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Agenda 
•  Cloud ! Hadoop/MapReduce 

1.  Object Storage (Amazon S3) 
2.  Cloud Database (BigTable/Hbase) 

•  Add Database stuff to Hadoop/MapReduce 
3.  SQL to MapReduce 
4.  Data Warehouse on top of Hadoop/MapReduce (Hive) 

DeWitt & Stonebraker. MapReduce: A major step backwards. 
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html. 

Stonebraker et. al: MapReduce and parallel DBMSs: friends or foes? CACM 2010 
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Storage Services 

[Amazon]  DeCandia et al.  Dynamo: Amazon’s Highly Available Key-value Store. SOSP’07 
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Object Storage Services 
•  Service for storing objects (binary data) in the cloud 

–  Upload , storage on multiple nodes, download 
•  Simple structure 

–  Buckets: simple (flat) containers 
–  Objects: arbitrary data (e.g., files), arbitrary size 
–  Authentication, access rights 

•  Simple  API 
–  HTTP requests (REST-ful API): PUT, GET, DELETE 
–  Used by applications, e.g., DropBox (online backup & sync tool) 

•  Performance 
–  fast, scalable, high availability 

•  Costs 
–  “pay as you go”: #requests, data size,  upload/download size 

•  Example: Microsoft Azure Storage, Amazon Simple Storage Service (S3) 
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Problems 
•  Concurrent user access  

–  YouTube videos, collaborative work on documents,  
•  Problem: concurrent writes 

–  Conditional Updates: “IF current version =X THEN Update” 
–  Node-based versioning 

•  Data copies on multiple nodes 
–  Reliability: Redundancy against node outage 
–  Read performance: Multiple clients can read different copies in parallel (locality) 

•  Problem: replica synchronization 
–  Strong Consistency: Any read access will return the updated version 
–  Eventual Consistency: All accesses will eventually return the updated version 
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Amazon S3/Dynamo: Overview 
•  Amazon S3 is based on Amazon Dynamo 
•  Distributed, scalable key-value store 

–  designed for “small data objects” (1MB / key) 
•  Characteristics 

–  high availability  
–  low latency 

•  Eventually consistent data store 
–  Write access always possible 
–  relaxed consistency in favor of availability 

•  Performance SLA (Service Level Agreement) 
–  “response within 300ms for 99.9% of requests for peak client load of 500 requests 

per second” 
•  P2P-like structure 

–  no master nodes, all nodes have the same functionality 
–  each node is aware of data at peers 
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Amazon Dynamo: Partitioning 
•  Each node is assigned a position in a ring 

–  Position= random value  of a hash function 
•  Node assignment 

–  Compute hash value of key 
–  Choose next N nodes on ring (clock-wise) 
–  Example:  Hash(key) between A and B  
" for N=3: nodes B, C, and D 

–  Performant node insert / delete / remove  
because neighboring nodes affected only 

•  Preference list 
–  List of N nodes that are assigned for a given key 
–  each node has a preference list for all keys 

•  Consistent hashing 
–  appropriate hash function needed for data locality and load balancing 

A 
B 

C 

D E 

F 

G 

Hash(key) 
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Amazon Dynamo: Data access 
•  Key value store interface 

–  Primary key access, no complex queries 
–  Request to any node of the ring 
–  Request will be forwarded to one (first) node of the key’s preference list 

•  Put (Key, Context, Object) 
–  Coordinator creates vector clock (versioning) based on request’s context 
–  Coordinator writes object + vector clock 
–  Replication 

•  Write requests to N-1 other nodes out of the preference list 
•  Success, if (at least) W-1 nodes succeed 
•  asynchronous replica updates for W<N " consistency problems 

•  Get (Key) 
–  Read request to N nodes of the preference list 
–  Return responses from R nodes " may contain multiple versions; list of (object, 

context) pairs 
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Amazon Dynamo: Replication 
•  Read/Write Quorum 

–  R/W = minimal number of replica nodes that must be synchronized for successful 
read/write operation 

–  Application can adjust (N,R,W) to meet needs for performance, availability, and 
durability 

•  Consistency if  R + W > N 
–  User/application-controlled conflict resolution for different versions 

