | -0.00 | X | -0.00 X -0.00 | X
PRO -7.99 | -0.00 | X | -0.00 X -146 | V
\Y, -3.56 | -0.00 | X | -9.03 | CON -0.00 | X
WORD | come and get it

MapReduce: HMM Learning

Mapper

def map(sentence_id, sentence):

prev = None
for state, word in sentence:
if prev — None:

emit(("S", 0, —-1), 1)

emit(("S", 0, state), 1)
else:

emit (("T", prev, word), 1)

emit (("T", prev, word), 1)
emit (("E", state, word), 1)
emit(("E", state, word), 1)

MapReduce: HMM Learning

Reducer

def reduce(key, values):

distribution , i, j = key
if | = —1:
normalizer = sum(values) +

priors_sum [distribution]
else:
emit key, (sum(values) +
priors_element[distribution]) /
normalizer

MapReduce: HMM Testing

Distributed parameters via distributed cache

Do Vitterbi for each sentence using parameters

Can happen independently in a mapper, output final
assighment

Use identity reducer

Output final POS sequence (See Lin & Dyer for the gory
details)

Why topic models?

m Suppose you have a huge number of documents

® You want to know what's going on

m Don't have time to read them (e.g. every New York Times
article from the 50's)

m Topic models offer a way to get a corpus-level view of major
themes

Why topic models?

Suppose you have a huge number of documents

You want to know what's going on

m Don't have time to read them (e.g. every New York Times
article from the 50's)

Topic models offer a way to get a corpus-level view of major
themes

m Unsupervised

Conceptual Approach

m Given a corpus, what topics (a priori number) are expressed
throughout the corpus?

Conceptual Approach

m Given a corpus, what topics (a priori number) are expressed
throughout the corpus?

TOPIC 1 computer,

technology,
system,

service, site,
phone,
internet,
machine

TOPIC 2

TOPIC 3

Conceptual Approach

m Given a corpus, what topics (a priori number) are expressed
throughout the corpus?

m For each document, what topics are expressed by that
document?
TOPIC 1

computer,
technology,
system,
service, site,
phone,
internet,
machine

TOPIC 2

TOPIC 1

$
TOPIC 3

Download the Movie Legally

TOPIC 3

Topics from Science

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project

sequences

evolution disease
evolutionary host
species bacteria
organisms diseases
life resistance
origin bacterial
biology new
groups strains
phylogenetic control
living infectious
diversity malaria
group parasite
new parasites
two united
common tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

Why should you care?

Neat way to explore / understand corpus collections

NLP Applications
m POS Tagging [Toutanova and Johnson 2008]
m Word Sense Disambiguation [Boyd-Graber et al. 2007]
m Word Sense Induction [Brody and Lapata 2009]
m Discourse Segmentation [Purver et al. 2006]

Psychology [Griffiths et al. 2007b]: word meaning, polysemy

Inference is (relatively) simple

Matrix Factorization Approach

M x K x|: KxV :|z MxV

Topics

Topic Assignment Dataset

K Number of topics
M Number of documents

V' Size of vocabulary

Matrix Factorization Approach

M x K x|: KxV :|z MxV

Topics
Topic Assignment Dataset
m If you use singular value
decomposition (SVD), this
K Number of topics technique is called latent
M Number of documents semantic analysis.
V' Size of vocabulary m Popular in information

retrieval.

Alternative: Generative Model

m How your data came to be
m Sequence of Probabilistic Steps

m Posterior Inference

Multinomial Distribution

m Distribution over discrete outcomes
m Represented by non-negative vector that sums to one

m Picture representation

(1,0,0 (0,0,1) (0,1,0)

(13A/3,1/3) (1/4,1/4,1/2) (1/2,1/2,0)

o

Multinomial Distribution

m Distribution over discrete outcomes
m Represented by non-negative vector that sums to one

m Picture representation

(1,0,0 (0,0,1) (0,1,0)

(13A/3,1/3) (1/4,1/4,1/2) (1/2,1/2,0)

o

m Come from a Dirichlet distribution

Dirichlet Distribution

F(Zk amk) H amg—1

P(plam):ﬂkr(amk) LPx

Dirichlet Distribution

P(p|) = 2k 30)

amg—
[T Flami) 4, K

1

a=3,m=(%

A a=em=3 13 a=30m=3

Wi
Wi

Dirichlet Distribution

F(Zk amy) amg—1
[T Flami) 4, K

P(plam) =

~

1

a=3,m=(. 3) a=6,m=(%,§,§) a=30,m=(%,l,

[

VI
Wl
Wi

a=14m=(},3,3) a=14m=(}, % 3) a=27.m=3. 1. §)
o &

N

Dirichlet Distribution

alpha=(0.2,0.1,0.1)

04 06 08 W

02

00

u]
o)
I
i
it

Generative Model Approach

),

m For each topic k € {1,..., K}, draw a multinomial
distribution 3, from a Dirichlet distribution with parameter A

Generative Model Approach

O
(e M

m For each topic k € {1,..., K}, draw a multinomial
distribution G from a Dirichlet distribution with parameter A

m For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter o

Generative Model Approach

(DHer) O,

m For each topic k € {1,..., K}, draw a multinomial
distribution G from a Dirichlet distribution with parameter A

m For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «

m For each word position n € {1,..., N}, select a hidden topic
z, from the multinomial distribution parameterized by 6.