•  Variants 
–  Read-optimized: R=1, W=N 
–  Write-optimized: R=N, W=1  
–  Default: (3,2,2)  
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Amazon Dynamo: Versioning 
•  Example of object versioning 

•  “Vector Clocks” represent dependencies between different versions of the 
same object " reconcile multiple versions 
–  version counter per replica node,  

e.g., D ([Sx, 1]) for object D, node Sx, version 1 
–  Vector clock: list of  (node, counter) pairs to indicate available object 

versions 
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Amazon Dynamo: Versioning (2) 
•  Vector Clocks to determine depen-

dencies between 2 object versions 
–  Counters of 1st vector clock ! all counters 

of 2nd vector clock! 1st version is (direct) 
ancestor and can be deleted  

–  otherwise: conflict resolution 
•  Read returns all known versions incl. 

vector clocks  
–  subsequent update merges all version 

•  Application determines conflict 
resolution 

–  vector clocks part of get/put requests 
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Amazon Dynamo: Temporary failures 
•  Temporary node failure should be transparent to the user 
•  Sloppy Quorum (N, R, W) 

–  All operations performed on first N healthy nodes 
–  still “writable” if replica not available (e.g., W=N) 

•  Hinted Handoff 
–  If node is unavailable, replication request is sent to another node (“hinted replica”) 
–  Background job: When original node has recovered, send hinted replica to original 

node 
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Amazon Dynamo: Replica synchronization 
•  Hash-Tree (Merkle Tree) for key 

range 
–  Leafs = hash value of key value 
–  Parents = hash value of respective 

child node values 
•  Advantages 

–  Efficient check if two replicas are 
identical = roots have same value 

–  Efficient recursive identification of 
out-of-sync sub trees 

•  Disadvantages 
–  Computational costs during 

repartitioning (e.g., new nodes) 
K1 
V1 

K2 
V2 

K3 
V3 

K4 
V4 

H(k1) H(k2) H(k4) H(k3) 

H(H(k1), H(k2)) H(H(k3), H(k4)) 

H(H(H(k1), H(k2)), H(H(k3), H(k4))) 

... 

... 

H(...) 

... 
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Amazon Dynamo: Techniques (Summary) 

•  Additional techniques 
–  Gossip protocol for P2P network (new nodes, failure identification, ) 

Problem Technique Advantage 

Partitioning Consistent Hashing Scalability 

High availability of 
writes 

Vector Clocks + 
conflict resolution 
during reads 

Versioning independent from 
update frequency 

Temporary node 
failure 

Sloppy Quorum and 
Hinted Handoff 

High availability; reliable 

Recovering Hash Tree 
(Merkle Tree) 

Efficient background 
synchronization of replicas 
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Amazon S3/Dynamo vs. Azure Storage 
Amazon Dynamo Azure Storage 

Partitioning Hash function Object name 
Dynamically 
extensible 

+ + 

Routing P2P hierarchical 
Replication asynchronous synchronous 
Consistency Eventual Consistency Strong Consistency 

Handling 
concurrent 
writes 

during read; 
multiple versions with 
vector clock 

during write; 
conditional updates 

Performance Adjustable by read/write 
quorum 

Read optimized; CDN 
(eventual consistency) 
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Web (nonSQL) Databases 

[BigTable] Chang et al. Bigtable: A Distributed Storage System for Structured Data. OSDI’06 
[HBase] http://hadoop.apache.org/hbase/ 
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Web Database: Usage scenario 
•  Web table 

–  Table contains crawled web pages incl. date, time, ...  
–  Key: web page URL 
–  millions/billions of pages 

•  Random access 
–  Crawler adds / updates web pages 
–  Search engine delivers cached version of web pages 

•  Batch processing  
–  Build search engine index 

•  Dynamic web applications (e.g., Facebook) need fast random access to 
(semi-) structured data 
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Google‘s BigTable 

•  Distributed data storage system 

–  column-oriented key-value store   
–  multi-dimensional 
–  Versioning 
–  High availability 
–  High performance 

•  Goals 
–  Billions of rows, millions of columns, thousands of version 
–  Real-time read/write random access 
–  Large data (PB) 
–  linear scalability with the number of nodes 

•  Idea / techniques 
–  Architecture allows efficient but simple data access method 
–  no additional overhead (e.g., ACID) 

•  HBase is Hadoop implementation of BigTable 
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Data model 
•  Distributed, multi-dimensional, sorted map 

(row:string, column:string, time:int64) ! string 
–  Keys for row and columns 
–  time stamp 
–  Arbitrary data (Strings / Byte strings) 

•  Rows 
–  Read and write operations are atomic per row only 
–  Data stored in (lexicographical) order of row keys 
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Data model (2) 
•  Columns 

–  can be added dynamically at run-time 
•  Column families 

–  Group together n similar columns  
–  column key = family: qualifier 
–  Disk/memory storage w.r.t. to column families (columns of the same family are 

stored „close together“) 
•  Time stamp 

–  different versions of data per cell 
–  garbage collection of older versions („keep t versions only“) 
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Data model (3) 
•  Conceptual (alternative) 

•  Physical storage 

Row Key Time Stamp Column Contents Column Family Anchor 
“com.cnn.www” T9 Anchor:cnnsi.com CNN 

T8 Anchor:my.look.ca CNN.COM 
T6 “<html>.. “ 
T5 “<html>.. “ 

Row Key Time Stamp Contents 
com.cnn.www T6 “<html>..” 

T5 “<html>..” 

Row Key Time Stamp Anchor 
com.cnn.www T9 Anchor:cnnsi.com CNN 

T5 Anchor:my.look.ca CNN.COM 
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Architecture 
•  Data partitioning 

–  Rows sorted by key 
–  Horizontal table partitioning into tablets 
–  Tablet distribution across multiple tablet servers 

•  Master Server 
–  Assignment: Tablet # Tablet Server 
–  Add/delete tablet servers 
–  Load balancing for tablet servers 

•  Tablet Server 
–  Manages 10-1,000 tablets 
–  Realizes read and write access 
–  Tablet split if tablet too large (100-200MB) 

•  Client 
–  Communication with tablet server for reading / writing 

Master Server 
(GFS Master Server) 

Tablet Server 
(GFC Chunk 

Server) 

... 

Tablet Server 
(GFC Chunk 

Server) 

... 
Tablets (Chunks) 
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Tablet Location 
•  2-level catalog management with Root and METADATA table 
•  Root table 

–  Links to all tablets of a METADATA table 
–  Stored in 1 Tablet (never split) 

•  METADATA table 
–  Links to all tablets (of user tables)  
–  Identifier: table name + key of last row 
–  Table are sorted by key 

•  Address space 
–  Entry size: 1KB 
–  Tablet size: 128MB 
–  Addressable tablets:  

•  METADATA: 128MB / 1KB = 217 tablets 
•  User Table: 217 $ 217 = 234 tablets  

–  Size of all user tablets: 234 $ 128 MB = 241 MB = 2 million TB 



24 

Tablet: Read and write access 
•  SSTable File (Sorted String Table ) 

–  Immutable sorted map 
–  Bloom Filter to check if  

SSTable contains data for 
row+column 

•  Write access 
–  Write to transaction Log (for redo) 
–  Write to MemTable (RAM) 

•  Asynchronous:  Compaction  
–  Minor: Copy data from MemTable to SSTable (and delete from log) 
–  Merge: Merge MemTable and SSTable(s) to new SSTable 
–  Major: Remove deleted data (=merge to one SSTable) 

•  Read access 
–  Read from MemTable and SSTables to find data 
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Performance 
•  #Read/WriteOps  

per second for  
1000Byte 

•  Good scalability  
for up to 250  
tablet servers 

•  Write is faster than read 
–  Commit-Log is append only; Read requires access to MemTable + SSTable 

•  Random reads slowest 
–  Access (all) SSTables 

•  Scanning and sequential reads are more efficient 
–  Make use of sorted keys 
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Bigtable vs. RDBMS 
BigTable / HBase RDBMS 

Assumption (hardware) failures are prevalent (hardware) failures are rare 
Replication built-in external 
Normalization unnormalized data 

(wide, sparse tables) 
normalized data (3NF) 
(compact, redundant free tables) 