M

Generative Model Approach

(e,
OLCIOa)

m For each topic k € {1,..., K}, draw a multinomial
distribution G from a Dirichlet distribution with parameter A

m For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter o

m For each word position n € {1,..., N}, select a hidden topic
z, from the multinomial distribution parameterized by 6.

M

m Choose the observed word w,, from the distribution (3, .

Generative Model Approach

OO ON

m For each topic k € {1,..., K}, draw a multinomial
distribution G from a Dirichlet distribution with parameter A

m For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «

m For each word position n € {1,..., N}, select a hidden topic
z, from the multinomial distribution parameterized by 6.

m Choose the observed word wj, from the distribution G, .

We use statistical inference to uncover the most likely unobserved

Topic Models: What's Important

m A generative probabilistic model of document collections that
posits a hidden topical structure which is inferred from data

m A topic is a distribution over words
m Have semantic coherence because of language use

m We use latent Dirichlet allocation (LDA) [Blei et al. 2003], a
fully Bayesian version of pLSI [Hofmann 1999]

Learning topics

What we want: a (topic) model

This is represented by a configuration latent variables z

Compute likelihood L = p(D|z, =).

[
[
m What we have: our data D, any hyperparameters =
[
m Higher this number is, the better we're doing

Expectation Maximization Algorithm

m Input: z (hidden variables), £ (parameters), D (data)
m Start with initial guess of z

m Repeat

m Compute the parameters £ that maximize likelihood L (use
calculus)
m Compute the expected value of latent variables z

m With each iteration, objective function goes up

Expectation Maximization Algorithm

m Input: z (hidden variables), £ (parameters), D (data)
m Start with initial guess of z

m Repeat

m Compute the parameters £ that maximize likelihood L (use
calculus)
m E-Step Compute the expected value of latent variables z

m With each iteration, objective function goes up

Expectation Maximization Algorithm

m Input: z (hidden variables), £ (parameters), D (data)
m Start with initial guess of z

m Repeat

m M-Step Compute the parameters £ that maximize likelihood L
(use calculus)
m E-Step Compute the expected value of latent variables z

m With each iteration, objective function goes up

Theory

Sometimes you can’t actually optimize L

m So we instead optimize a lower bound based on a
“variational” distribution g

L = 4 [log (p(D]Z)p(Z[€))] — Eq [log q(Z2)] (8)

L—L = KL(pllq)
This is called variational EM (normal EM is when p = q)

Makes the math possible to optimize £

Variational distribution

OO

D

K

»
!

R
o

d
M

o)

M

(a) LDA

(b) Variational

Updates - Important Part

m ¢ How much the n" word in

a document expressed topic Pd,nk X Buwg ok * eV (%)
k

B 74 How much the kth topic Yd,k = Qk + Z¢d,n,ka
is expressed in a document d n=1

(] x How much word v is
B, B,k Z Dpa.v i)

associated with topic k

This is the algorithm!

Updates - Important Part

m ¢ How much the n" word in

a document expressed topic Pd,nk X Buwg ok * eV (%)
k

B 74 How much the kth topic Yd,k = Qk + Z¢d,n,ka
is expressed in a document d n=1

(] x How much word v is
B, B,k Z Dpa.v i)

associated with topic k

This is the algorithm!

Objective Function

Expanding Equation 8 gives us L(7, ¢; a, 3) for one document:
L(v, ¢, 8) = Zﬁd(w, a, B)
d=1

c
= Zﬁd(a) + Z Lq(v,¢) + La(®) + La(7)),
d=1 d=1

—— computed in mapper
Driver

computed in Reducer

where

K
Ly(a) =logT (Zszl ak) — Z logl (c),
i=1

Objective Function

Expanding Equation 8 gives us L(7, ¢; a, 3) for one document:
L(v, ¢, 8) = Zﬁd(w, a, B)
d=1

c
= Zﬁd(a) + Z Lq(v,¢) + La(®) + La(7)),
d=1 d=1

—— computed in mapper
Driver

computed in Reducer

where

a(v,¢) = i id)v,k - i%,kwv [\U () -V (Z,Kzl %‘)] ;

k=1 Lv=1

Objective Function

Expanding Equation 8 gives us L(7, ¢; a, 3) for one document:
L(v, ¢, 8) = Zﬁd(w, a, B)
d=1

c
= Zﬁd(a) + Z Lq(v,¢) + La(®) + La(7)),
d=1 d=1

—— computed in mapper
Driver

computed in Reducer

where

vV K 2
Lg(¢) =D dyullogdy i+ Y _ wilog i),

v=1 k=1 i=1

Objective Function

Expanding Equation 8 gives us L(7, ¢; a, 3) for one document:
L(v, ¢, 8) = Zﬁd(w, a, B)
d=1

c
= Zﬁd(a) + Z Lq(v,¢) + La(®) + La(7)),
d=1 d=1

—— computed in mapper
Driver

computed in Reducer

where

K

La(y) = —logl (Ele "/k) +> log My

k=1

Write

Reducer

Mapper: Update 1, ¢

p|

Reducer

Mapper: Updator, ¢

Sufficient
Statistics for
B Update

Hessian
Terms

Driver: Update a

Test Likelihood
Convergence

Map(d, w)