Query key-based access: point and range  SQL 
Scalability linear, unlimited limited (due to ACID, foreign keys, views, 

trigger, ...) 
Index  primary key   primary key + secondary indexes 
Transactions -   + 
Atomicity row level transaction level 
Consistency No integrity constraints, no referential 

integrity 
Integrity constraints and referential 
integrity 

Isolated 
execution 

- + 

Durability + + 
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MapReduce and SQL 

[CouchDB] http://couchdb.apache.org/ 
[Data] http://labs.mudynamics.com/wp-content/uploads/2009/04/icouch.html 
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Query transformation 
•  (manual) rewrite from SQL to MapReduce 

•  Example: CouchDB 
•  Document-oriented data store 

–  no schema 
–  JSON format 
–  simple versioning concept 

•  Query/view definition 
–  specify map and reduce function in Javascript (or other language) 
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{“_id”:”1”, "name":"fish.jpg",”time":”17:46","user":"bob“,"camera":"nikon", 
                "info":{"width":100,"height":200,"size":12345},"tags":["tuna","shark"]} 
{“_id”:”2”, "name":"trees.jpg",“time":”17:57”,"user":"john”,"camera":"canon", 
                "info":{"width":30,"height":250,"size":32091},"tags":["oak"]} 
.... 

Example data 
•  Conceptional: nested table 

•  Internal representation as document set (JSON format) 

id name time user camera info tags 
width height size 

1 fish.jpg 17:46 bob nikon 100 200 12345 [tuna, shark] 
2 trees.jpg 17:57 john canon 30 250 32091 [oak] 
3 snow.png 17:56 john canon 64 64 1253 [tahoe, powder] 
4 hawaii.png 17:59 john nikon 128 64 92834 [maui, tuna] 
5 hawaii.gif 17:58 bob canon 320 128 49287 [maui] 
6 island.gif 17:43 zztop nikon 640 480 50398 [maui] 
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Selection 
•  Selection = attribute value condition 

–  SQL: ... WHERE attr = “xy” 
•  Map 

–  check condition using IF statement 
–  return selected document 

•  Reduce 
–  id function 

•  Example 
–  SQL: SELECT * FROM table WHERE user = “bob” 

id name time user camera info tags 
width height size 

1 fish.jpg 17:46 bob nikon 100 200 12345 [tuna, shark] 
5 hawaii.gif 17:58 bob canon 320 128 49287 [maui] 
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Selection: Example 

{id:1,user:bob ...} 
{id:2,user:john ...} 
{id:3,user:john ...} 
{id:4,user:john ...} 
{id:5,user:bob ...} 
{id:6,user:zztop...} 

ma
p 

sh
uff

le 
+ 

so
rt 

re
du

ce
 

key value 
null {id:1 ...} 
null {id:5 ...} 

key values 
null [{id:1 ...}, 

{id:5 ...}] 

[{id:1 ...},{id:5 ...}] 

map 
function (doc) { 
  if (doc.user == “bob”) 
    emit (doc.id, doc); 
} 

reduce 
function (key, values) { 
  return values[0]; 
} 

emit (null, doc); 
return values; 

key value 
1 {id:1 ...} 
5 {id:5 ...} 

key values 
1 [{id:1 ...}] 
5 [{id:5 ...}] 

{id:1 ...} 
{id:5 ...} 

ma
p 

sh
ffl+

srt
 

re
du

ce
 Alternative 
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Projection 
•  Projection = restrict set of attributes 

–  SQL: SELECT Attr1, Attr2 FROM ... 
•  Map 

–  create new (“restricted”) document 
•  Reduce 

–  id function 
•  Duplicate removal 

–  map: key = projected attributes 
–  reduce: return first value 

•  Example 
–  SQL: SELECT (DISTINCT) user FROM table 

user 
bob 
john 
john 
john 
bob 
zztop 

user 
bob 
john 
zztop 
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Projection: Example (w/o duplicate removal) 

{id:1,user:bob ...} 
{id:2,user:john ...} 
{id:3,user:john ...} 
{id:4,user:john ...} 
{id:5,user:bob ...} 
{id:6,user:zztop...} 

ma
p 

re
du

ce
 

key value 
1 {user:bob } 
2 {user:john} 
3 {user:john} 
4 {user:john} 
5 {user:bob} 
6 {user:zztop} 

{user:bob } 
{user:john} 
{user:john} 
{user:john} 
{user:bob} 
{user:zztop} 

map 
function (doc) { 
  emit(doc.id,{“user”:doc.user}); 
} 

reduce 
function (key, values) { 
  return values[0]; 
} 

key value 
1 [{user:bob }] 
2 [{user:john}] 
3 [{user:john}] 
4 [{user:john}] 
5 [{user:bob}] 
6 [{user:zztop}] 

sh
uff

le 
+ 

so
rt 
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Projection: Example (w/ duplicate removal) 

{id:1,user:bob ...} 
{id:2,user:john ...} 
{id:3,user:john ...} 
{id:4,user:john ...} 
{id:5,user:bob ...} 
{id:6,user:zztop...} 

ma
p 

re
du

ce
 

key value 
bob {user:bob } 
john {user:john} 
john {user:john} 
john {user:john} 
bob {user:bob} 
zztop {user:zztop} 

{user:bob } 
{user:john} 
{user:zztop} 

map 
function (doc) { 
  emit(doc.user,{“user”:doc.user}); 
} 

reduce 
function (key, values) { 
  return values[0]; 
} 

key value 
bob [{user:bob }, 

{user:bob }] 
john [{user:john}, 

{user:john}, 
{user:john}] 

zztop [{user:zztop}] sh
uff

le 
+ 

so
rt 
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Grouping and aggregate functions 
•  Grouping 

–  Divides records into groups based on shared attribute values 
–  Produces one record (row) per group 
–  Aggregate functions to compute aggregated values (per group), e.g., SUM 

•  Map 
–  Key = group attribute values 

•  Reduce 
–  Return first key value 
–  Optional: Apply aggregate function(s) 

•  Example 
–  SELECT camera, AVG(info.size) as avgsize 

FROM Table 
GROUP BY camera 

camera avgsize 
canon 27543.3 
nikon 51859 
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Grouping and aggregate functions: Example 

{id:1,user:bob ...} 
{id:2,user:john ...} 
{id:3,user:john ...} 
{id:4,user:john ...} 
{id:5,user:bob ...} 
{id:6,user:zztop...} 

ma
p 

re
du

ce
 

{camera:canon, 
avgsize: 27543.3} 
{camera:nikon, 
avgsize: 51859} 

map 
function (doc) { 
  emit(doc.camera, 
   doc.info.size); 
} 

reduce 
function (key, values) { 
  sum = 0; 
  for (i=0; i<values.length; i++) { 
    sum = sum + values[i]; 
  }  
  return {"camera":keys,  
          “avgsize":sum/values.length}; 
} 

sh
uff

le 
+ 

so
rt 

key value 
nikon 12345 
canon 32091 
canon 1253 
nikon 92834 
canon 49287 
nikon 50398 

key value 
canon [32091, 

1253, 
49287] 

nikon [12345, 
92834, 
50398] 
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Equi-join + multi-valued attribute 
•  Equi-join = combine records from two relations based on attribute equality 

–  SQL: ... WHERE Tab1.Attr1 = Tab2.Attr2 
•  Multi-valued attribute in 1NF  

–  1-to-many, many-to-many relationships  
–  equi-joins needed 

•  Map 
–  Key = join attribute value 

•  Reduce 
–  Iteration over all value pairs 

•  Example (SQL) 
–  SELECT Tab1.name AS name1, Tab2.name AS name2 

FROM table AS Tab1, table AS Tab2,  
            tagtab AS Tag1, tagtab AS Tag2 
WHERE Tag1.id=Tab1.id AND Tag2.id=Tab2.id 
AND Tag1.tag = Tag2.tag 
AND Tab1.name < Tab2.name 

name1 name2 
hawaii.png island.gif 
hawaii.gif hawaii.png 
hawaii.gif island.gif 
fish.jpg hawaii.png 

id tag 
1 tuna 
1 shark 
4 maui 
4 tuna 
5  maui 
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Equi join + multi-valued attribute: Example (1) 
map 
function (doc) { 
  for (i=0; i<doc.tags.length; i++) { 
  emit (doc.tags[i], doc.name); 
} 

reduce 
function (key, values) { 
  var result = new Array(); 
  for (i=0; i<values.length; i++) { 
    for (k=0; k<values.length; k++) { 
      if (values[i]<values[k] { 
        result.push ({name1:values[i], name2:values[k]}); 
      } 
    } 
  }  
  return result; 
} 
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Equi join + multi-valued attribute: Example (2) 