1:

N9 gkRwie

repeat
for all v € [1, V] do
for all k € [1,K] do
Update ¢y x = By,k X exp(V (vd,k))-

end for
K

Normalize row ¢y «, such that Z¢v,k =1.
k=1
Update 0 = o + wy¢,, where ¢, is a K-dimensional vector, and w, is the
count of v in this document.
end for
Update row vector 74« = a + 0.

: until convergence
: for all k € [1, K] do

for all v € [1, V] do

Emit key-value pair (k, A) : Wy ¢y .

Emit key-value pair (k,v) : wy¢,. {order inversion}
end for
Emit key-value pair (A, k) : (W (vq4) — W (Z/K:I 'de)).
{emit the y-tokens for o update}
Output key-value pair (k,d) — g4,k to file.

: end for
: Emit key-value pair (A, A) — L, where L is log-likelihood of this document.

Input:

KEY - key pair <p|eft7pright>-
VALUE - an iterator Z over sequence of values.

Configuration

1: Initialize the total number of topics as K.
2: Initialize a normalization factor n = 0.

Reduce

1: Compute the sum o over all values in the sequence Z.
2: if Pleft = A then

3: if Pright = A then

4: Output key-value pair (A, A) — o to file.

{output the model likelihood L for convergence checking}
else

Output key-value pair (A, pright) — o to file.

{output the ~-tokens to update a-vectors, Section ??}
7: endif

S

8: else

9: if Pright = A then

10: Update the normalize factor n = o. {order inversion}

11: else

12: Output key-value pair (k,v) : <. {output normalized § value}
13: endif

14: end if

Applicatons

m What's a document?
m What's a word?
m What's your vocabulary?

m How do you evaluate?

Applications

Computer Vision [Li Fei-Fei and Perona 2005]

Bocce

Rockclimbing

DA

Applications

Social Networks [Airoldi et al. 2008]

I Ambrose
" »7 Outcasts 2 Boniface
.h 3 Mark
4 Winfrid

5 Elias

6 Basil

Waverers

10 Victor
‘1 1! Bonaventure
Young 12 Amand
- Loyal Turks 13 Louis
Opposition - ’ 14 Albert

&5 N 15Ramuald

3 16 Peter

. LA . ! 17 Gregory
; '3 : 3

b7 i i 18 Hugh

Applications

Music [Hu and Saul 2009]

— P - ” ===
——] e
o p—m—Ro—3 £ bo o
~ 58 ggccs AL
- - ,\.

Nonparametric Models

We've always assumed a fixed number of topics

Topic modeling inspired resurgence of nonparametric Bayesian
statistics that can handle infinitely many mixture
components [Antoniak 1974]

Equivalent to Rational Model of
Categorization [Griffiths et al. 2007a]

For the rest of this talk, cartoon version - details similar to
LDA

Active research

Combining these models with models of syntax
Scaling up to larger corpora
Making topics relevant to social scientists

Humans in the loop

Modeling metadata in document collections

Recap

m Probabilistic models - way of learning what data you have
m Make predictions about the future

m Require a little bit of math to figure out, but fairly easy to
implement in MapReduce

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.
2008.

Mixed membership stochastic blockmodels.

J. Mach. Learn. Res., 9:1981-2014.

Charles E. Antoniak.
1974.

Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems.
The Annals of Statistics, 2(6):1152-1174.

David M. Blei, Andrew Ng, and Michael Jordan.
2003.

Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993-1022.

Jordan Boyd-Graber, David M. Blei, and Xiaojin Zhu.

2007.

A topic model for word sense disambiguation.

In Proceedings of Emperical Methods in Natural Language Processing.

Samuel Brody and Mirella Lapata.

2009.

Bayesian word sense induction.

In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 103-111,
Athens, Greece, March. Association for Computational Linguistics.

T. L. Griffiths, K. R. Canini, A. N. Sanborn, and D. J. Navarro.

2007a.

Unifying rational models of categorization via the hierarchical Dirichlet process.

In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society.
[m] = =

ThAamaac |

the Marlk S+avnrare anmd lachita Tarnanhbhaiim

	Probabilistic Models
	Probability Distributions
	POS Tagging
	HMM Recapitulation
	HMM Estimation
	Topic Model Introduction