{id:1,...} 
{id:2,...} 
{id:3,...} 
{id:4,...} 
{id:5,...} 
{id:6,...} 

ma
p 

re
du

ce
 

key value 

tuna fish.jpg 
shark fish.jpg 
oak tree.jpg 
tahoe snow.png 
powder snow.png 
maui hawaii.png 
tuna hawaii.png 
maui hawaii.gif 
maui island.gif 

[{name1:hawaii.png, 
name2: island.gif}, 
{name1:hawaii.gif, 
name2:hawaii.png}, 
{name1:hawaii.gif, 
name2:island.gif}] 
[] 
[] 
[] 
[] 
[{name1:fish.jpg, 
name2:hawaii.png}] 

key value 
maui [hawaii.png, 

hawaii.gif, 
island.gif] 

oak [tree.jpg] 
power [snow.png] 
shark [fish.jpg] 
tahoe [snow.png] 
tuna [fish.jpg, 

hawaii.png] 

sh
uff

le 
+ 

so
rt 
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MapReduce and Data Warehouses 

[Hive] Thusoo et.al.: Hive-a petabyte scale data warehouse using hadoop. ICDE 2010 
[HiveUrl] http://hadoop.apache.org/hive/ 
[Hive1] http://www.slideshare.net/zshao/hive-data-warehousing-analytics-on-hadoop-presentation 
[Hive2] http://www.slideshare.net/ragho/hive-user-meeting-august-2009-facebook 
[Hive3] http://www.slideshare.net/jsichi/hive-evolution-apachecon-2010 
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Hadoop/MR vs. Parallel DBS 
•  Hadoop/MR  advantages 

–  Scalability, fault tolerance 
–  configuration effort, costs 
–  no initial data loading 

•  Parallel DBS advantages 
–  Declarative query language 
–  Queries run faster by order of magnitude 
–  Support for compressed data 
–  Random access 

•  Common use cases MapReduce 
–  ETL 
–  Data mining, data clustering 
–  Analysis of semi-structured data (e.g., web log files) 
–  Ad-hoc data analysis 
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Data analysis: Facebook 
•  Facebook 

–  4TB compressed data per day 
–  135TB compressed data are analyzed per day 

•  Aggregations 
–  #clicks/page views per day/month/... 

•  Ad-hoc analysis 
–  How many uploaded pictures per county / state on New Year’s Eve? 

•  Data Mining 
–  User profiles based on attributes (#pageviews, #sessions, time, ...) 

•  Spam detection 
–  (suspicious) frequent patterns in user generated content 

•  Analysis / optimization of online advertisement 
–  #AdClicks per user (type) ... 
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Hive 
•  Data Warehouse based on Hadoop 
•  Hive = MapReduce + SQL 

–  SQL is simple and widely-used 
–  MapReduce scalability 

•  Automatic translation SQL to MapReduce necessary 
–  Programs hard to maintain, almost no reuse 
–  Difficult for non experts 
–  Limited expressiveness, e.g., long code (development time!) to realize simple count/

average queries 
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Hive: Overview 
•  Management and analysis of structured data using Hadoop 

–  no OLTP database, high latency 
•  File-based data storage (HDFS) 

–  metadata for mapping files to tables 
–  complex data types (e.g., list, map) 
–  direct file access, different data formats 

•  HiveQL queries are executed using MapReduce 
–  include scripts (e.g., written in Python) in queries 
–  metadata, e.g., for optimizing joins 

•  Scalability and fault tolerance 
–  HDFS + MapReduce 

•  Extensibility 
–  User-Defined Table-Generating Functions (UDTF) 
–  User-Defined Aggregate Functions (UDAF) 
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Hive: Architecture 
•  Metastore 

–  Tables, columns (type) 
–  Location, partitions 
–  Information on (de)serialization 

•  CLI / Web-GUI 
–  Browse metastore 
–  Send queries 

•  Thrift 
–  Cross-language Service " HiveQL 

•  Compiler + Optimizer 
–  Query optimization and translation of 

HiveQL query to DAG of MapReduce 
jobs 

•  Executor 
–  Execute MR-jobs of DAG 
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Hive: Data type & data access 
•  Data types 

–  simple and composite data types 
–  list, map 

•  Flexible (de)serialization of tables 
–  multiple (user-defined) format, e.g. XML, JSON, CSV 
–  multiple “storage engines”, e.g., file 

•  Advantages 
–  no initial data loading into data warehouse (no data replication!) 
–  no data transformation to relational model but direct file access 

•  Disadvantages 
–  no pre-processing, e.g., indexing 
–  always full (file) table scan necessary 
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Hive: Tables, partitions, and files 
•  Table links to existing file(s) in HDFS 

–  Table has corresponding HDFS directory: /wh/pvs 
–  Definition of columns for data partitioning 
  /wh/pvs/ds=20090801/ctry=US 
  /wh/pvs/ds=20090801/ctry=CA 

–  Bucketing: Split data of a directory based on hash value 
  /wh/pvs/ds=20090801/ctry=US/part-00000  …  
  /wh/pvs/ds=20090801/ctry=US/part-00020 

partitions (multiple 
levels possible) 

HDFS files 
(Hash buckets possible) 

table 

Clicks 
ds=2090801 

ds=2090802 
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Hive: Table 
•  Create 
  CREATE EXTERNAL TABLE pvs 

 (userid int, pageid int, ds string, stry string) 
  PARTITIONED ON(ds string, ctry string) 
  STORED AS textfile  

 LOCATION ‘/path/to/existing/file’ 

•  Load 
  status_updates 
  (user_id int, status string, ds string) 
  LOAD DATA LOCAL  
  INPATH ‘/logs/status_updates’  
  INTO TABLE status_updates  
  PARTITION (ds=’2009-03-20’) 
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Hive-QL 
•  Similar to SQL 

–  Selection, projection, equi-join, union, sub-queries, group by, aggregate functions 
–  Sort by vs. order by 

•  Extend queries by 
–  MapReduce scripts 
–  UDF, may operate on complex data structures (lists, map) 

FROM (  
   FROM pv_users  
   SELECT TRANSFORM(pv_users.userid, pv_users.date)  
   USING 'map_script'  
   AS(dt, uid)  
   CLUSTER BY(dt) 
) map  
INSERT INTO TABLE pv_users_reduced  
SELECT TRANSFORM(map.dt, map.uid)  
USING 'reduce_script'  
AS (date, count);  
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Hive-QL: Query transformation 
•  Hive-QL query is transformed into DAG (directed acyclic graph) 
•  Nodes: operators 

–  TableScan 
–  Select, Extract 
–  Filter 
–  Join, MapJoin, Sorted Merge Map Join  
–  GroupBy, Limit 
–  Union, Collect 
–  FileSink, HashTableSink, ReduceSink 
–  UDTF  

•  Graph represents data flow 
•  multiple (parallel) Map/Reduce phases possible 
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Hive-QL: Query transformation (Example) 
•  Example 

SELECT *  

FROM status_updates  

WHERE status  

   LIKE ‘michael jackson’ 
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Hive-QL: Query transformation (Example) (2) 
SELECT COUNT(*)  

FROM status_updates  

WHERE ds=‘2009-08-01’ 

Updates per Map 

All updates 

Materialize  
map output 
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Hive: Query transformation and optimization 
•  DAG can become very complex 
•  Optimization techniques 

–  Ignore unnecessary columns 
–  Apply selection as early as possible 
–  Ignore unnecessary partitions 
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Hive: Join  

userid age ... 
111 25 ... 
222 32 ... 

key value 
111 <R,1> 
111 <R,2> 
222 <R,2> 

pageId userId ... 
1 111 ... 
2 111 ... 
1 222 ... 

key value 
111 <S,25> 
222 <S,32> 

key value 
111 <R,1> 
111 <R,2> 
111 <S,25> 

key value 
222 <R,2> 
222 <S,32> 

pageId age 
1 25 
2 25 

pageId age 
2 32 

page_view 

user ma
p 

sh
uff

le 
+ 

so
rt 

re
du

ce
 

INSERT INTO TABLE pv_users  
SELECT pv.pageid, u.age 
FROM page_view pv  
JOIN user u ON (pv.userid = u.userid) 

pv_users 

•  Key = Join-Key, Value has flag (R or S) to distinguish between tables 
•  Multi-way join using the same join key " 1 MapReduce job 
•  Multi-way join using n join keys " n MapReduce jobs 
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MapJoin: Performance improvement 
•  MapJoin 

–  small table as additional map input 
–  can be transformed into hash table  
–  no reduce necessary 
–  n way join possible if  n-1 tables can 

be made available as additional 
map input 

•  Dynamic optimization 
–  Determine small/large table at 

runtime 
–  Apply MapJoin if possible, e.g., if 

small table(s) fit into memory 

pageId userId ... 
1 111 ... 
2 111 ... 
1 222 ... 

page_view 

pageId userIds 
1 [111,222] 
2 [111] 

HashTable 

userid age ... 
111 25 ... 
222 32 ... 

user 

ma
p 

pageId age 
1 25 
2 25 
2 32 

pv_users 
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Hive: Group By INSERT INTO TABLE pageid_age_sum 
SELECT pageid, age, count(*) 
FROM pv_users 
GROUP BY pageid, age 

pageId age 
1 25 
1 25 

pv_users 

pageId age 
1 25 
2 32 

key value 
<1,25> 2 

key value 
<1,25> 1 
<2,32> 1 

ma
p 

sh
uff

le 
+ 

so
rt 

re
du

ce
 

key value 
<1,25> 2 
<1,25> 1 

key value 
<2,32> 1 

pageId age count 
1 25 3 

pageId age count 
2 32 1 

pageid_age_sum 

•  Key = group attributes 
•  Reduce = aggregation function 

–  pre-aggregation using a map combiner is possible (e.g.,  (<1,25>,2)) 
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User-defined scripts 
•  Include user-defined scripts in HiveQL queries using TRANSFORM 

operator 
–  Data (de)serialization 
–  Transfer via stdin/stdout 

computeAuthorityValue.py 

import sys  
for line in sys.stdin:  
  id = line.strip()   
  ... compute authval ... 
  print '\t'.join([id, authval]) 

ADD FILE computeAuthorityValue.py; 
SELECT  
    TRANSFORM (userid)  
    USING ‘computeAuthorityValue.py' 
    AS id, authority_value 
  FROM user 

userid authority_value 
111 0.1 
222 0.8 

userid age ... 
111 25 ... 
222 32 ... 

user 
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Hadoop/MR vs. Parallel DBS 
Hadoop / MapReduce Shared Nothing-RDBMS 

Data size PB TB-PB 
Data structure semi-structured data static schema 
Partitioning Blocks in DFS (byte-wise) Horizontal 
Query MapReduce programs Declarative (SQL) 
Data access Batch via indexes (e.g., range) 
Updates Write once read many times Read and write many times 
Scheduling Runtime Compile-time 
Processing Parse tuples at runtime efficient access to attributes  

(Storage Manager)  
Data flow Pull – materialize  intermediate results Push – tuple pipelining between operators 
Fault tolerance Restart map/reduce task query restart (operator restart) 
Scalability linear, unlimited linear, limited 
Hardware heterogeneous (cheap commodity 

hardware) 
homogeneous (expensive high end 
hardware) 

Software free, open source very expensive 
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Summary 
•  New database-like developments in the cloud 
•  Database techniques integrated in Hadoop/MR 

•  There is many many more 
–  Pig Latin – a programming language for MapRedue-based data processing 
–  HadoopDB – a hybrid of Hadoop/MR and RDBMS 
–  Megastore – “BigTable  + ACID” 
–  Dremel – ad-hoc query system for analysis of read-only nested data 
–  RDBMS in the Cloud – e.g., IBM DB2 running on Amazon EC2 
–  Data management optimizations in the cloud – e.g., load balancing 
–  ... 


